Intricate DG and EV Planning Impact Assessment with Seasonal Variation in a Three-Phase Distribution System
Abstract
:1. Introduction
2. Modelling of Multi-Source Renewable Integrated DG and EV Charging Station
2.1. Multi-Source Renewable Integrated DG
2.1.1. The Solar Model
2.1.2. The Wind Model
2.1.3. The Biomass Model
2.2. Modelling of the EV Charging Station
2.2.1. Modelling the State of Charge (SoC)
2.2.2. Fast Charging Station Required Number
3. Modelling of the Three-Phase Distributed Network
The Modelling Effect on Distribution Due to the Temperature Effect
4. Proposed Methodology
4.1. Multi-Objective Function (MOFs)
4.2. Substation Power Supply Cost
4.3. Cost of Energy Loss (Per Annum)
4.4. Distributed Generation (DG) Cost
4.5. Greenhouse Gas Emissions
4.6. Constraints
4.7. Particle Swarm Optimization
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DG | Distributed Generation |
EV | Electric Vehicle |
PSO | Particle Swarm Optimization |
VDI | Voltage Deviation Index |
CEL | Cost of Energy Loss |
MOF | Multi-Objective Function |
GHG | Greenhouse Gases |
EVCS | Electric Vehicles Charging Station |
DERs | Distributed Energy Resources |
BES | Battery Energy Storage |
DSTATCOM | Distribution Static Synchronous Compensator |
PV | Photovoltaic |
SoC | State of Charge |
DN | Distribution Network |
Appendix A. The Data of IEEE 69 Bus Three Phase Balanced and Modified Unbalanced System
IEEE 69 Balanced (Three-Phase Load Data) | Modified IEEE 69 Unbalanced (Three-Phase Load Data) | ||||||||||||||||
Bus Node No. | Three-Phase Distribution | transformer Connection Type | Bus Type | Active Power (Phase A) | Reactive Power (Phase A) | Active Power (Phase B) | Reactive Power (Phase B) | Active Power (Phase C) | Reactive Power (Phase C) | Phase Distribution | Connection type | Active Power (Phase A) | Reactive Power (Phase A) | Active Power (Phase B) | Reactive Power (Phase B) | Active Power (Phase C) | Reactive Power (Phase C) |
1 | ABC | Y | slack | 0 | 0 | 0 | 0 | 0 | 0 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
2 | ABC | Y | PQ | 0 | 0 | 0 | 0 | 0 | 0 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
3 | ABC | Y | PQ | 0 | 0 | 0 | 0 | 0 | 0 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
4 | ABC | Y | PQ | 0 | 0 | 0 | 0 | 0 | 0 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
5 | ABC | Y | PQ | 0 | 0 | 0 | 0 | 0 | 0 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
6 | ABC | Y | PQ | 0.867 | 0.733 | 0.867 | 0.733 | 0.867 | 0.733 | AB | Y | 1.3 | 1.1 | 1.3 | 1.1 | 0 | 0 |
7 | ABC | Y | PQ | 13.467 | 10.000 | 13.467 | 10.000 | 13.467 | 10.000 | A | D | 40.4 | 30 | 0 | 0 | 0 | 0 |
8 | ABC | Y | PQ | 25.000 | 18.000 | 25.000 | 18.000 | 25.000 | 18.000 | BC | Y | 0 | 0 | 37.5 | 27 | 37.5 | 27 |
9 | ABC | Y | PQ | 10.000 | 7.333 | 10.000 | 7.333 | 10.000 | 7.333 | B | Y | 0 | 0 | 30 | 22 | 0 | 0 |
10 | ABC | Y | PQ | 9.333 | 6.333 | 9.333 | 6.333 | 9.333 | 6.333 | C | Y | 0 | 0 | 0 | 0 | 28 | 19 |
11 | ABC | Y | PQ | 48.333 | 34.667 | 48.333 | 34.667 | 48.333 | 34.667 | ABC | Y | 48.33 | 34.67 | 48.33 | 34.67 | 48.33 | 34.67 |
12 | ABC | Y | PQ | 48.333 | 34.667 | 48.333 | 34.667 | 48.333 | 34.667 | ABC | Y | 48.33 | 34.67 | 48.33 | 34.67 | 48.33 | 34.67 |
13 | ABC | Y | PQ | 2.667 | 1.833 | 2.667 | 1.833 | 2.667 | 1.833 | A | Y | 8 | 5.5 | 0 | 0 | 0 | 0 |
14 | ABC | Y | PQ | 2.667 | 1.833 | 2.667 | 1.833 | 2.667 | 1.833 | B | Y | 0 | 0 | 8 | 5.5 | 0 | 0 |
15 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
16 | ABC | Y | PQ | 15.167 | 10.000 | 15.167 | 10.000 | 15.167 | 10.000 | C | Y | 0 | 0 | 0 | 0 | 45.5 | 30 |
17 | ABC | Y | PQ | 20.000 | 11.667 | 20.000 | 11.667 | 20.000 | 11.667 | A | Y | 60 | 35 | 0 | 0 | 0 | 0 |
18 | ABC | Y | PQ | 20.000 | 11.667 | 20.000 | 11.667 | 20.000 | 11.667 | B | Y | 0 | 0 | 60 | 35 | 0 | 0 |
19 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
20 | ABC | Y | PQ | 0.333 | 0.200 | 0.333 | 0.200 | 0.333 | 0.200 | AC | Y | 0.5 | 0.3 | 0 | 0 | 0.5 | 0.3 |
21 | ABC | Y | PQ | 38.000 | 27.000 | 38.000 | 27.000 | 38.000 | 27.000 | C | Y | 0 | 0 | 0 | 0 | 114 | 81 |
22 | ABC | Y | PQ | 1.767 | 1.167 | 1.767 | 1.167 | 1.767 | 1.167 | A | Y | 5.3 | 3.5 | 0 | 0 | 0 | 0 |
23 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
24 | ABC | Y | PQ | 9.333 | 6.667 | 9.333 | 6.667 | 9.333 | 6.667 | B | Y | 0 | 0 | 28 | 20 | 0 | 0 |
25 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | D | 0 | 0 | 0 | 0 | 0 | 0 |
26 | ABC | Y | PQ | 4.667 | 3.333 | 4.667 | 3.333 | 4.667 | 3.333 | C | Y | 0 | 0 | 0 | 0 | 14 | 10 |
27 | ABC | Y | PQ | 4.667 | 3.333 | 4.667 | 3.333 | 4.667 | 3.333 | A | Y | 14 | 10 | 0 | 0 | 0 | 0 |
28 | ABC | Y | PQ | 8.667 | 6.200 | 8.667 | 6.200 | 8.667 | 6.200 | B | Y | 0 | 0 | 26 | 18.6 | 0 | 0 |
29 | ABC | Y | PQ | 8.667 | 6.200 | 8.667 | 6.200 | 8.667 | 6.200 | C | Y | 0 | 0 | 0 | 0 | 26 | 18.6 |
30 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
31 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
32 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
33 | ABC | Y | PQ | 4.667 | 3.333 | 4.667 | 3.333 | 4.667 | 3.333 | A | Y | 14 | 10 | 0 | 0 | 0 | 0 |
34 | ABC | Y | PQ | 6.500 | 4.667 | 6.500 | 4.667 | 6.500 | 4.667 | B | Y | 0 | 0 | 19.5 | 14 | 0 | 0 |
35 | ABC | Y | PQ | 2.000 | 1.333 | 2.000 | 1.333 | 2.000 | 1.333 | ABC | Y | 2 | 1.33 | 2 | 1.33 | 2 | 1.33 |
36 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
37 | ABC | Y | PQ | 26.333 | 18.800 | 26.333 | 18.800 | 26.333 | 18.800 | ABC | Y | 26.34 | 18.8 | 26.34 | 18.8 | 26.34 | 18.8 |
38 | ABC | Y | PQ | 128.233 | 91.500 | 128.233 | 91.500 | 128.233 | 91.500 | C | Y | 0 | 0 | 0 | 0 | 384.7 | 274.5 |
39 | ABC | Y | PQ | 128.233 | 91.500 | 128.233 | 91.500 | 128.233 | 91.500 | A | Y | 384.7 | 274.5 | 0 | 0 | 0 | 0 |
40 | ABC | Y | PQ | 13.500 | 9.433 | 13.500 | 9.433 | 13.500 | 9.433 | B | D | 0 | 0 | 40.5 | 28.3 | 0 | 0 |
41 | ABC | Y | PQ | 1.200 | 0.900 | 1.200 | 0.900 | 1.200 | 0.900 | AB | Y | 1.8 | 1.35 | 1.8 | 1.35 | 0 | 0 |
42 | ABC | Y | PQ | 1.450 | 1.167 | 1.450 | 1.167 | 1.450 | 1.167 | C | Y | 0 | 0 | 0 | 0 | 4.35 | 3.5 |
43 | ABC | Y | PQ | 8.800 | 6.333 | 8.800 | 6.333 | 8.800 | 6.333 | BC | Y | 0 | 0 | 13.2 | 9.5 | 13.2 | 9.5 |
44 | ABC | Y | PQ | 8.000 | 5.733 | 8.000 | 5.733 | 8.000 | 5.733 | ABC | Y | 8 | 5.73 | 8 | 5.73 | 8 | 5.73 |
45 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
46 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
47 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
48 | ABC | Y | PQ | 33.333 | 24.000 | 33.333 | 24.000 | 33.333 | 24.000 | A | Y | 100 | 72 | 0 | 0 | 0 | 0 |
49 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
50 | ABC | Y | PQ | 414.667 | 296.000 | 414.667 | 296.000 | 414.667 | 296.000 | ABC | Y | 414.66 | 296 | 414.66 | 296 | 414.66 | 296 |
51 | ABC | Y | PQ | 10.667 | 7.667 | 10.667 | 7.667 | 10.667 | 7.667 | AB | Y | 16 | 11.5 | 16 | 11.5 | 0 | 0 |
52 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
53 | ABC | Y | PQ | 75.667 | 54.000 | 75.667 | 54.000 | 75.667 | 54.000 | A | Y | 227 | 162 | 0 | 0 | 0 | 0 |
54 | ABC | Y | PQ | 19.667 | 14.000 | 19.667 | 14.000 | 19.667 | 14.000 | BC | Y | 0 | 0 | 29.5 | 21 | 29.5 | 21 |
55 | ABC | Y | PQ | 6.000 | 4.333 | 6.000 | 4.333 | 6.000 | 4.333 | B | Y | 0 | 0 | 18 | 13 | 0 | 0 |
56 | ABC | Y | PQ | 6.000 | 4.333 | 6.000 | 4.333 | 6.000 | 4.333 | C | Y | 0 | 0 | 0 | 0 | 18 | 13 |
57 | ABC | Y | PQ | 9.333 | 6.667 | 9.333 | 6.667 | 9.333 | 6.667 | ABC | Y | 9.33 | 6.66 | 9.33 | 6.66 | 9.33 | 6.66 |
58 | ABC | Y | PQ | 9.333 | 6.667 | 9.333 | 6.667 | 9.333 | 6.667 | ABC | D | 9.34 | 6.67 | 9.34 | 6.67 | 9.34 | 6.67 |
59 | ABC | Y | PQ | 8.667 | 6.183 | 8.667 | 6.183 | 8.667 | 6.183 | A | Y | 26 | 18.55 | 0 | 0 | 0 | 0 |
60 | ABC | Y | PQ | 8.667 | 6.183 | 8.667 | 6.183 | 8.667 | 6.183 | B | Y | 0 | 0 | 26 | 18.55 | 0 | 0 |
61 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
62 | ABC | Y | PQ | 8.000 | 5.667 | 8.000 | 5.667 | 8.000 | 5.667 | C | Y | 0 | 0 | 0 | 0 | 24 | 17 |
63 | ABC | Y | PQ | 8.000 | 5.667 | 8.000 | 5.667 | 8.000 | 5.667 | A | Y | 24 | 17 | 0 | 0 | 0 | 0 |
64 | ABC | Y | PQ | 0.400 | 0.333 | 0.400 | 0.333 | 0.400 | 0.333 | B | Y | 0 | 0 | 1.2 | 1 | 0 | 0 |
65 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
66 | ABC | Y | PQ | 2.000 | 1.433 | 2.000 | 1.433 | 2.000 | 1.433 | AC | Y | 3 | 2.15 | 0 | 0 | 3 | 2.15 |
67 | ABC | Y | PQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ABC | Y | 0 | 0 | 0 | 0 | 0 | 0 |
68 | ABC | Y | PQ | 13.073 | 8.767 | 13.073 | 8.767 | 13.073 | 8.767 | C | Y | 0 | 0 | 0 | 0 | 39.22 | 26.3 |
69 | ABC | Y | PQ | 13.073 | 8.767 | 13.073 | 8.767 | 13.073 | 8.767 | A | Y | 39.22 | 26.3 | 0 | 0 | 0 | 0 |
References
- Rajendran, G.; Vaithilingam, C.A.; Misron, N.; Naidu, K.; Ahmed, R. A comprehensive review on system architecture and international standards for electric vehicle charging stations. J. Energy Storage 2021, 42, 103099. [Google Scholar] [CrossRef]
- Kathiravan, K.; Rajnarayanan, P.N. Application of AOA algorithm for optimal placement of electric vehicle charging station to minimize line losses. Electr. Power Syst. Res. 2023, 214, 108868. [Google Scholar] [CrossRef]
- Rajani, B.; Kommula, B.N. An optimal energy management among the electric vehicle charging stations and electricity distribution system using GPC-RERNN approach. Energy 2022, 245, 123180. [Google Scholar] [CrossRef]
- Ahmad, F.; Iqbal, A.; Ashraf, I.; Marzband, M. Optimal location of electric vehicle charging station and its impact on distribution network: A review. Energy Rep. 2022, 8, 2314–2333. [Google Scholar] [CrossRef]
- Ahmad, F.; Ashraf, I.; Iqbal, A.; Marzband, M.; Khan, I. A novel AI approach for optimal deployment of EV fast charging station and reliability analysis with solar based DGs in distribution network. Energy Rep. 2022, 8, 11646–11660. [Google Scholar] [CrossRef]
- Toghranegar, S.; Rabiee, A.; Soroudi, A. Enhancing the unbalanced distribution network’s hosting capacity for DERs via optimal load re-phasing. Sustain. Cities Soc. 2022, 87, 104243. [Google Scholar] [CrossRef]
- Abujubbeh, M.; Natarajan, B. A New Probabilistic Framework for EV Charging Station Planning in Distribution Systems Considering Spatio-temporal Uncertainties. In Proceedings of the 2023 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 27–28 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Harish, B.N.; Surendra, U. A review on power quality issues in electric vehicle interfaced distribution system and mitigation techniques. Indones. J. Electr. Eng. Comput. Sci. 2022, 25, 656–665. [Google Scholar] [CrossRef]
- Ahmad, F.; Khalid, M.; Panigrahi, B.K. An enhanced approach to optimally place the solar powered electric vehicle charging station in distribution network. J. Energy Storage 2021, 42, 103090. [Google Scholar] [CrossRef]
- Eid, A.; Mohammed, O.; El-Kishky, H. Efficient operation of battery energy storage systems, electric-vehicle charging stations and renewable energy sources linked to distribution systems. J. Energy Storage 2022, 55, 105644. [Google Scholar] [CrossRef]
- Islam, M.S.; Mithulananthan, N.; Hung, D.Q. Coordinated EV charging for correlated EV and grid loads and PV output using a novel, correlated, probabilistic model. Int. J. Electr. Power Energy Syst. 2018, 104, 335–348. [Google Scholar] [CrossRef]
- Jha, B.K.; Singh, A.; Kumar, A.; Misra, R.K.; Singh, D. Phase unbalance and PAR constrained optimal active and reactive power scheduling of Virtual Power Plants (VPPs). Int. J. Electr. Power Energy Syst. 2020, 125, 106443. [Google Scholar] [CrossRef]
- Esmaili, M.; Goldoust, A. Multi-objective optimal charging of plug-in electric vehicles in unbalanced distribution networks. Int. J. Electr. Power Energy Syst. 2015, 73, 644–652. [Google Scholar] [CrossRef]
- AbuElrub, A.; Hamed, F.; Saadeh, O. Microgrid integrated electric vehicle charging algorithm with photovoltaic generation. J. Energy Storage 2020, 32, 101858. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Sinha, U.K.; Bohre, A.K. Renewable DG Integration in the Unbalanced Distribution System with Impact of EV Penetration for Sustainable Operation. In Proceedings of the 2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC), Bhubaneswar, India, 10–13 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Balu, K.; Mukherjee, V. Optimal allocation of electric vehicle charging stations and renewable distributed generation with battery energy storage in radial distribution system considering time sequence characteristics of generation and load demand. J. Energy Storage 2023, 59, 106533. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, H.; Hu, R.; Qiu, Y. Location of electric vehicle charging stations: A perspective using the grey decision-making model. Energy 2019, 173, 548–553. [Google Scholar] [CrossRef]
- Shivashankar, G.S. Overview of different overhead transmission line conductors. Mater. Today Proc. 2017, 4, 11318–11324. [Google Scholar]
- Karmakar, S.; Bera, T.K.; Bohre, A.K. Novel PI controller and ANN controllers-Based passive cell balancing for battery management system. IEEE Trans. Ind. Appl. 2023, 59, 7623–7634. [Google Scholar] [CrossRef]
- Burle, T.; Chintapalli, V.B.R. Modified load flow algorithm suitable for modern power systems under variable weather conditions. Electr. Power Syst. Res. 2022, 211, 108221. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, H.; Cao, Y.; Qin, H.; Gao, Z. Power System State Estimation Approach Considering Transmission Line Temperature. Appl. Sci. 2022, 12, 10171. [Google Scholar] [CrossRef]
- Haldar, S.; Choudhury, M.; Choudhury, S.; Samanta, P. Trend analysis of long-term meteorological data of a growing metropolitan city in the era of global climate change. Total Environ. Res. Themes 2023, 7, 100056. [Google Scholar] [CrossRef]
- Albrechtowicz, P. The overhead transmission line temperature impact on the phase-shifting transformer settings. Electr. Power Syst. Res. 2023, 220, 109266. [Google Scholar] [CrossRef]
- Cecchi, V.; Knudson, M.; Miu, K. System impacts of temperature-dependent transmission line models. IEEE Trans. Power Deliv. 2013, 28, 2300–2308. [Google Scholar] [CrossRef]
- Dong, X.; Wang, C.; Liang, J.; Han, X.; Zhang, F.; Sun, H.; Wang, M.; Ren, J. Calculation of power transfer limit considering electro-thermal coupling of overhead transmission line. IEEE Trans. Power Syst. 2014, 29, 1503–1511. [Google Scholar] [CrossRef]
- Burle, T.; Chintapalli, V.B.R. Effect of ambient temperature variations on estimation of proximity of the voltage collapse point. IET Gener. Transm. Distrib. 2020, 14, 6382–6396. [Google Scholar] [CrossRef]
- Mishra, A.; Rajan, J.S. Development of a Self-Powered Temperature Monitoring Wireless Node for Transmission Lines for Smart Grid Application. Power Res. A J. CPRI 2019, 14, 93–103. [Google Scholar] [CrossRef]
- Rahman, M.; Atchison, F.; Cecchi, V. Temperature-dependent system level analysis of electric power transmission systems: A review. Electr. Power Syst. Res. 2021, 193, 107033. [Google Scholar] [CrossRef]
- Rakpenthai, C.; Uatrongjit, S. Power system state and transmission line conductor temperature estimation. IEEE Trans. Power Syst. 2016, 32, 1818–1827. [Google Scholar] [CrossRef]
- Koufakis, E.I.; Tsarabaris, P.T.; Katsanis, J.S.; Karagiannopoulos, C.G.; Bourkas, P.D. A wildfire model for the estimation of the temperature rise of an overhead line conductor. IEEE Trans. Power Deliv. 2010, 25, 1077–1082. [Google Scholar] [CrossRef]
- Valentina, C.; St, L.A.; Karen, M. Incorporating temperature variations into transmission-line models. IEEE Trans. Power Deliv. 2011, 26, 2189–2196. [Google Scholar]
- Bockarjova, M.; Andersson, G. Transmission line conductor temperature impact on state estimation accuracy. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 701–706. [Google Scholar]
- Du, Y.; Liao, Y. On-line estimation of transmission line parameters, temperature and sag using PMU measurements. Electr. Power Syst. Res. 2012, 93, 39–45. [Google Scholar] [CrossRef]
- Leger, A.S.; Nwankpa, C. OTA-based transmission line model with variable parameters for analog power flow computation. Int. J. Circuit Theory Appl. 2008, 38, 199–220. [Google Scholar] [CrossRef]
- Sagiyeva, I.Y.; Nosov, A.V.; Surovtsev, R.S. The influence of temperature on microstrip transmission line characteristics. In Proceedings of the 2020 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Chemal, Russia, 29 June–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 191–194. [Google Scholar]
- Du, Y.; Liao, Y. Online estimation of power transmission line parameters, temperature and sag. In Proceedings of the 2011 North American Power Symposium, Boston, MA, USA, 4–6 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Moghassemi, A.; Padmanaban, S.; Ramachandaramurthy, V.K.; Mitolo, M.; Benbouzid, M. A novel solar photovoltaic fed TransZSI-DVR for power quality improvement of grid-connected PV systems. IEEE Access 2020, 9, 7263–7279. [Google Scholar] [CrossRef]
- Satyanarayana PV, V.; Radhika, A.; Reddy, C.R.; Pangedaiah, B.; Martirano, L.; Massaccesi, A.; Jasiński, M. Combined DC-link fed parallel-VSI-based DSTATCOM for power quality improvement of a solar DG integrated system. Electronics 2023, 12, 505. [Google Scholar] [CrossRef]
- Oda, E.S.; Abd El Hamed, A.M.; Ali, A.; Elbaset, A.A.; Abd El Sattar, M.; Ebeed, M. Stochastic optimal planning of distribution system considering integrated photovoltaic-based DG and DSTATCOM under uncertainties of loads and solar irradiance. IEEE Access 2021, 9, 26541–26555. [Google Scholar] [CrossRef]
- Souza, P.A.; Santos GB, D.; Mariano, V.; Barbosa, D. Analysis of active and reactive power injection in distributed systems with photovoltaic generation. In Proceedings of the 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, Brazil, 12–16 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Albuquerque, F.L.; Moraes, A.J.; Guimarães, G.C.; Sanhueza, S.M.; Vaz, A.R. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator. Sol. Energy 2010, 84, 1310–1317. [Google Scholar] [CrossRef]
- Zubo, R.H.; Mokryani, G.; Abd-Alhameed, R. Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment. Appl. Energy 2018, 220, 713–722. [Google Scholar] [CrossRef]
- Paghdar, S.; Sipai, U.; Ambasana, K.; Chauhan, P.J. Active and reactive power control of grid connected distributed generation system. In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 22–24 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7. [Google Scholar]
- Vincze, M.; Borcia, I.D.; Harlander, U. Temperature fluctuations in a changing climate: An ensemble-based experimental approach. Sci. Rep. 2017, 7, 254. [Google Scholar] [CrossRef]
- Gyüre, B.; Bartos, I.; Jánosi, I.M. Nonlinear statistics of daily temperature fluctuations reproduced in a laboratory experiment. Phys. Rev. E 2007, 76, 037301. [Google Scholar] [CrossRef]
- Kim, I.Y.; de Weck, O.L. Adaptive weighted sum method for multiobjective optimization: A new method for Pareto front generation. Struct. Multidiscip. Optim. 2005, 31, 105–116. [Google Scholar] [CrossRef]
- Jin, J.; Rothrock, L.; McDermott, P.L.; Barnes, M. Using the Analytic Hierarchy Process to Examine Judgment Consistency in a Complex Multiattribute Task. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 1105–1115. [Google Scholar] [CrossRef]
- Khan, S.; Ahmad, A.; Ahmad, F.; Shemami, M.S.; Alam, M.S.; Khateeb, S. A comprehensive review on solar powered electric vehicle charging system. Smart Sci. 2017, 6, 54–79. [Google Scholar] [CrossRef]
- Prasad, C.H.; Subbaramaiah, K.; Sujatha, P. Cost–benefit analysis for optimal DG placement in distribution systems by using elephant herding optimization algorithm. Renew. Wind. Water Sol. 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Rani, K.; Acharjee, P.; Bohre, A. Determining Optimal Size and Placement of Renewable DG Considering Variation of Load. Int. J. Recent Technol. Eng. 2019, 8, 310–315. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Abd Elaziz, M. Review on applications of particle swarm optimization in solar energy systems. Int. J. Environ. Sci. Technol. 2018, 16, 1159–1170. [Google Scholar] [CrossRef]
- Bohre, A.K.; Acharjee, P.; Sawle, Y. Analysis of grid connected hybrid micro-grid with different utility tariffs. In Proceedings of the 2021 1st International Conference on Power Electronics and Energy (ICPEE), Bhubaneswar, India, 2–3 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Dincer, F. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renew. Sustain. Energy Rev. 2011, 15, 713–720. [Google Scholar] [CrossRef]
- Thangavel, S.; Mohanraj, D.; Girijaprasanna, T.; Raju, S.; Dhanamjayulu, C.; Muyeen, S.M. A comprehensive review on electric vehicle: Battery management system, charging station, traction motors. IEEE Access 2023, 11, 20994–21019. [Google Scholar] [CrossRef]
- Chen, T.-H.; Chen, M.-S.; Inoue, T.; Kotas, P.; Chebli, E.A. Three-phase co-generator and transformer models for distribution system analysis. IEEE Trans. Power Deliv. 1991, 6, 1671–1681. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Sinha, U.K.; Saw, B.K.; Bohre, A.K. Integration of Green Renewable DG based EV Charging Stations Planning in Unbalanced Distribution Network. In Proceedings of the 2023 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), Trivandrum, India, 17–20 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
Author (s) | Objective | Methodology/ Optimization | Bus System | Research Gap | Findings |
---|---|---|---|---|---|
Kathiravan et al. [2] | Minimize line losses by optimally placing EVS | Archimedes Optimization Algorithm (AOA) | IEEE 33 | Limited focus on optimization algorithms for minimizing line losses in EVS | The algorithm reduced line losses and improved overall performance |
Rajani et al. [3] | Optimize energy management among EV charging stations | GPC-RERNN (Generalized Predictive Control-Recurrent Elman Neural Network) | IEEE 69 | Inadequate strategies between EVS | Reducing energy costs and improving grid stability |
Ahmad et al. [5] | Optimal deployment of EV fast charging stations with solar DGs | AI approach integrated with reliability analysis | IEEE 33 | AI-based solutions that integrate renewable energy sources in EVS | Improved the reliability of the distribution network |
Toghranegar et al. [6] | Enhance the hosting capacity for distributed energy resources (DERs) | An optimization technique for load re-phasing | IEEE 37 | Limited research on DER hosting capacity in unbalanced networks | Enhanced hosting capacity |
Abujubbeh et al. [7] | Probabilistic framework for EVS | Probabilistic framework incorporating spatiotemporal data | IEEE 69 | Lack of uncertainty consideration | Provided a robust approach to the planning of uncertainties |
Ahmad et al. [9] | Optimal placing solar-powered EVS | Enhanced optimization approach | IEEE 33 | Need integration of solar energy in EVS | Effectively integrating solar power and reducing overall network strain |
Islam et al. [11] | Correlated EV and grid loads and PV output | Probabilistic model | IEEE 33 | Limited research on the correlation between EV, grid loads | Reduced peak loads by effectively coordinating EV charging |
Jha et al. [12] | Active and reactive power scheduling in Virtual Power Plants (VPPs) | Multi-objective optimization algorithm | IEEE 37 | Need for address phase unbalance in VPPs | Optimized power scheduling, improving VPP efficiency |
Esmaili et al. [13] | Optimize the charging of plug-in electric vehicles (PEVs) | PSO | IEEE 13 IEEE 34 | Lack of methods addressing the unbalanced nature | Minimized voltage deviations in unbalanced networks |
AbuElrub et al. [14] | Charging algorithm for EVs integrated into microgrids with photovoltaic (PV) generation | Heuristic algorithm | IEEE 33 | Very less concentration on the integration of EVs with renewable energy sources | EV charging schedules enhancing the utilization of PV |
Balu et al. [16] | Allocation of EVS with renewable distributed generation, and battery energy storage | Time-sequence-based optimization | IEEE 69 | Need for integrated optimization of EVS and storage systems. | Reduced power losses |
Burle et al. [20] | Develop a modified load flow algorithm under variable weather conditions | Modified Newton-Raphson load flow algorithm | IEEE 14 IEEE 33 | Need algorithms that can handle variable weather conditions | The algorithm showed improved accuracy under varying weather conditions |
Xu et al. [21] | State estimation approach considering transmission line temperature | State estimation | IEEE 14 | Limited integration of temperature in state estimation models | Proposed improved the accuracy of state estimation in temperature effects |
Cecchi et al. [24] | Examine the system impacts of temperature-dependent transmission line models | Simulation-based analysis | IEEE 30 | Limited consideration of temperature effects in traditional transmission line | Demonstrated that temperature-dependent models |
Dong et al. [25] | Calculate power transfer limits considering the electro-thermal coupling | Electro-thermal coupling model | IEEE 39 | Insufficient integration of electro-thermal effects | Proposed more accurate power transfer limits |
Burle et al. [26] | Study the effect of ambient temperature variations | Temperature-dependent voltage collapse analysis | IEEE 118 | Lack of studies exploring the direct impact of ambient temperature on voltage stability | Identified that ambient temperature variations significantly influence voltage |
Rakpenthai et al. [29] | To estimate power system state and conductor temperature | Joint state and temperature estimation model | IEEE 30 | Limited methods for simultaneous state and temperature estimation | Improved estimation in power system state |
Valentina et al. [31] | To incorporate temperature variations into transmission line models | Temperature-dependent transmission line model development | IEEE 14 | Existing models insufficiently account for temperature variations in transmission line performance | Demonstrated improved accuracy in power flow analysis by incorporating temperature variations |
Bockarjova et al. [32] | Impact of transmission line conductor temperature on state estimation accuracy | Temperature-dependent state estimation model | IEEE 30 | Lack of detailed analysis on temperature influences state estimation. | Enhances the precision of state estimation |
Du et al. [33] | To estimate transmission line parameters, temperature | Online estimation technique using Phasor Measurement Units (PMUs) | IEEE 118 | Real-time estimation of temperature and sag | Estimates line parameters, temperature, and sag in real time |
Moghassemi et al. [37] | Develop a solar photovoltaic fed TransZSI-DVR | Design and simulation of a TransZSI-DVR system | IEEE 13 | Limited research on using TransZSI-DVR systems | Improves power quality, reducing harmonic distortion and voltage sag |
Satyanarayana et al. [38] | Solar DG integration | DC-link fed parallel-VSI DSTATCOM | IEEE 33 | Lack of robust DSTATCOM solutions for power quality | Improves voltage stability and reduces harmonic distortion |
Oda et al. [39] | Integrated PV-based DG and DSTATCOM under load and solar irradiance uncertainties | Stochastic optimization using Monte Carlo simulations. | IEEE 69 | Insufficient consideration of uncertainties in PV-based DG and DSTATCOM planning | Improves system reliability and cost-effectiveness by accounting for uncertainties |
Souza et al. [40] | Active and reactive power injection in distributed systems | Injection techniques. | IEEE 13 | Need for a better understanding of PV system | PV systems can effectively inject both active and reactive powe |
Albuquerque et al. [41] | Performance of a PV solar system connected to the grid | Experimental setup with grid-connected PV system | IEEE 33 | Limited exploration of dual-functionality PV systems | Enhancing grid reliability |
Zubo et al. [42] | To optimize the operation of distribution networks with high wind and solar power penetration | Genetic Algorithm (GA) | IEEE 33 | Control strategies in high renewable penetration | Improves network efficiency, reducing power losses |
Paghdar et al. [43] | To control active and reactive power in a grid-connected DG | Proportional-Integral (PI) control strategy | IEEE 14 | Insufficient focus on control strategies for managing power flow in DG systems | The PI control manages power flow operation under varying load conditions. |
Prasad et al. [49] | Perform a cost–benefit analysis for optimal DG placement | Elephant Herding Optimization (EHO) | IEEE 33 | Need for cost-effective optimization techniques | Show cost benefit |
Rani et al. [50] | Determine the optimal size and placement of renewable DG | PSO algorithm | IEEE 33. | Lack of studies on optimal DG placement considering load variation | Determines optimal DG size and placement, reducing power losses |
Bohre et al. [52] | Analyze a grid-connected hybrid microgrid under different utility tariffs | PSO optimization | IEEE 14 | Insufficient analysis of hybrid microgrids under varying utility tariffs | Demonstrates impact the economic operation of hybrid microgrids |
Classification Criteria | Category | Details | Uses |
---|---|---|---|
Charging Power Levels | Level 1 Charging | Voltage: 120 V, Current: Up to 16 A, Power Output: Up to 1.9 kW | Home use with standard outlets |
Level 2 Charging | Voltage: 240 V Current: Up to 80 A (typically 30–40 A), Power Output-Up to 19.2 kW | Home, workplace, public stations | |
Level 3 Charging | Voltage: Typically 200–450 V DC, up to 900 V DC, Current: up to 400 A or more, Power Output: 50 kW to 350 kW or more | Public stations along highways | |
Type of Current | AC Charging | Level 1 and Level 2, In-vehicle Charger: Converts AC to DC for battery charging | Home, workplace, public stations |
DC Charging | Level: Level 3 (DC fast charging) | Public stations along highways, quick charging | |
Location | Residential | Chargers: Level 1 and Level 2 | Home charging, overnight charging |
Public | Chargers: Level 2 and DC Fast Chargers | Parking lots, shopping centers, public places | |
Workplace | Chargers: Level 2 | Charging during working hours | |
Highway/Corridor | Chargers: DC Fast Chargers | Along highways and major routes | |
Application | Private Charging | Control: Controlled by individual user | Personal use at home or private spaces |
Commercial Charging | Management: Managed by operators, may require payment | Multiple users in commercial settings | |
Fleet Charging | Characteristics: High utilization, multiple charging points, higher power levels | Commercial fleets (e.g., delivery trucks, buses) |
Type of EV Charging Station | Application | Costs in USD | Source of Report |
---|---|---|---|
LEVEL 2 | home charging | 450–1000 | RMI (2017) |
LEVEL 2 | parking garage | 1500–2500 | |
LEVEL 2 | curb side | 1500–3000 | |
LEVEL 3 | DC fast EV charging | 12,000–30,000 |
Month | Day Temperature in °C | Night Temperature in °C | Sessional Weather | Avg. Day Temp °C | Avg. Night Temp °C |
---|---|---|---|---|---|
Dec | 23 | 7 | Winter | 23.33 | 7.83 |
Jan | 23 | 6.5 | |||
Feb | 24 | 10 | |||
Mar | 32 | 14 | Summer | 37.33 | 19.66 |
Apr | 37 | 20 | |||
May | 43 | 25 | |||
Jun | 38 | 29 | Monsoon | 36.33 | 26.66 |
Jul | 36 | 26 | |||
Aug | 35 | 25 | |||
Sep | 35 | 23 | Post-monsoon | 32.33 | 18 |
Oct | 35 | 19 | |||
Nov | 27 | 12 |
Parameters | Active Power Losses | Voltage Deviation | Reactive Power Losses |
---|---|---|---|
Active power losses | 1 | 3 | 2 |
Voltage deviation | 1/3 | 1 | 1/5 |
Reactive power losses | 1/2 | 5 | 1 |
Corridor Name | BUS No. | Type of EV Charging | Application | Size of EV (kW) | Costs in USD [1] |
---|---|---|---|---|---|
First EV Corridor | 2, 3, 4, 5, 6, 7,8, 28, 29, 30, 31, 32, 33, 34, 35 | LEVEL 2 | Home, workplace, public stations | 19.2 | 450–1000 |
Second EV Corridor | 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 | LEVEL 2 | Home, workplace, public stations | 19.2 | 450–1000 |
Third EV Corridor | 9, 10, 11, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 | LEVEL 3 | DC fast EV charging (public stations along highways) | 50 | 12,000–30,000 |
Fourth EV Corridor | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 68, 69 | LEVEL 3 | DC fast EV charging (public stations along highways) | 50 | 12,000–30,000 |
IEEE 69 BALANCE | Case I | Case II | Case III | ||||||
---|---|---|---|---|---|---|---|---|---|
Size | Bus Location | Size | Bus Location | Size | Bus Location | ||||
P (kW) | Q (kW) | P (kW) | Q (kW) | P (kW) | Q (kW) | ||||
DG1 | 655.74 | 262.384 | 18 | 657.03 | 406.64 | 15 | 499.78 | 410.69 | 16 |
DG2 | 1721.44 | 1150 | 50 | 1850 | 1137.81 | 50 | 1850 | 1150 | 50 |
EV SIZE (kW) | EV LEVEL | EV SIZE (kW) | EV TYPE | EV SIZE (kW) | EV TYPE | ||||
EV1 | 19.2 | LEVEL 2 | 35 | 19.2 | LEVEL 2 | 2 | 19.2 | LEVEL 2 | 5 |
EV2 | 19.2 | LEVEL 2 | 38 | 19.2 | LEVEL 2 | 49 | 19.2 | LEVEL 2 | 52 |
EV3 | 50 | LEVEL 3 | 10 | 50 | LEVEL 3 | 60 | 50 | LEVEL 3 | 64 |
EV4 | 50 | LEVEL 3 | 24 | 50 | LEVEL 3 | 69 | 50 | LEVEL 3 | 20 |
Modified IEEE 69 Unbalance | Case I | Case II | Case III | ||||||
---|---|---|---|---|---|---|---|---|---|
Size | Bus Location | Size | Bus Location | Size | Bus Location | ||||
P (kW) | Q (kVAr) | P (kW) | Q (kVAr) | P (kW) | Q (kVAr) | ||||
DG1 | 520.41642 | 434.3319 | 17 | 493.1669 | 377.1205 | 17 | 577.1405 | 407.9346 | 16 |
DG2 | 1703.1085 | 1150 | 50 | 1850 | 1150 | 50 | 1850 | 1150 | 50 |
---- | EV SIZE (kW) | EV LEVEL | EV SIZE | EV TYPE | LOCATION | EV SIZE (kW) | EV TYPE | ----- | |
EV1 | 19.2 | LEVEL 2 | 2 | 19.2 | LEVEL 2 | 29 | 19.2 | LEVEL 2 | 30 |
EV2 | 19.2 | LEVEL 2 | 52 | 19.2 | LEVEL 2 | 36 | 19.2 | LEVEL 2 | 44 |
EV3 | 50 | LEVEL 3 | 56 | 50 | LEVEL 3 | 59 | 50 | LEVEL 3 | 55 |
EV4 | 50 | LEVEL 3 | 23 | 50 | LEVEL 3 | 18 | 50 | LEVEL 3 | 18 |
Modified IEEE 69 Balance | Case I | Case II | Case III | ||||
---|---|---|---|---|---|---|---|
Without DG and EV | With DG and EV | Without DG and EV | With DG and EV | Without DG and EV | With DG and EV | ||
Minimum voltage Deviation | Phase A/Phase B/Phase C | 0.82497 | 0.96052 | 0.88291 | 0.97376 | 0.82497 | 0.96052 |
Maximum voltage Deviation | Phase A/Phase B/Phase C | 1 | 1.00049 | 1 | 1.0043 | 1 | 1.00001 |
Average voltage | Phase A/Phase B/Phase C | 0.97337 | 0.99783 | 0.97466 | 0.9996 | 0.96403 | 0.99706 |
Modified IEEE 69 Unbalance | Case I | Case II | Case III | ||||
---|---|---|---|---|---|---|---|
Without DG and EV | With DG and EV | Without DG and EV | With DG and EV | Without DG and EV | With DG and EV | ||
Minimum voltage Deviation | Phase A | 0.87662 | 0.96641 | 0.88291 | 0.97376 | 0.82497 | 0.96052 |
Phase B | 0.92389 | 0.99528 | 0.92756 | 0.99629 | 0.89514 | 0.99563 | |
Phase C | 0.92511 | 0.98724 | 0.92872 | 0.98792 | 0.89699 | 0.98443 | |
Maximum voltage Deviation | Phase A | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00244 |
Phase B | 1.00000 | 1.00734 | 1.00000 | 1.01239 | 1.00000 | 1.01544 | |
Phase C | 1.00000 | 1.00835 | 1.00000 | 1.01334 | 1.00000 | 1.01686 | |
Average voltage | Phase A | 0.96885 | 0.99333 | 0.97041 | 1.00094 | 0.95736 | 0.99325 |
Phase B | 0.97714 | 1.00005 | 0.97823 | 0.99785 | 0.96923 | 1.00178 | |
Phase C | 0.97372 | 0.99682 | 0.97497 | 1.00094 | 0.96456 | 0.99748 |
Economic Factor | IEEE 69 Bus Network | Modified IEEE 69 Unbalance Bus Network | ||||||
---|---|---|---|---|---|---|---|---|
DG COST(USD) | CEL(USD)_Without DG and EV | CEL(USD)_With DG and EV | CEL Saving in % | DG COST(USD) | CEL(USD)_Without DG and EV | CEL(USD)_With DG and EV | CEL Saving in % | |
Case I | 29,370.13 | 18,111.65 | 730.95 | 95.96% | 32,945.71 | 19,536.04 | 1604.09 | 91.79% |
Case II | 32,116.41 | 17,211.83 | 686.89 | 96.01% | 31,756.02 | 18,538.92 | 1472.32 | 92.06% |
Case III | 32,454.00 | 20,150.92 | 706.16 | 96.50% | 32,454.00 | 22,044.15 | 1662.38 | 92.46% |
IEEE 69 Balance Network | Case I | Case II | Case III | ||||
---|---|---|---|---|---|---|---|
Without DG and EV | With DG and EV | Without DG and EV | With DG and EV | Without DG and EV | With DG and EV | ||
Active power loss (kW) | Phase A | 75.001 | 3.027 | 71.275 | 2.844 | 83.446 | 2.924 |
Phase B | 75.001 | 3.027 | 71.275 | 2.844 | 83.446 | 2.924 | |
Phase C | 75.001 | 3.027 | 71.275 | 2.844 | 83.446 | 2.924 | |
Total | 225.003 | 9.081 | 213.824 | 8.533 | 250.337 | 8.773 | |
Reactive power loss (kVAr) | Phase A | 34.055 | 3.015 | 31.955 | 2.732 | 79.654 | 2.791 |
Phase B | 34.055 | 3.015 | 31.955 | 2.732 | 79.654 | 2.791 | |
Phase C | 34.055 | 3.015 | 31.955 | 2.732 | 79.654 | 2.791 | |
Total | 102.166 | 9.046 | 95.864 | 8.197 | 238.961 | 8.374 |
Modified IEEE 69 Unbalance | Case I | Case II | Case III | ||||
---|---|---|---|---|---|---|---|
Without DG and EV | With DG and EV | Without DG and EV | With DG and EV | Without DG and EV | With DG and EV | ||
Active power loss (kW) | Phase A | 128.146 | 12.173 | 121.262 | 9.217 | 148.325 | 10.550 |
Phase B | 54.165 | 2.448 | 51.553 | 3.004 | 59.449 | 3.562 | |
Phase C | 60.388 | 5.307 | 57.496 | 6.070 | 66.082 | 6.540 | |
Total | 242.698 | 19.928 | 230.311 | 18.291 | 273.857 | 20.652 | |
Reactive power loss (kVAr) | Phase A | 58.758 | 9.472 | 54.925 | 7.958 | 141.585 | 10.071 |
Phase B | 23.697 | 0.949 | 22.262 | 1.143 | 56.748 | 3.400 | |
Phase C | 29.611 | 5.577 | 27.844 | 5.622 | 63.079 | 6.243 | |
Total | 112.066 | 15.998 | 105.031 | 14.724 | 261.413 | 19.713 |
Emission Factor | Emission of Greenhouse Gases in g/kWh | Emission of Greenhouse Gas in g/kWh | Greenhouse Gas Yearly in Tonnes without DG | Greenhouse Gas Yearly in Tonnes after DG | Emission Saving after Renewable DG | |||
---|---|---|---|---|---|---|---|---|
IEEE 69 Balanced Case | ||||||||
CO2 (g/kWh) | SO2(g/kWh) | NOx (g/kWh) | CO (g/kWh) | |||||
Case I | 623 | 6.48 | 2.88 | 0.1083 | 632.468 | 22,311.93 | 8612.76 | 61.40% |
Case II | 22,250.02 | 7898.54 | 64.50% | |||||
Case III | 22,452.26 | 8761.12 | 60.98% | |||||
Modified IEEE 69 Unbalanced case | ||||||||
Case I | 623 | 6.48 | 2.88 | 0.1083 | 632.468 | 22,409.90 | 9513.67 | 57.55% |
Case II | 22,341.29 | 8849.41 | 60.39% | |||||
Case III | 22,582.49 | 8402.40 | 62.79% |
Comparative Analysis | Total Power Demand (MVA) | Total Power Loss without DG and EV (MVA) | Total Power Loss with DG and EV (MVA) | System Efficiency without DG and EV | System Efficiency with DG and EV | |
---|---|---|---|---|---|---|
IEEE 69 Balance | Case I | 4660.214 | 247.1118 | 12.81775 | 95.27% | 99.71% |
Case II | 4660.214 | 234.3301 | 11.83228 | 95.51% | 99.73% | |
Case III | 4660.214 | 346.0794 | 12.12804 | 92.75% | 99.70% | |
Modified IEEE 69 Unbalance | Case I | 4660.214 | 267.3221 | 25.55506 | 94.34% | 99.46% |
Case II | 4660.214 | 253.1297 | 23.48099 | 94.62% | 99.51% | |
Case III | 4660.214 | 378.5953 | 28.55009 | 92.79% | 99.42% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Kumar, S.; Sinha, U.K.; Bohre, A.K. Intricate DG and EV Planning Impact Assessment with Seasonal Variation in a Three-Phase Distribution System. World Electr. Veh. J. 2024, 15, 425. https://doi.org/10.3390/wevj15090425
Kumar A, Kumar S, Sinha UK, Bohre AK. Intricate DG and EV Planning Impact Assessment with Seasonal Variation in a Three-Phase Distribution System. World Electric Vehicle Journal. 2024; 15(9):425. https://doi.org/10.3390/wevj15090425
Chicago/Turabian StyleKumar, Abhinav, Sanjay Kumar, Umesh Kumar Sinha, and Aashish Kumar Bohre. 2024. "Intricate DG and EV Planning Impact Assessment with Seasonal Variation in a Three-Phase Distribution System" World Electric Vehicle Journal 15, no. 9: 425. https://doi.org/10.3390/wevj15090425
APA StyleKumar, A., Kumar, S., Sinha, U. K., & Bohre, A. K. (2024). Intricate DG and EV Planning Impact Assessment with Seasonal Variation in a Three-Phase Distribution System. World Electric Vehicle Journal, 15(9), 425. https://doi.org/10.3390/wevj15090425