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Abstract: Soil erosion has always been a critical issue confronting watershed environments, impacting
the progress of sustainable development. As an increasing number of countries turn their attention to
this problem, numerous policies have been enacted to halt the progression of soil erosion. However,
policy-driven interventions often lead to significant changes in watershed vegetation coverage, under
which circumstances, the original sediment erosion models may fall short in terms of simulation
accuracy. Taking the Kuye River watershed as the research subject, this study investigates soil erosion
data spanning from 1981 to 2015 and utilizes the Revised Universal Soil Loss Equation (RUSLE) model
to simulate soil erosion. It is found that the extensive planting of vegetation after 2000 has led to a
rapid reduction in soil erosion within the Kuye River watershed. The original vegetation cover and
management factor (C) proves inadequate in predicting the abrupt changes in vegetation coverage.
Consequently, this study adopts two improved plant cover and management factor equations. We
propose two new methods for calculating the vegetation cover and management factor, one using
machine learning techniques and the other employing a segmented calculation approach. The
machine learning approach utilizes the Eureqa software (version11.0, Cornell University, New York,
American) to search for the relationship between Normalized Difference Vegetation Index (NDVI)
and C, ultimately establishing an equation that describes this relationship. On the other hand, the
piecewise method determines critical values based on data trends and provides separate formulas
for C above and below these critical values. Both methods have achieved superior calculation
accuracy. Specifically, the overall data calculation using the machine learning method achieved an
determined coefficient (R2) of 0.5959, while the segmented calculation method achieved an R2 of
0.6649. Compared to the R2 calculated by the traditional RULSE method, these two new methods
can more accurately predict soil erosion. The findings of this study can provide valuable theoretical
reference for water and soil prediction in watersheds.

Keywords: RULSE; soil erosion; vegetation cover factor; machine learning method

1. Introduction

Soil erosion is a critical factor influencing the environment of watersheds, restrict-
ing societal economic development and food security [1,2]. Soil erosion and water loss
within watersheds is a complex process related to both natural and anthropogenic factors,
primarily encompassing vegetation cover, land use, geological conditions, watershed char-
acteristics, water and soil temperature, and land management practices [3,4]. The area of
soil erosion in China has far exceeded 4 million square kilometers, accounting for about
half of the total land area. In China, the issue of water and sediment in the Yellow River
Basin has long been a focal point of scientific research, with soil erosion in this basin posing
a major obstacle to the achievement of sustainable agricultural development [5,6]. The
area and intensity of water and soil loss in the Yellow River basin have been somewhat
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controlled over the past few decades, yet they still face severe challenges. According to
publicly available information, the area and intensity of water and soil loss in the Yellow
River basin have achieved a “double decline” through continuous governance. However,
the Loess Plateau, which suffers from the most severe water and soil loss, still accounts for
a large proportion of the total area affected in the Yellow River basin.

In recent years, an increasing number of scholars have embarked on research efforts to
study soil and water loss within watersheds and analyze the main factors that influence it [7].
Numerous studies have indicated that rainfall is one of the primary factors contributing
to soil erosion. Raindrops impact the soil, disrupting the particle structure and causing
splash erosion of soil particles [8,9]. Vegetation has been proven to be an important part of
protecting the ecological environment [10]. Vegetation, on the other hand, reduces the direct
impact of raindrops on the soil due to its foliage and branches covering the soil surface,
thereby mitigating soil erosion [11,12]. Therefore, improving the vegetation structure and
increasing the vegetation coverage in watersheds can effectively slow down the current
situation of soil and water loss. Zaimes et al. [13] studied the amount of soil erosion under
four vegetation cover forms and proposed protective management measures to reduce
soil erosion. To describe the influence of vegetation on soil erosion, many scholars have
employed the Normalized Difference Vegetation Index (NDVI) as a generalized indicator
of vegetation’s effect on soil erosion [14]. Zaimes et al. [15] evaluated the soil erosion risk
of the semi-arid Greek island of Rhodes using a combination of Analytic Hierarchy Process
and Weighted Linear Combination Method based on multi criteria decision analysis.

With advancements in science and technology, the research on simulating and pre-
dicting soil erosion has become increasingly sophisticated [16,17]. The development of soil
erosion models can facilitate the study of soil erosion patterns in river basins. There are
various methods for simulating soil erosion, among which the commonly used ones include
empirical equation methods (such as the Universal Soil Loss Equation (USLE)), physical
models, and Multi-Criteria Decision Making (MCDM) techniques to identify erosion-prone
areas [18]. The USLE and its derivative models, such as the Revised Universal Soil Loss
Equation (RUSLE), are practical models for estimating soil loss at the watershed scale [19].
The RUSLE model is based on five primary factors of soil erosion: rainfall erosivity, soil
erodibility, slope length and steepness factor, cover-management factor, and conservation
practice factor. By integrating these factors, the RUSLE model can estimate the average
annual soil loss. Golkarian et al. [18] combine the Frequency Ratio (FR) model with the
RULSE model, aiming to determine the relationship between historical SWE (Snow Water
Equivalent) data and controlling geographical and environmental factors at 116 locations
within the Nowroud watershed in northern Iran. Zhou et al. [20] research was conducted in
the dry-hot valley region of the Jinsha River, which is one of the major sediment-producing
areas in the Yangtze River Basin. It took into account topographic factors and land cover,
and applied the RUSLE combined with Geographic Information System (GIS) to quantify
the contributions and variation patterns of different factors to soil erosion in the dry-hot
valley. The development of these models contributes to the study of soil erosion in regional
watersheds and provides theoretical references for soil and water conservation measures in
these areas.

Although numerous studies have been conducted on traditional sediment erosion
models, the vegetation cover coefficients established in these studies are mostly validated in
areas where the vegetation cover area does not change significantly. This paper innovatively
proposes two new methods for calculating the vegetation cover coefficient. Compared to
the traditional, relatively modified methods for determining the vegetation cover coefficient,
these new methods take into account the impact on the coefficient following drastic changes
in vegetation cover area. The improved vegetation cover coefficient has a significantly
broader range of applicability. With the deepening of sustainable development, China has
placed increasing emphasis on the issue of soil erosion and water loss in the Yellow River
Basin. Large-scale vegetation planting in this basin began after 2000, leading to significant
changes in vegetation cover. Given this rapid change in vegetation cover, it remains to be
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seen whether the findings of traditional models are still applicable. Taking the Kuye River
Basin, a sub-basin of the Yellow River, as the research object, this paper investigates the
variation patterns of rainfall, runoff, vegetation cover, and soil erosion in the Kuye River
from 1981 to 2015. The study aims to explore the mechanisms that need improvement in
the RUSLE under such conditions, providing a theoretical reference for predicting soil loss
in similar watersheds.

2. Materials and Methods
2.1. Study Area

Kuye River, a first-order tributary of the middle reaches of the Yellow River, is situated
between 38◦22′ N and 39◦30′ N (as illustrated in Figure 1). With a main stream length of
242 km and a drainage area of 8706 square kilometers, the Kuye River boasts a straight-
forward hydrological system characterized by short tributaries on both banks. There are
21 relatively significant tributaries, among which 9 are located on the northeastern bank.
The Kuye River Basin suffers from severe soil erosion, leading to significant variations in
both flood and dry flow rates, and thus, frequent floods. The vegetation in the Kuye River
basin is sparse, with shrubs as the main vegetation in the upstream and herbaceous plants
in the downstream. The watershed is severely eroded by water and wind erosion, and the
proportion of soil erosion area to the total area reaches 95%.

2.2. Data Source and Processing Method

The runoff and soil erosion data used in this study were monitored by the Wenjiachuan
station from 1981 to 2015, which is the hydrological control station for the Kuye river, with
a catchment area of 8515 square kilometers upstream and a riverbed slope of 3.44‰. The
data are primarily excerpted from hydrological yearbooks and observation records from
hydrological stations provided by the Yellow River Institute of Hydraulic Research and the
Bureau of Hydrology of the Yellow River Conservancy Commission. Additionally, data are
extracted from publications such as the “China River Sediment Bulletin”, the “Yellow River
Sediment Bulletin”, and the “Yellow River Water Resources Bulletin”.

The NDVI data utilized in this research originate from a dataset provided by the
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences. The data span from 1981 to 2015, with an NDVI data resolution of 8 km for the
period 1981–1997 and 1 km for the period 1998–2015. With the implementation of policies
such as the “Decision of the State Council on Soil and Water Conservation in the Middle
Reaches of the Yellow River” and the “Guiding Opinions on Promoting High-Quality
Development of Soil and Water Conservation in the Yellow River Basin”, the vegetation
coverage in the Yellow River Basin has seen a significant increase. From Table 1, it can be
seen that grassland is the dominant land use type in the Kuye river basin, occupying more
than half of the area in each period.

Table 1. Area proportion of different land use types in the study catchment.

1986 1996 2006 2011

Grass 58.6% 65.2% 52.7% 65.3%
Tree 1.5% 1.5% 7.8% 6.7%

Farmland 21% 14.2% 18.5% 11.8%
Other 18.9% 19.1% 21% 16.2%
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2.3. RULSE Model

The soil erosion prediction model used in this study is the widely applied RULSE
model [21,22]. The RULSE model is built upon the foundation of the Universal Soil Loss
Equation (USLE) originally developed in the United States [23]. It is one of the widely used
soil erosion prediction models both domestically and internationally. The specific formula
of the RULSE model is as follows [21]:

A = R × K × L × S × C × P (1)

where A denotes the amount of the average soil loss (t ha−1 year−1); R represents the rainfall
erosivity factor (mm ha−1 h−1 year−1); K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1);
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L and S respectively represent the measurements of slope steepness and slope length; C is
the Vegetation cover and management factor; P indicates the conservation practice factor.

2.3.1. Slope Length (L) and Steepness Factor (S)

The slope and slope length factors in the RUSLE model were calculated in accordance
with the methodologies outlined by Beskow et al. [24] and Ganasri and Ramesh [25],
as follows:

S =


10.8sinθ + 0.036 θ < 5◦

16.8sinθ − 0.5 5◦ ≤ θ < 10◦

21.9sinθ − 0.96 θ ≥ 10◦
(2)

L = (λ/22.13)m, m =


0.2 θ < 1◦

0.3 1◦ ≤ θ < 3◦

0.4 3◦ ≤ θ < 5◦

0.5 θ ≥ 5◦
(3)

where θ denotes the slope; λ represents the slope length; m is a dimensionless constant
depending on the percent slope (θ).

2.3.2. Rainfall Erosivity Factor (R)

The average annual erosivity (R) equation was formulated based on the research
conducted by Golkarian et al. [18]:

R = 0.0483(p)1.61 (4)

where p denote the annual precipitations (mm).

2.3.3. Soil Erodibility Factor (K)

Soil erodibility encapsulates the extent of soil erosion attributable solely to rainfall
erosivity, highlighting variations in erosion rates while other erosion factors remain con-
stant. For the present investigation, the soil erosion factor was determined utilizing the
Erosion/Productivity Impact Calculator model, which relies on soil texture as outlined by
Williams [26].

K = (0.2 + 0.3exp(−0.0256SAN(1 − SIL)/100))

(
SIL

CLA + SIL

)0.3

×
(

1.0 − 0.25CA
CA + exp(3.72 − 2.95CA)

)(
1.0−

0.7SN1
SN1 + exp(−5.51 + 22.9SN1)

)
× 0.1317

(5)

where SAN, SIL and CLA respectively denote the sand fraction (%), silt fraction (%), and
clay fraction (%); CA represents the soil organic carbon content (%).

2.3.4. Vegetation Cover and Management Factor (C)

In traditional studies, NDVI serves as a prevalent and effective tool for monitoring
surface vegetation cover. The C factor in soil erosion models also ranges from 0 to +1.
Consequently, many researchers have adhered to this principle to estimate the C factor
from NDVI. Typically, this estimation is carried out using the following formula [27]:

C = exp[−α
NDVI

(β − NDVI)
] (6)

where, α = 1 and β = 2 [27].
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2.3.5. Conservation Practice Factor (P)

The erosion control practice factor (P) represents the proportion of soil loss with im-
plemented conservation practices compared to soil loss without any conservation measures
(i.e., upslope and downslope cultivation). Its value ranges from 0 to 1, where 0 signifies an
area completely free from soil erosion, and 1 represents an area with no water conservation
measures in place. Land use information can effectively indicate the level of water conser-
vation measures employed. In this study, we assume P = 1 for bare land, following Fang
et al. [28], and P = 0.2 + 0.03 × slope degrees for other land types, as suggested by Wen
et al. [29].

2.4. Data Analysis

For numerical models, main requirement is accuracy. In order to evaluate the accuracy
of numerical model simulation, certain data analysis methods and evaluation indexes are
usually used. The coefficient of determination (R2) and mean absolute error (MAE) were
adopted to evaluate the simulation performance [30]:

R2 = 1 − SSE
SST′ (7)

SST = ∑ N
i=1(Yi − meanY)2 (8)

SSE = ∑ N
i=1(Yi − Xi)

2 (9)

meanY =
1
N ∑ N

i=1Yi (10)

MAE =
∑N

1 |Yi − Xi|
N

(11)

where N denotes the number of lateral measuring points; X and Y represent the calculated
and measured values, respectively, SSE is Sum of Squares for Error, SST is Sum of Squares
for total.

3. Results

The changes in NDVI data are depicted in Figure 2, which reveals that NDVI was
relatively low before 2000, generally below 0.35, and gradually increased after 2000, with
a variation range of 0.292 to 0.478. The interannual variations of precipitation and runoff
are shown in Figure 3. It can be observed that the variation range of precipitation is
relatively small, ranging from 147 to 466 mm, whereas the variation range of runoff is
significantly larger, varying between 14 and 90 mm. The interannual changes in sediment
erosion are presented in Figure 4. Prior to 2000, the soil erosion rate was relatively high,
reaching a maximum of 177.63 t/ha/year. However, after 2000, the sediment erosion rate
dropped sharply, with the maximum decreasing to only 14.91 t/ha/year. From Table 2,
it can be observed that NDVI exhibits a significantly positive correlation with rainfall,
while displaying a significantly negative correlation with sediment erosion and runoff.
Rainfall, on the other hand, shows a significant positive correlation with runoff but does not
have a significant relationship with sediment erosion. Furthermore, runoff demonstrates a
significant positive correlation with sediment erosion.

Table 2. The correlation between different factors.

NDVI Rainfall Soil erosion Runoff

NDVI 1 0.449481 ** −0.54034 ** −0.48906 **
Rainfall 1 0.247428 0.390712 *

Soil erosion 1 0.913491 **
Runoff 1

Note: * presents significance p-value < 0.05, ** presents significance p-value < 0.01.
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Using the RULSE model, predictions of sediment erosion were made, and the results
are shown in Figure 5. It can be observed that the simulation accuracy is relatively low.
Most of the predicted values are higher than the measured values, which may be attributed
to the sharp increase in NDVI values after 2000, resulting in reduced simulation accuracy
of vegetation cover and management factor in Equation (6).

In this study, we propose two new methods for determining the vegetation cover and
management factor. Firstly, it was hypothesized that NVDI and p are closely associated with
the vegetation cover and management factor, respectively. To determine the appropriate
formula form, an optimization algorithm (Eureqa) was employed in conjunction with
measured data. Eureqa is an innovative computer program designed to search for numbers
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in raw data and discover their correlations, thereby proposing a series of linear equations
to describe these connections [30]. We establish the relationship between NDVI, p, and C
through Eureqa and obtain the formula form for C.

C = f (NVDI, p) (12)
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Utilizing the machine learning method, Eureqa, to solve for the equation form, with
2/3 of the data used for training and 1/3 of the data used for validation, the simulation
results are presented in Table 3. It can be observed that as the complexity increases, the
formula form gradually becomes more intricate. Correspondingly, the accuracy of the
model simulation also improves gradually (Figure 6), the formula with a complexity of
14 was selected. Then use this formula to verify the simulation effect of all data. The
simulation accuracy for the training data reaches 0.7189, the accuracy for validation data is
0.3617, while the accuracy for all data is 0.5959 (Figure 7). Compared to Equation (6), the
predicted values from the improved formula are more evenly distributed above and below
the 1:1 line with the simulated values.

Table 3. The correlation between solution and complexity.

Complexity Solution MAE

1 C = 0.2207 1
3 C = 2.47NVDI 0.648
5 C = 1.19 − 2.93NVDI 0.646
6 C = 0.25/NVDI − 0.75 0.607
7 C = 0.5681 + 0.0016p − 2.47NVDI 0.582
9 C = 0.5928 + 0.0016p − 2.5688NVDI 0.579
14 C = 0.5434 + 0.0018p + 0.1087cos(p) − 2.47NVDI 0.46
19 C = 0.5187 + 0.0016p − 0.0395/(0.078 + cos(0.19p)) − 2.47NVDI 0.384
21 C = 0.5928 + 0.0019p − 0.0395/(0.075 + cos(0.19p)) − 2.8652NVDI 0.382
24 C = 0.5928 + 0.0018p − 0.0395/(0.076 + cos(0.19p)) − 2.8899sin(NVDI) 0.38
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The second approach involves stratifying the vegetation cover and management
coefficient. The basic pattern of the model is the same as Equation (6), but the original
equation is divided into two parts. Calculate C values greater than and less than the
critical value using equations. As can be seen from the Figure 4, the year 2000 represents
a significant change point in sediment erosion. Therefore, we adopt the NDVI data (0.3)
from 2000 as the critical value, and the proposed formula form is divided into two parts
as follows: C = exp

[
−α1

NDVI
(β1−NDVI)

]
NDVI < 0.3

C = exp
[
−α2

NDVI
(β2−NDVI)

]
NDVI ≥ 0.3

(13)

where α1, β1, α2 and β2 are constant coefficients.
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Based on 35 years of data, the constant parameters in Equation (13) were solved,
resulting in the following formula. The accuracy of the simulated data is shown in Figure 8,
where it can be observed that the simulated values and measured values are well distributed
on both sides of the 1:1 line, with an R2 of 0.6649, indicating a good fit between the model
and the observed data.C = exp

[
−3 NDVI

(2−NDVI)

]
NDVI < 0.3

C = exp
[
−12 NDVI

(2−NDVI)

]
NDVI ≥ 0.3

(14)
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4. Discussion

As shown in Figure 3, the runoff in Kuye river has significantly decreased since 2000,
which might be related to the sudden increase of vegetation coverage. The enhanced
vegetation can effectively increase the drag force on fluids during the runoff formation
process, prolonging the infiltration time of runoff [31]. Furthermore, vegetation roots
contribute to increasing soil porosity, thereby enhancing the infiltration rate of rainfall [32].
As shown in Table 1, there is a significant negative correlation between NDVI, soil erosion
and runoff, the strong correlation between NDVI, soil erosion and runoff formation aligns
with previous studies [33,34]. As shown in Table 3, the positive correlation between NDVI
and rainfall can be attributed to several factors. One possible reason is that rainfall aids in
plant growth. Research by Ratzmann et al. [35] indicates that rainfall can enhance vegetation
productivity in arid and semi-arid regions, enabling them to better withstand periods of
below-average rainfall. Another explanation could be the vegetation-precipitation feedback
mechanism resulting from the evapotranspiration caused by vegetation, which contributes
to precipitation recycling [36]. Therefore, there exists a significant positive correlation
between rainfall and NDVI.

The data on sediment erosion, as depicted in Figure 4, reveal a significant decrease
in soil erosion after 2000, which is correlated with the sharp increase in NDVI. Numerous
studies have indicated that vegetation can effectively mitigate the splash erosion of soil
by raindrops, with higher vegetation cover efficiency leading to more effective reduction



Sustainability 2024, 16, 9633 11 of 15

in soil loss [37]. While the RULSE model traditionally demonstrates excellent predictive
performance [38], in this study, its accuracy decreases when predicting scenarios with
substantial variations in NDVI. This discrepancy might stem from China’s policies aimed
at the Yellow River governance, which have resulted in a rapid and substantial increase
in vegetation cover within the basin over a short period. This abrupt change in NDVI
contrasts with previous applications of the model [39], where the original vegetation cover
and management factor formulations yield relatively lower simulation accuracy under such
circumstances (Figure 5). The relationship between C and NDVI based on Formula (6) is
shown in Figure 9. The vegetation cover and management factor obtained from Equation (6)
decreases gradually with the increase of NDVI, but in actual processes, the amount of soil
erosion decreases slowly as NDVI increases. However, when NDVI reaches a critical value,
the amount of soil erosion significantly decreases. According to the research of Chen
et al. [40], it was found that when the vegetation coverage exceeds 30%, the amount of
sediment erosion decreases significantly, making traditional formulas that are close to linear
relationships unusable.
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At this point, it may be necessary to adopt a new formula form. Many scholars have
suggested that the vegetation cover and management coefficient (C) is correlated with the
NDVI and have derived equations for c based on NDVI [20]. As research progresses, Bai
and Cui [41] found that in scenarios where NDVI undergoes significant temporal variations,
precipitation also plays a pivotal role in influencing the vegetation coefficient. In the context
of substantial variations in NDVI, this study incorporates the impact of precipitation on c
within the formula. By employing machine learning techniques to simulate the vegetation
cover and management coefficient (C), we have achieved promising results that account
for the influence of rainfall. Alternatively, we can separately solve for the vegetation cover
and management coefficient above and below the critical NDVI value. By comparing the
two proposed new formula forms, the overall simulation effect of Equation (8) is found
to be higher. This indicates that Equation (8) provides a more accurate representation of
the relationship between soil erosion and NDVI, especially when considering the distinct
behavior above and below the critical NDVI threshold.

As can be seen from Figure 4, a significant decline in sediment loss began around
1999. Meanwhile, Figure 2 indicates a substantial increase in NDVI around the same period.
Therefore, we hypothesize that the average NDVI value (0.3) from 1998 to 2000 can be taken
as the critical value. Upon testing, we found that the simulation results were satisfactory,
confirming that using 0.3 as the critical value is reasonable. The first prediction method
for soil and water loss is more easily generalized to other watersheds, providing a basis
for soil and water loss prediction in those areas. The second method has good application
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potential in watershed management, and watershed managers should strive to maintain
the NDVI of the watershed close to the critical value to ensure minimal sediment loss.

The advancement of meteorological forecasting technology has made it possible for
us to obtain future meteorological data [42], and the development of optimization algo-
rithms has enabled people to acquire optimized management systems more swiftly [43].
The integration of precise meteorological forecasting methods, optimization algorithms,
and soil erosion prediction models can better provide a basis for watershed vegetation
management. As shown in Figure 10, this is our flowchart for optimizing future vegetation
management systems in watersheds. Using the genetic algorithm as the optimization algo-
rithm, vegetation management data is randomly generated into the model as optimization
items, while sediment loss is incorporated into the model as the optimization function.
Simultaneously, meteorological forecasting data and basic watershed parameters are input
into the improved RULSE model. Then, the genetic algorithm is run, and the optimization
results are output when the genetic generations are completed.
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The current translation also has the following limitations. Firstly, the scope of valida-
tion is limited to only one watershed, and further verification across different watersheds
is necessary to ascertain the model’s accuracy. Secondly, despite the various improvements
made to the RULSE model based on the USLE model, there are still certain limitations. For
example, some parameters within the model still rely on empirical data for estimation, and
the scope of application of the model is still constrained by the availability of data and
the adjustment of model parameters. Therefore, in practical applications, it is necessary to
validate and adjust the model in light of specific circumstances. Additionally, the model
has the potential to incorporate a meteorological forecasting module, which could enable
predictions of future soil erosion and water loss [44].

5. Conclusions

This study investigated the soil erosion patterns in the Kuye River using the RULSE
model, yielding the following key findings:

(1) The planting of vegetation has led to a drastic reduction in both runoff and soil
erosion within the Kuye River basin, demonstrating the significant role that policy guidance
plays in promoting soil and water conservation efforts.
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(2) The traditional formula for the vegetation cover and management factor (C) used
in the RULSE model proved to have relatively low accuracy in simulating sediment erosion
in the Kuye River basin. To address this, this study employed machine learning techniques
to derive a new formula for the vegetation cover factor, which subsequently resulted in
improved simulation outcomes and a more precise representation of soil erosion dynamics.

(3) Through data analysis, it was found that an NDVI value of 0.3 serves as a critical
threshold. Applying different vegetation cover and management formulas above and below
this critical value yielded better simulation results. The two proposed methods provide
a theoretical reference for predicting sediment erosion in watersheds with significant
variations in NDVI.

(4) In engineering practice, meteorological prediction methods can be combined to use
the simulation method proposed in this article to predict the amount of sediment erosion in
the watershed, providing reliable warnings for soil erosion. Simultaneously incorporating
optimization algorithms to simulate the future sediment erosion in the watershed under
different vegetation cultivation measures, and optimizing vegetation cultivation strategies.
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