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Abstract: This paper proposes an inverse model for raindrop size distribution (DSD) retrieval
with polarimetric radar variables. In this method, a forward operator is first developed
based on the simulations of monodisperse raindrops using a T-matrix method, and then
approximated with a polynomial function to generate a pseudo training dataset by considering
the maximum drop diameter in a truncated Gamma model for DSD. With the pseudo training data,
a nearest-neighborhood method is optimized in terms of mass-weighted diameter and liquid water
content. Finally, the inverse model is evaluated with simulated and real radar data, both of which
yield better agreement with disdrometer observations compared to the existing Bayesian approach.
In addition, the rainfall rate derived from the DSD by the inverse model is also improved when
compared to the methods using the power-law relations.

Keywords: inverse model; polarimetric radar; raindrop size distribution (DSD), nearest-
neighborhood estimator

1. Introduction

The raindrop size distribution (DSD) is one of the most important characteristics of a precipitating
process, since the raindrop formation and its size evolution are related to the mechanism of cloud
microphysics, kinetics, and thermodynamics. Weather radar is suited to obtain backscattering
properties of the raindrops on mesoscale and convective scales when the raindrops form and
descend toward the surface. The correct retrieval of DSD by radar is valuable for documenting
and understanding the microphysical properties of a cloud system, increasing the accuracy of
quantitative precipitation estimation, and improving the parameterization of numerical weather
prediction. Potential applications include the flash flood warning, water resource management,
reservoir construction, aviation, and weather modification.

The polarimetric weather radar has a long and profound impact on the remote sensing of
atmosphere. Seliga and Bringi (1976) [1] first indicated that the ratio of the radar reflectivity at the
horizontal and vertical polarizations, i.e., differential reflectivity, provided an additional evidence of
distorted raindrops. Later, they [2] showed that the polarimetric measurements are in good agreement
with model calculations of raindrops with a T-matrix method at S-band frequency. This technology was
also transferred to attenuating frequencies, such as C-band [3] and X-band [4]. As the polarimetric radar
transmits and receives the electromagnetic waves at two orthogonal polarizations, it also measures
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polarimetric variables, including differential reflectivity, differential phase shift, specific differential
phase, and cross-correlation coefficient, when compared to the conventional radar [5,6]. By combining
with absolute reflectivity, these variables can be used to determine the parameters in the truncated
Gamma DSD [7,8].

In the literature, the algorithms for the DSD retrieval can be divided into two categories: One is
a physical method and the other is a statistical approach. The physical method explores the direct
relationship between the DSD parameters and polarimetric measurements. For example, the constraint
method [9–11] uses radar reflectivity and differential reflectivity to retrieve the Gamma distribution
by assuming an empirical relation between the slope and shape parameters. Meanwhile, the beta
method [12] derives the effective slope of the axis ratio with respect to the diameter to make a better
use of specific differential phase. This method also utilizes a normalized Gamma distribution [13]
instead of the nonnormalized one [7], yielding a more realistic DSD [14]. However, it is evident
that the constraint method has better consistency with the disdrometer data when compared to the
beta method, since the beta method is sensitive to the noise of specific differential phase [15,16].
To reduce the noise effects, a power-law relation was employed for light rain in the beta method [17,18].
Moreover, the relations between the DSD parameters and polarimetric variables can be derived by
using a reflectivity-weighted mean diameter [19,20]. This algorithm also considers the Mie effects at
X-band frequency, to correct the rain-path attenuation. In addition, Raupach and Berne [21] retrieved
the third and sixth moments to obtain a double-moment model for normalized DSD.

In contrast, the statistical approach approximates the nonlinear relation between the Gamma
parameters and polarimetric variables with a mathematical process. Vulpiani et al. [22] proposed a
regularized neural network method to give a non-parametric mapping from the polarimetric variables
to the DSD parameters. Cao et al. [23] developed a Bayesian regression model by assuming the samples
of radar measurements are independent and approaching to a Gaussian function. The Bayesian
framework consists of a priori and a probability density function. If the probability density function
is transferred to a penalty function, a variational method [24,25] can be used to obtain the associated
parameters via an optimization procedure.

This study proposes a statistical approach to estimating the parameters of a truncated Gamma
model for DSD with the polarimetric radar variables, called an inverse model. This approach designs
a forward operator to calculate the polarimetric variables for a given DSD by assuming the shape and
orientation of raindrops, ambient temperature, and radar wavelength. Furthermore, it approximates
the forward operator with a polynomial function to generate a pseudo training dataset, which is
inversely used to obtain the relation between the DSD and polarimetric variables. Finally, it adopts a
non-parametric estimator based on a nearest-neighborhood method to retrieve the parameters within
the truncated Gamma model. By comparing to the existing algorithms, there are some advantages
of the inverse model. First, it uses pseudo training data generated by a forward operator to retrieve
the DSD parameters inversely. These pseudo data are adjustable according to the dynamic range of
the DSD parameters. Secondly, it can obtain the maximum drop diameter to yield a realistic Gamma
model for DSD, whereas the existing algorithms generally assume the maximum drop diameter as a
deterministic value or infinity. Thirdly, the model is optimized with regard to the mass-weighted mean
diameter and liquid water content, since they are important for the Gamma representation of the DSD.

The paper is organized as follows: Section 2 presents the mathematical representations of the DSD
and the microphysical quantities calculated by the DSD. It also introduces the dataset used in this study.
Section 3 gives the forward operator for polarimetric variables and its polynomial approximation,
which is used to generate a pseudo training dataset. In Section 4, a non-parametric estimator based
on a nearest-neighborhood method for the DSD retrieval is proposed and its error characteristics are
described. In Section 5, the performance of the proposed approach is evaluated by comparing to the
existing Bayesian approach, while the rainfall rate derived from the DSD is also examined against
the power-law relations. Finally, Section 6 provides a summary and some further discussions on the
proposed method.
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2. Representation of Raindrop Size Distribution

The raindrop size distribution is defined as the number density of raindrops per unit size range
and per unit volume [26]. It plays a key role in the microphysics and dynamics of raindrops while
falling in the atmosphere. Some instruments (e.g., disdrometer) can provide direct measurements of
DSD by detecting individual drops with optical light illumination [27,28], whereas the measurements
of remote sensing methods (e.g., radar) are indirect. That means the number density at a particular size
bin cannot be obtained directly from radar measurements compared to the disdrometer. In this
case, a parametric function has to be selected and transferred to represent the DSD of interest.
A variety of theoretical distributions could be used for the DSD representation, including Gamma
distribution [7,13], log-normal distribution [29], and exponential distribution [30], among others
(e.g., [31]). In the literature, the most commonly used one is Gamma distribution, which is described
in the following section.

2.1. Gamma Model

The Gamma function [7] is widely used to model the DSD in the precipitating system. It is
formulated as

N(D) = N0Dµ exp(−ΛD), (1)

where N(D) is the size spectrum in mm−1 m−3, N0 is an intercept parameter in mm−1−µ m−3, µ is a
shape parameter in unitless, and Λ is a slope parameter in mm−1. This definition is convenient since
the corresponding moment (Mn in mmn m−3) of this distribution yields an explicit function other than
an implicit integral form:

Mn =
∫

DnN(D)dD = N0
Γ(µ + n + 1)

Λµ+n+1 . (2)

It is worth noting that Equation (1) represents the spectrum with a drop size from zero to infinity,
thus the DSD moment in Equation (2) becomes an infinite integral accordingly. However, in nature, the
measurements are often conducted within a limited sampling volume and time, and the resulting DSD
is truncated in a finite size range (Dmin, Dmax). For example, the two-dimensional video disdrometer
(2DVD) can measure drops with a diameter between 0.1 and 8 mm [32]. To reduce the number of
parameters in the DSD model, the lower limit is often set to be zero [7], whereas an exception is an
unusual DSD associated with a size-sorting effect due to updrafts and wind shear [33]. The Gamma
model is then changed to [7]

N(D) = N0Dµ exp(−ΛD) (0 ≤ D ≤ Dmax), (3)

and the corresponding moment is calculated as [8]

Mn =
N0

Λµ+n+1 γ(µ + n + 1, ΛDmax), (4)

where γ(·) is a lower incomplete Gamma function.
In Equation (1), the unit of the intercept parameter N0 varies according to the shape parameter µ.

To obtain an independent intercept term, a normalized Gamma function is introduced by scaling the
DSD in terms of liquid water content and mass-weighted mean diameter [13,34]. It is formulated as

N(D) = Nw f (µ)
(

D
Dm

)µ

exp
[
−(4 + µ)

D
Dm

]
, (5)



Remote Sens. 2018, 10, 1179 4 of 26

where Nw is the normalized intercept term in mm−1 m−3, Dm is the mass-weighted mean diameter in
mm, and f (µ) is a normalization factor defined in [5]. The new intercept term Nw can be written as

Nw =
44

πρw

(
103W

D4
m

)
, (6)

where ρw is the density of liquid water, and W is the liquid water content. The new term Nw is
equivalent to the intercept of an exponential distribution with an identical liquid water content [5].
In addition, the slope parameter Λ is substituted by an approximation expression:

ΛDm = 4 + µ, (7)

which assumes the maximum diameter Dmax is sufficiently larger than the mass-weighted mean
diameter Dm (Dmax/Dm ≥ 2.5 [7,35]). The corresponding DSD moments can then be expressed as

Mn = NwF(µ)Dn+1
m , (8)

with

F(µ) =
6

(4)4 (4 + µ)3−n Γ(µ + n + 1)
Γ(µ + 4)

. (9)

Another normalization method, called a double-moment generalized Gamma model [21,36,37],
takes into account two random DSD moments:

N(D) = (Mi)
(j+1)/(j−i)(Mj

)(i+1)/(i−j)h(x), (10)

with
x = D(Mi)

1/(j−i)(Mj
)−1/(j−i). (11)

Further, the general moment can be derived from the relationship among the DSD moments:

Mn = Cn
(

Mj
)(n−i)/(j−i)

(Mi)
(j−n)/(j−i), (12)

with
Cn =

∫
h(x)xndx. (13)

2.2. Bulk Properties of DSD

The liquid water content W is calculated by using the third moment of DSD:

W =
π

6
× 10−3M3 (g m−3), (14)

where the water density is considered as 1 g cm−3. The median volume diameter, D0 in mm, is the
upper limit of raindrop size that contributes to half of the total liquid water content [5]:

D0∫
0

D3N(D)dD =
1
2

∞∫
0

D3N(D)dD. (15)

Meanwhile, the mass-weighted mean diameter (Dm) is defined as the ratio of the fourth and
third moments:

Dm =
M4

M3
(mm). (16)
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In the still air, the rainfall rate is determined by the combined effects of drop fall velocity and
DSD, which is expressed as

R = 6π × 10−4
∫

v(D)D3N(D)dD (mm h−1). (17)

The terminal velocity at the surface can be approximated in terms of a monotonic increasing
function of drop sizes [38–40]. By substituting a polynomial fit [38] into Equation (17), the rain rate is
then computed via the DSD moments:

R = c1M3 + c2M4 + c3M5 + c4M6 + c5M7, (18)

where the coefficients are −1.924 × 10−4, 9.296 × 10−3, −1.8 × 10−3, 1.496 × 10−4, and
4.452× 10−6, respectively.

2.3. Dataset

This study analyzed the polarimetric radar measurements collected by the Next Generation
Weather Radar (NEXRAD) system located near Oklahoma City (35.333◦N, 97.278◦W), United States.
The KTLX radar is a dual-polarization radar at a frequency of around 2.8 GHz, with a resolution of
250 m in range by 0.5 degree in azimuth below 2.4 degree in elevation. The minimum and maximum
elevation ranges from 0.1 to 19.5 degree. We primarily analyzed the first unblocked scan (typically
0.5 degree) in VCP 212 mode updated in 4–6 min. The radar simultaneously measures three base data,
i.e., radar reflectivity factor (Zh in mm6 m−3), mean Doppler velocity, and spectrum width, as well as
three polarimetric variables, namely, differential reflectivity (Zdr in unitless), differential phase (φdp in
degree), and cross-correlation coefficient at zero lag. The radar dataset is organized and processed
using an open-source software package called the Python ARM Radar Toolkit (Py-ART), which has
been widely used in weather radar community [41,42]. Prior to performing the DSD retrieval, the
data fields were smoothed by a moving window with five range gates to reduce the noise effect,
and the ground clutters are removed with a quality control procedure [43–45]. Furthermore, the
specific differential phase (Kdp in degree km−1), which is the range derivative of φdp, was computed
using an iterative linear regression process [46] and compared with NEXRAD level 3 products [47,48].
Finally, this study utilized three processed radar variables, Zh, Zdr, and Kdp, since they are more
sensitive to the variability of the DSD when compared to the others [6].

To validate the DSD retrieval method, a second-generation low-profile 2DVD [27] was deployed
in the Kessler Atmospheric and Ecological Field Station (KAEFS) in southwest Oklahoma (34.9846◦N,
97.5234◦W), about 44.7 km away from the KTLX radar. The radar beam at an elevation of 0.5 degree
is about 886 m higher than the disdrometer. Strong wind and turbulence may significantly affect the
disdrometer measurements of raindrops [49]. Therefore, the disdrometer data were corrected by a
terminal velocity filter following the theoretical relation between the diameter and velocity as in [39].
In addition, the time periods with total drop number less than 10 or rainfall rate less than 0.1 mm h−1

were excluded. The processed disdrometer dataset contained 63,806 1-min drop spectra in 852 rain
events collected between 0524 UTC 17 June 2006 and 1658 UTC 18 January 2017.

3. Forward Operator for Polarimetric Variables

The polarimetric variables are sensitive to ensemble properties, such as particle size, shape, and
different hydrometeor phases [50,51]. For a volume of raindrops, these variables depend on not
only the size spectrum, but also the scattering amplitudes, which are determined by the shape and
orientation of raindrops, ambient temperature, and radar wavelength. In this section, we first introduce
the polarimetric variables used in the DSD retrieval, and then utilize a forward operator to prescribe
the scattering amplitude across the size bin. It is simplified with a polynomial approximation, yielding
an explicit form for calculating each variable based on the Gamma DSD assumption. Finally, the
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forward operator is used to generate a pseudo training dataset to optimize a non-parametric estimator
that is detailed in the next section.

3.1. Polarimetric Variables

This study used three polarimetric variables on a linear scale, namely, radar reflectivity at
horizontal (Zh) and vertical (Zv) polarizations, as well as specific differential phase (Kdp). The radar
reflectivity can be calculated via the radar cross-section, dielectric constant, and DSD in case of a
linear polarization:

Zh,v =
4λ4

π4|K|2

∞∫
0

∣∣ fhh,vv(π, D)
∣∣2N(D)dD (mm6 m−3), (19)

where λ is the radar wavelength in millimeter, |K|2 is the water dielectric constant factor in unitless,
and fhh,vv(π, D) is the backward scattering amplitude in mm, of a raindrop with an equivalent-volume
diameter (D; hereafter diameter):

D = 2(a2b)
1/3

(mm), (20)

where a is the transverse semi-axis in mm and b is the symmetry semi-axis in mm.
Furthermore, the differential reflectivity (Zdr) is defined as the ratio of the radar reflectivity at the

two polarizations:

Zdr =
Zh
Zv

. (21)

The specific differential phase is mathematically formulated as the integral of the real part of the
propagation constant difference and DSD:

Kdp =
0.18λ

π

∞∫
0

Re{ fhh(0, D)− fvv(0, D)}N(D)dD (deg km−1), (22)

where fhh,vv(0, D) are the forward scattering amplitudes for particles with a diameter D at the
horizontal and vertical polarizations, respectively, and Re{·} represents the real part of the
scattering amplitude.

In this paper, the scattering amplitudes are computed by using T-matrix codes for non-spherical
particles [52,53]. The oblate raindrops with the symmetry semi-axis b less than the transverse semi-axis
a are uniformly distributed in a volume with a known size spectrum. Moreover, axis ratio (b/a) is a
key parameter for computations of reflectivity and phase shift at the two orthogonal polarizations.
To characterize the relationship between the diameter and axis ratio in an analytic form, a universal
equation is applied following the observational work in [38], with a modification that the drops with
diameters less than 0.5 mm are spherical [26]. This relation is expressed as

b/a =

{
0.9951 + 0.02510D− 0.03644D2 + 0.005030D3 − 0.0002492D4 D > 0.5mm

1 D ≤ 0.5mm
. (23)

The dielectric constant |K|2 is obtained by calculating the complex indices of refraction following
the least square fit of the Debye equations [54], with assumptions that the ambient temperature is 10 ◦C
and the radar wavelength is 10.8 cm. It is noted that one typical temperature is selected for T-matrix
simulations for raindrops, and the effects of temperature variation have been investigated in previous
studies [5,20]. The canting angle distribution has been studied under experimental conditions [55,56].
In this study, we considered a Gaussian distribution with zero mean and small variance (10◦).

Figure 1 shows the characteristics of the three polarimetric variables simulated using the
disdrometer observations. In Figure 1a, it is clear that Zdr is gradually rising with Zh going up.
However, this increasing trend is negligible when Zh is below 0 dBZ, indicating these DSDs are
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dominated by small spheroid drops. The values of Zdr then have a rapid growth when Zh is over
0 dBZ, while the spreads of Zdr become wider. This might show that the corresponding DSDs contain a
significant amount of oblate median-size and large drops. Similarly, Figure 1b illustrates that the values
of Kdp remain relatively stable at 0 deg km−1 for Zh below 37 dBZ, following a boom in Kdp when Zh is
larger than 37 dBZ. When Kdp is very small, it is difficult to accurately estimate the DSD parameters
due to the noise effect [12], thus a self-consistency method may be used to provide an additional
constraint for the data with Zh below 37 dBZ [57]. For the scatterplot of Zdr and Kdp (Figure 1c), it
is interesting to note that, when Zdr reaches 5 dB, Kdp could stay below 0.5 deg km−1, implying the
forward scattering amplitude may significantly differ from the backward one due to Mie scattering.
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Figure 1. Characteristics of polarimetric variables simulated by a T-matrix method: (a) Zh vs. Zdr;
(b) Zh vs. Kdp; and (c) Zdr and Kdp. Note that Zh and Zdr are on a logarithmic scale with units of dBZ
and dB, respectively.

Table 1 shows the means, standard deviations, minima, and maxima of microphysical quantities
and polarimetric variables simulated using the disdrometer data. It is noticeable that the means of
microphysical quantities (Dm, W, and R) are generally small, since the entire dataset is dominated
by light rain and drizzle. However, as the moderate and heavy rain cases are taken into account,
the probability distributions of these quantities are significantly widened, producing relatively
large standard deviations. Furthermore, the dynamic range of Zh on a linear scale reaches
6.6× 105 mm6 m−3 corresponding to 479.5 mm h−1 for R, whereas the ones for Zdr and Kdp on a
linear scale are 3.86 and 7.03 deg km−1, respectively, which are much smaller than that of Zh and
R. This implies that small measurement errors of Zdr and Kdp may result in a significant bias on R
comparing to Zh. In contrast, the dynamic ranges of Zdr and Kdp are comparable to that of Dm and W,
indicating a good estimation can be achieved using these variables.

Table 1. Means, standard deviations (STD), minima (min), and maxima (max) for quantities derived
from the disdrometer observations. Zh is the radar reflectivity on a logarithmic scale, Zdr is
the differential reflectivity on a logarithmic scale, Kdp is the specific differential phase, Dm is the
mass-weighted mean diameter, W is the liquid water content, and R is the rainfall rate at the surface.
Note the means and standard deviations of Zh and Zdr are calculated on a linear scale, and then
transferred to a logarithmic scale.

Zh (dBZ) Zdr (dB) Kdp (deg/km) Dm (mm) W (g/m3) R (mm/h)

Mean 36.8 0.67 0.076 1.30 0.314 5.4
STD 7.0 0.60 0.251 0.40 0.986 16.1
Min 3.6 0 0 0.36 0.0004 0.1
Max 58.2 5.87 7.031 5.74 35.031 479.5
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3.2. Forward Operator

In Equation (19), it can be found that the scattering amplitude is independent from the DSD
at each size bin. If the scattering amplitude is considered a forward operator, Equation (19) can be
transferred as

Zh,v = fh,v(D)⊗ N(D), (24)

where fh,v(D) is the scattering amplitudes at the horizontal and vertical polarizations, respectively,
⊗ is the integration operator, and fh,v(D)⊗ is thus the forward operators for the radar reflectivity.
Similarly, Kdp is computed in terms of a forward operator:

Kdp = fk(D)⊗ N(D). (25)

where fk(D) is the amplitude of the forward operator of Kdp.
The forward operators of Zh, Zv, and Kdp can be obtained by performing simulations of

monodisperse raindrops with diameters varying from 0.01 mm to 8 mm. As shown in Figure 2a, the
forward operator presents a quasi-linear shape in a logarithmic coordinate, while the amplitude of
the forward operator monotonically increases with the diameter climbing up. This quasi-linear shape
on a logarithmic scale suggests a polynomial relationship between the diameter and the amplitude
on a linear scale, which is consistent with the Rayleigh approximation. Similarly, Figure 2b also
illustrates a progressively increasing trend for the forward operator of Zv. A noticeable difference
can be seen when the diameter is larger than 1 mm, where the vertical amplitude of a larger drop
grows relatively slower than the horizontal dimension. On the one hand, it is because the contribution
of the vertical dimension (b axis) to the diameter D in Equation (20) significantly differs from that
of the horizontal dimension (a axis). On the other hand, as the diameter gets larger, the axis ratio in
Equation (23) gives a large discrepancy from the unity, which indicates that the large raindrops tend to
be more oblate than small drops. Under the Rayleigh assumption, the radar cross section at a particular
polarization is proportional to sixth order of the corresponding geometric dimension of a raindrop.
Therefore, the amplitude at the vertical polarization is generally smaller than that at the horizontal
polarization, particularly for larger raindrops. Moreover, Figure 2c shows that the forward operator of
Kdp is also characterized by a monotonically increasing curve, but the amplitude of forward operator is
equal to zero when the diameter is less than 0.5 mm, due to unity axis ratio at this diameter range in
Equation (23). In addition, in this region, the forward operators of Zh and Zv are identical, yielding Zdr
equal to 1 (0 dB).
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polarization (Zh); (b) radar reflectivity at the vertical polarization (Zv); and (c) specific differential
phase (Kdp).

Figure 2 shows that the amplitudes of the forward operators for Zh, Zv, and Kdp may have a
quasi-linear relation as a function of the diameter on a logarithmic scale, which is equivalent to a
polynomial on a linear scale. Therefore, the forward operator may be approximated by a polynomial
function to avoid the implicit integral form in Equations (19) and (22), by using the Gamma model
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of the DSD. Since the amplitude is several orders higher than the diameter, a basis polynomial needs
to be selected, and then the residuals are fitted into a high-order polynomial expansion. It can be
formulated as

f = Db

(
p

∑
i=0

aiDi

)
=

p

∑
i=0

aiDi+b (26)

where b is the order number for the basis polynomial, p is the maximum order number for the
polynomial fit, and ai is the polynomial coefficient for the order i.

To obtain the optimal performance for the fitting, the mean square error (MSE) is used to select
the polynomial model. It is defined as

MSE =
1
n

n

∑
i=1

(pi − ai)
2, (27)

where p is predicted values and a are actual values.
Figure 3a illustrates that the MSE of Zh is generally reduced as the basis order increases from 3 to

6, whereas the basis order of 7 produces a significant error by comparing to the others. Therefore, the
basis order for Zh is set as 6 based on the MSE test. Furthermore, for the curve with the basis order of 6,
the MSE gradually decreases as the order p goes down, while a sharp fall can be found between 2 and
3. When p is larger than 3, the decline trend becomes steady. Consequently, we set p as 3 to achieve a
balance between the model complexity and approximation accuracy. The fitting results are in good
agreement with T-matrix computations, as shown in Figure 2a. Moreover, when the polynomial fit is
applied to the real DSD, it agrees well with disdrometer data in Figure 4a, with small bias, relative
error, and MSE as well as high correlation coefficient (CC) in Table 2.
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As shown in Figure 3b, the basis orders of 4 and 5 for Zv can yield even better MSEs than that of 6
when p is relatively large (6–9). However, the higher accuracy of fitting results from overfitting of the
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data samples by the model with high complexity, which is evident from the comparison between the
data and fitting curve of higher orders (not shown). Following a way similar to Zh, the b and p for Zv

are set as 6 and 4, respectively, yielding a good consistency in terms of bias, relative error, MSE, and
CC (Table 2), when applied to the monodisperse raindrops (Figure 2b) and real DSDs (Figure 4b).

The selection of order number of polynomial model for Kdp is more straightforward than Zh and
Zv (Figure 3c). The curve with the basis order of 4 generally gives the lowest MSE among the ones
from 3 to 7. Meanwhile, the polynomial order is set to as 4, since the MSEs of p larger than 4 become
stable at around 1× 10−6. Note the fitting range for Kdp is from 0.5 to 8 mm rather than from 0.01 to
8 mm for Zh and Zv. Figure 2c shows the comparison between the data and the fitting results, where a
relatively large difference can be found for the diameter between 0.5 and 0.7 mm. When the real DSDs
are considered, an increase of uncertainty is expected for Kdp below 0.01 deg km−1 (Figure 4c). The rest
of the coefficients in Equation (26) are listed in Table 2.

3.3. Pseudo Training Dataset

On substituting Equation (26) into Equations (24) and (25), and assuming the Gamma model for
the DSD, the polarimetric variables can be re-written as

Zh,v =
ph,v

∑
i=0

ai Mi+b =
ph,v

∑
i=0

ai N0γ(µ + b + i + 1, ΛDmax)Λ−(µ+b+i+1), (28)

and

Kdp =
pd

∑
i=0

ai Mi+b =
pd

∑
i=0

ai N0[γ(µ + b + i + 1, ΛDmax)− γ(µ + b + i + 1, 0.5Λ)]Λ−(µ+b+i+1), (29)

where Mi+b is the (i + b)th DSD moments obtained by multiplying N(D) in Equations (24) and (25) with
Di+b in Equation (26). To eliminate the factor N0, the ratios between Zh and Zv, and between Zh and
Kdp are taken into consideration, yielding

x1 = Zdr =

ph
∑

i=0
ai,hγ(µ + bh + i + 1, ΛDmax)Λ−(µ+bh+i+1)

pv

∑
i=0

ai,vγ(µ + bv + i + 1, ΛDmax)Λ−(µ+bv+i+1)
(30)

and

x2 =
Kdp

Zh
=

pd
∑

i=0
ai,d[γ(µ + bd + i + 1, ΛDmax)− γ(µ + bd + i + 1, 0.5Λ)]Λ−(µ+bd+i+1)

ph
∑

i=0
ai,hγ(µ + bh + i + 1, ΛDmax)Λ−(µ+bh+i+1)

, (31)

where x1 and x2 are the training data; the subscripts h, v, and d represent the parameter set of b, p,
and ai for Zh, Zv, and Kdp, respectively; the minimum diameter for calculation of Kdp is 0.5 mm; and µ,
Λ, and Dmax are the parameters in the Gamma model retrieved by x1 and x2. Since three dependent
variables need to be estimated by two independent variables, the solution of the DSD retrieval may be
unstable, thus an empirical constraining assumption has to be made, e.g., the µ-Λ relation used in [11].
Although this relation is believed to be valid for limited types of rain events [58] and subjective to the
minimum diameter and data filtering [59], it arises from the actual rain microphysical processes [60,61].
An alternative approach to the two-parameter solution is based on the joint probability distribution of
the parameters within the raindrop mass spectrum [62].
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Table 2. Coefficients of the polynomial fits for Zh, Zv, and Kdp and metrics for the polynomial fits. MSE, mean square error; RE, relative error; CC, correlation coefficient.

b p a0 a1 a2 a3 a4 Bias MSE RE CC

Zh 6 3 1.004 −0.020 0.021 −1.7× 10−3 −0.417 28.965 7.4× 10−4 1
Zv 6 4 0.998 0.028 −0.055 7.8× 10−3 −3.5× 10−4 −0.265 13.420 6.6× 10−4 1
Kdp 4 4 −3.0× 10−5 6.3× 10−5 3.6× 10−6 −2.1× 10−6 2.0× 10−7 −6.9× 10−5 2.7× 10−7 5.2× 10−3 1



Remote Sens. 2018, 10, 1179 12 of 26

In this study, we use the thresholds of rainfall rate larger than 5 mm h−1 and total number counts
larger than 1000 drops min−1 to avoid the fluctuations arisen from DSD fitting, which is consistent
with the studies in [11,63]. It yields the relation as

µ = −0.0279Λ2 + 1.0619Λ− 2.8281
(

mm−1
)

. (32)

Figure 5 illustrates the curve for the µ-Λ relation obtained by using the ten-year disdrometer data.
The result is generally consistent with the previous study in [63]. However, the MSE is 0.184 for our
relation, whereas it is 0.727 for the relation in [63].
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Finally, the training dataset, Zdr and Kdp/Zh, can be generated via Equations (30)–(32), by drawing
µ and Dmax. Based on the observations of dynamic ranges of µ and Dmax in the ten-year-disdrometer
data, we assume that the drawing poll ranges from −3 to 20 for µ and from 1.7 mm to 8 mm for Dmax,
with an additional constraint that Dm is no larger than Dmax. Figure 6 presents the simulation results
of the training dataset Zdr and Kdp/Zh projected onto a two-dimensional plane by assuming a number
of fixed µ and Dmax, respectively. In Figure 6a,b, Kdp/Zh dramatically drops with Zdr increasing when
Zdr less than 2. The decreasing trend then becomes steady, showing a concave curve. Furthermore, for
identical Zdr, the values of Kdp/Zh rise as µ or Dmax climbs up, while for identical Kdp/Zh, the values of
Zdr also increase with µ or Dmax going up. In addition, when Zdr is relatively small (less than 0.318 dB),
the colored curves in Figure 6 may not be disjoint. It means that two distinct parameter sets of µ and
Dmax can generate identical training data of Zdr and Kdp/Zh, leading to instability of an inverse model.
To tackle this problem, we separate the data with instability by applying a threshold of Zdr less than
0.318 dB. As shown in Figure 6, by applying this threshold, the training dataset is well-separated and
the corresponding curves are mutually disjoint. As a result, the problem of inversion of polarimetric
variables to Gamma parameters is stable, and the retrieval uncertainty directly relates to measurement
errors exclusively.
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4. Inverse Model for Gamma Parameter Retrieval

The previous section shows that the polarimetric variables are calculated by the DSDs via the
forward operator. Since the generated data are uniquely associated with the physical parameters,
the data may be used to retrieve the DSD parameters inversely. In this section, we first introduce a
non-parametric model to solve the inverse problem, and then select the optimal model by using real
DSD data. Finally, we show the effect of the measurement error on the DSD retrieval.

4.1. Non-Parametric Estimator for the Inverse Model

There are some approaches to solving the inverse problem if the training dataset is available, such
as Neural Network [64], Bayesian method [65], and variational method [66]. In this paper, we adopt a
nearest neighborhood method, due to its nature of simplicity and high speed.

The idea of the nearest neighborhood method is to use the observations in the training set closest
in the feature space (i.e., a space composed by the polarimetric variables) to the input x to estimate
the output y. Let x = (x1, x2) = (Zdr, Kdp/Zh) and y = (µ, Dmax); the k-nearest neighbor estimate ŷ is
then defined as

ŷ =
1
k

Nk(x)

∑
i=1

yi, (33)

where Nk(x) is the neighborhood defined by the kth closest points to x in the training dataset, and
the metric of closeness is the Euclidean distance. Since the two independent variables have very
different dynamic ranges, it is necessary to perform the normalization of the variables, which produces
a zero-mean and unity covariance matrix. The procedures based on Cholesky factorization [50,67] is
described as:

1. Subtract the averaged values from the data matrix.
2. Calculate the covariance of the residual matrix.
3. Calculate an upper-triangular matrix of the covariance using Cholesky factorization.
4. Divisde the residual matrix by the upper-triangular matrix.

Afterwards, the k observations closest to x in the feature space are averaged to give the retrievals
of µ and Dmax. Finally, we calculate the estimates of the intercept N0 by substituting the µ and Dmax

estimates into Equations (28) and (29) and take an average of the estimates to obtain the N0.

4.2. Model Selection

The performance of the nearest-neighborhood estimator relates to its capability of prediction on
an independent test set of the real data. It is fundamentally important to assess this performance, since
it determines the selection of the model, and provides a metric of the model quality. The statistical
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methods commonly search for the minimum of the MSE of ŷ in Equation (33), yielding an optimal
model for estimation of the target variables y. However, as shown in Figure 7, the DSD observed
by disdrometer may suffer from significant model errors with the assumption of the Gamma shape.
At some stages of a precipitating process, the DSD occasionally exhibits a bi-modal or tri-modal
distribution [68–70]. In addition, some errors may also arise from the moment method used to fit the
Gamma function to the disdrometer observations [60,71]. Due to these problems, the polarimetric
variables may result in a retrieval of Gamma parameters that is significantly different from the true
DSD (Figure 7).Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 25 
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Figure 7. An example of DSD retrieval for illustration of the difference between the real DSD and
Gamma model. The blue dots are the DSD observed by the disdrometer at 02:05 UTC on 27 August
2006. The red curve is the Gamma fit for the disdrometer data with the truncated moment method.
The green curve is the DSD retrieved by the nearest neighborhood method.

It is noticeable that the liquid water content (W) and mass-weighted mean diameter (Dm) in
Equations (5) and (6) play an important role in the representation of the DSD. Furthermore, the
deviation of a Gamma function from the disdrometer observations depends on these two microphysical
quantities [17,18,72]. Therefore, the objective functions of the inverse model may be modified to
produce a DSD retrieval similar to the disdrometer-derived Gamma parameters. To obtain a number
for k neighbors, we search µ that yields an optimal estimate of Dm by using Equation (32). Furthermore,
we determine the k neighbors of Dmax by optimizing W via Equation (14), where N0 is computed
using Equations (28) and (29). Figure 8 illustrates the MSEs of W and Dm associated with the model
complexity. The optimal numbers are 456 for µ and 96 for Dmax, but they are also affected by the
spacing of data points in the pseudo training dataset.
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4.3. Error Characteristics

Practically, it is difficult to obtain the polarimetric radar data free of measurement errors.
These errors may have a significant impact on DSD retrievals, and sometimes lead to meaningless
results. Therefore, it is important to evaluate the magnitude of the errors.

The problem may be formulated as follows. With the assumption of the perfect accuracy of
the measurements of Zdr and Kdp, the uncertainties of Dm and W would correspond to that in Zh
exclusively. Since the radar records Zh measurements on a logarithmic scale, the impacts of the relative
error (∆Zh) in decibel are assessed. This analysis can also be applied to Zdr and Kdp, but Kdp needs to
be considered on a linear scale. Note that we study the characteristics of relative square error (RSE),
which is defined as

RSE =

n
∑

i=1
(pi − ai)

2

n
∑

i=1
(ai − a)2

, (34)

where
a =

1
n∑

j
aj. (35)

Figure 9 illustrates the analysis of error characteristics on Zh, Zdr, and Kdp, respectively, in the
disdrometer dataset. In Figure 9a, the RSE of Dm generally presents an increasing trend associated
with either the positive or negative ∆Zh. In practice, for ∆Zh < 0.3 dB, the RSE for positive ∆Zh is
not very large (less than 1), and it becomes large beyond this limit. By contrast, the RSE for negative
∆Zh rises slowly, but it is more sensitive to ∆Zh between 0.1 and 0.4 dB, leading to a lower threshold
of 0.2 dB for the RSE less than 1. Moreover, the RSE of W for positive ∆Zh increases rapidly when
∆Zh < 0.2 dB and remains steady at around 0.2 (Figure 9d). It is interesting to note that the RSE of W
for negative ∆Zh decreases slightly when ∆Zh is below 0.2 dB. This is because Equations (28) and (29)
may produce distinct estimates of N0, where Zh often gives the largest one. By adding a negative error,
the variance of N0 estimates is reduced, yielding a slightly improved W.
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The dependence of the uncertainty of Dm and W on Zdr errors (Figure 9b,e) generally preserves
the trend similar to the previous case (Figure 9a,d), however, some distinct features are noticeable.
In Figure 9b, the RSE of Dm for positive ∆Zdr shows a dramatic rise between 0.2 dB and 0.4 dB. It may
indicate a threshold of 0.2 dB for Zdr to obtain an accurate estimate of Dm, while the RSE is below 0.6
for negative ∆Zdr less than 0.1 dB. Furthermore, Figure 9e presents a local minimum for ∆Zdr at around
0.1 dB. Apart from the reduction of the variance of N0 estimates, this minimum may be due to an effect
of the thresholding of Zdr prior to performing the nearest-neighborhood estimator. With the positive
∆Zdr adding to the data, the number of points for the calculation of RSE increases more significantly
than the squared errors, resulting in a slight decrease of RSE. Moreover, it is clear that Dm is very
sensitive to Kdp errors, since a small value (e.g., 0.01 deg km−1) can lead to a boom in RSE, particularly
for negative bias (Figure 9c). To determine a threshold for Kdp error, it can be found that the growth
rate of RSE for positive ∆Kdp is accelerated when Kdp is larger than about 0.01 deg km−1 (Figure 9f),
while the RSEs of the two types of errors are both small (below 0.2).

The important conclusion of this analysis is that, if the Dm and W are retrieved by using the
polarimetric variables, we suggest the thresholds of 0.2 dB, 0.1 dB, and 0.01 deg km−1 be applied to
the errors of Zh, Zdr, and Kdp, respectively.

5. Results

In this section, the inverse model (IM) for the DSD retrieval is first tested with polarimetric data
simulated by the ten-year disdrometer observations, and compared to an existing algorithm designed
for the same regime [23], called a Bayesian approach (BA). Furthermore, the model is applied to the
five-year joint observations of dual-polarized radar and disdrometer to assess its performance on real
radar data. Finally, the rainfall rate calculated by the DSD is compared to the results of the power-law
relations to evaluate the potential of an operational application. In addition to mean square error
(MSE) and relative square error (RSE), we also use mean absolute error (MAE),

MAE =

n
∑

i=1
|pi − ai|

n
, (36)

relative absolute error (RAE),

RAE =

n
∑

i=1
|pi − ai|

n
∑

i=1
|ai − a|

, (37)

correlation coefficient (CC),

CC =
SPA√
SPSA

, (38)

where

SPA =

∑
i
(pi − p)(ai − a)

n− 1
, (39)

Sp =

∑
i
(pi − p)2

n− 1
, (40)

SA =

∑
i
(ai − a)2

n− 1
, (41)

root mean square error (RMSE),
RMSE =

√
MSE, (42)
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and root relative square error (RRSE),
RRSE =

√
RSE. (43)

5.1. DSD Retrieval with Disdrometer-Simulated Data

At the first stage of the assessment, we apply IM to the simulated dataset (see Section 3.1) and
compare to BA. Figure 10 illustrates the comparison between the disdrometer observations and the
DSD retrievals. As shown in Figure 10a, the Dm results from IM show good consistency with the
disdrometer data for Dm less than 0.8 mm, while a boundary exists at around 0.8 mm due to the Zdr
threshold of 0.318 dB. When Dm is between 0.8 mm and 2.5 mm, the retrievals fairly agree with the
disdrometer data, following a large spread for Dm larger than 2.5 mm. By contrast, the uncertainty
of the retrievals by BA gradually increases as Dm goes up, particularly for Dm larger than 2 mm
(Figure 10b). Since the Bayesian approach constructs the joint distribution of polarimetric variables
and DSD parameters from the radar data, it gives a better performance on the lower end comparing to
IM. By analyzing the statistics in Table 3, it is clear that the Dm retrievals by IM outperform that by BA.
The MSE and RSE of IM are generally one third of BA, while the MAE and RAE of IM are half than of
BA. The difference of the CC is less pronounced, with IM at 0.917 and BA at 0.821.

Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 25 

 

DSD retrievals. As shown in Figure 10a, the Dm results from IM show good consistency with the 
disdrometer data for Dm less than 0.8 mm, while a boundary exists at around 0.8 mm due to the Zdr 
threshold of 0.318 dB. When Dm is between 0.8 mm and 2.5 mm, the retrievals fairly agree with the 
disdrometer data, following a large spread for Dm larger than 2.5 mm. By contrast, the uncertainty of 
the retrievals by BA gradually increases as Dm goes up, particularly for Dm larger than 2 mm (Figure 
10b). Since the Bayesian approach constructs the joint distribution of polarimetric variables and DSD 
parameters from the radar data, it gives a better performance on the lower end comparing to IM. By 
analyzing the statistics in Table 3, it is clear that the Dm retrievals by IM outperform that by BA. The 
MSE and RSE of IM are generally one third of BA, while the MAE and RAE of IM are half than of BA. 
The difference of the CC is less pronounced, with IM at 0.917 and BA at 0.821. 

 
Figure 10. Comparison between the disdrometer data and DSD retrieved by the simulated data: (a) 
Dm by the inverse model; (b) W by the inverse model; (c) Dm by the Bayesian approach; and (d) W by 
the Bayesian approach. The red curve indicates the abscissa is identical to the ordinate. 

Table 3. Mean square error (MSE), mean absolute error, relative square error (RSE), relative absolute 
error (RAE), and correlation coefficient (CC) for Dm and W obtained by the inverse model (IM) and 
Bayesian approach (BA). 

 MSE MAE RSE RAE CC 
Dm (IM) 0.030 0.124 0.183 0.405 0.917 
Dm (BA) 0.091 0.239 0.552 0.782 0.821 
W (IM) 0.113 0.062 0.128 0.178 0.963 
W (BA) 0.218 0.090 0.246 0.257 0.934 

Figure 10b,d shows the comparison of W obtained by IM and BA, respectively. The retrievals of 
W by IM well match the disdrometer observations between 0.001 g m−3 and 10 g m−3. When W is above 
10 g m−3, the points tend to be below the red curve, indicating an underestimation of W at this range. 
By comparing to IM, BA gives higher estimates when W below 0.01 g m−3, while it underestimates W 
above 5 g m−3 (Figure 10d). In addition, it shows high density at around 0.01 g m−3 in BA, due to small 
priori below 0.01 g m−3 [23]. As shown in Table 3, the statistics of IM are generally improved in terms 
of MSE, MAE, RSE, RAE, and CC. Notably, the retrievals of W by IM and BA both achieve a high CC, 
yielding good agreement between retrievals and observations. 

Figure 10. Comparison between the disdrometer data and DSD retrieved by the simulated data: (a) Dm
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Table 3. Mean square error (MSE), mean absolute error, relative square error (RSE), relative absolute
error (RAE), and correlation coefficient (CC) for Dm and W obtained by the inverse model (IM) and
Bayesian approach (BA).

MSE MAE RSE RAE CC

Dm (IM) 0.030 0.124 0.183 0.405 0.917
Dm (BA) 0.091 0.239 0.552 0.782 0.821
W (IM) 0.113 0.062 0.128 0.178 0.963
W (BA) 0.218 0.090 0.246 0.257 0.934
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Figure 10b,d shows the comparison of W obtained by IM and BA, respectively. The retrievals of W
by IM well match the disdrometer observations between 0.001 g m−3 and 10 g m−3. When W is above
10 g m−3, the points tend to be below the red curve, indicating an underestimation of W at this range.
By comparing to IM, BA gives higher estimates when W below 0.01 g m−3, while it underestimates W
above 5 g m−3 (Figure 10d). In addition, it shows high density at around 0.01 g m−3 in BA, due to
small priori below 0.01 g m−3 [23]. As shown in Table 3, the statistics of IM are generally improved in
terms of MSE, MAE, RSE, RAE, and CC. Notably, the retrievals of W by IM and BA both achieve a
high CC, yielding good agreement between retrievals and observations.

It can be found that Zh and Zv are generally proportional to the sixth-order moment of DSD,
while the basis polynomial of Kdp is on the fourth order (Section 3). For the simulation data, IM yields
high accuracy for the sixth-order moment, Z, with RSE of 2.4×10−3 and CC of 0.9989, but very low
accuracy for the zero-order moment (or total number concentration), Nt, with RSE of 3.2 and CC of
0.6183. In contrast, the zeroth and sixth moments estimated by BA are less accurate, while RSE for Nt

and Z are 77.5 and 0.050, and CC are 0.2417 and 0.6884, respectively.

5.2. DSD Retrieval with Real Radar Data

When the inverse model is applied to real radar data, some problems may arise due to the
sampling difference between the instruments. The radar beam often illuminates the hydrometeors
at a higher altitude due to the curvature of the earth surface and the radar elevation angle. In our
study, we used the first unblocked radar elevation (approximately at 0.5◦), thus the altitude difference
between the two instruments is about 886 m by considering the altitude of radar location. During the
falling of raindrops, their size distribution may evolve as a result of coalescence, collision, breakup,
accretion of droplets, and evaporation. Moreover, the polarimetric variables are calculated from the
disdrometer observations under the assumption that the raindrops uniformly distributed in the radar
volume. However, the radar resolution volume above the disdrometer location is about 3.91×107 m3,
whereas the sensing volume of the disdrometer is around 2.4 m3. Therefore, the variables may be
biased in the real case if the radar volume is not filled completely. These sampling problems lead to an
uncertainty when real radar data are used for the DSD retrieval.

To compare the radar measurements with the disdrometer observations, a Cartesian coordinate
was established with the origin located at the radar center. The perpendicular coordinate of the
disdrometer relative to the radar center was then calculated with the haversine formula [73]. To achieve
a good consistency, we selected five radar gates closest to the disdrometer coordinate and shift the
disdrometer data within ±5 min for each precipitating process, corresponding to the radar temporal
resolution of 4–6 min. The pairs of the radar data and disdrometer data with the highest correlation
were processed as a validation dataset for the DSD retrieval. In addition, the mean bias was deduced
from the radar measurements for each rain process.

Figure 11 illustrates the comparison between Dm and W obtained by IM and BA using real radar
data. It is noticeable that the Dm retrievals by IM concentrate on the range between 1.2 and 2.8 mm,
whereas there is a large variation for the retrievals by BA. The BA retrievals also show a lower bound
at around 0.01 g m−3; by contrast, the IM ones are less biased in this region. Furthermore, the statistics
in Table 4 indicate that IM achieves better agreement than BA in terms of MSE, MAE, RSE, and RAE,
but CCs for the two models are generally low. In addition, the W retrievals by IM and BA have a wide
spread when compared to the results of the simulated data, due to the measurement errors, noise, and
sampling problems.
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Table 4. Same as Table 3, but for real radar data.

MSE MAE RSE RAE CC

Dm (IM) 0.062 0.181 0.747 0.882 0.504
Dm (BA) 0.123 0.270 1.470 1.315 0.463
W (IM) 1.081 0.300 0.515 0.492 0.705
W (BA) 1.167 0.317 0.557 0.522 0.679
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It is also very important to evaluate the DSD moments obtained by the inverse model, since the
moments play an important role in the representation of the DSD. In this study, we compared the
zeroth, second, fourth, and sixth moments, which are commonly used in the DSD estimation [21,37,74].
Since the infinite zeroth-moment sometimes results from µ less than −1, an approximation method
has been used. We first calculated the drop concentration N(D) at each size bin using Equation (3),
and then integrated the moment concentration DnN(D). By using this approximation method, the
zeroth-moment can yield valid error statistics, while the second, fourth, and sixth moments remain
the values calculated by Equation (4). In addition, the Bayesian method has constructed the prior
probability with W and Dm, leading to invalid µ by solving the quadratic equation in Equation (7).
Therefore, the DSD moments calculated by the Bayesian retrievals are not presented here.

Figure 12 illustrates the comparison of the moments calculated by the disdrometer observations
and retrieved by the radar data. The red curve (reference) crosses the region of high intensity of the
blue dots (data) for the second, fourth, and sixth moments. However, the blue dots for the zeroth
moment tend to be biased toward the ordinate, leading to an overestimation.

The statistics in Table 5 provide quantitative assessment for the performance on the moment
estimation. In general, for RMSE, MAE, RRSE, and CC, the second and fourth moments yield better
results when compared to the zero and sixth moments, since the inverse model is optimized by W,
which is proportional to the third-order moment. By contrast, RAE is constantly reducing as the order
increases. In addition, the RMSEs and MAEs of the zeroth and sixth moment are much larger than the
others, due to the significance of its magnitude.
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Table 5. Root mean square error (RMSE), mean absolute error (MAE), root relative square error (RRSE),
relative absolute error (RAE), and correlation coefficient (CC) for the zeroth, second, fourth, and sixth
moments, respectively.

RMSE MAE RRSE RAE CC

Zeroth 14,373.8 4602.5 1.233 0.986 0.651
Second 2453.2 660.7 0.746 0.497 0.696
Fourth 2469.1 734.6 0.721 0.480 0.714
Sixth 16,391.1 3800.8 0.855 0.455 0.659

5.3. Rainfall Rate Estimation

The rainfall rate estimation is one of the most important applications of polarimetric weather
radar [75]. Since the rainfall rate in Equation (18) is related to DSD, a physical relationship between the
polarimetric variables and rainfall rate exists. For rainfalls at the experiment site, the curves of Zh and
R in a logarithmic scale present a linear shape, and therefore, yield an empirical relation as

R(Zh) = 0.017Z0.714
h . (44)

By applying Zdr to the Z-R relation, the performance of the rainfall rate estimation is improved, as
demonstrated in the JPOLE field experiment [76]. The dual-polarization algorithm is expressed as

R(Zh, Zdr) = 0.0142Z0.770
h Z−1.67

dr (45)

In this study, we compared the rainfall rate of the inverse model (IM) calculated by Equation (18)
with that of the existing algorithms R(Zh) in Equation (44) and R(Zh, Zdr) in Equation (45).

Figure 13 illustrates the time series of the radar measurements of a convective case that occurred
between 0614 and 1519 UTC on 8 June 2014. The precipitating system arrived at the location of
the disdrometer at the mature stage, with a maximum reflectivity of 51.5 dBZ. As it propagated
eastward, the system gradually decayed and reached an average of 25 dBZ between 1200 and 1500 UTC.
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Furthermore, there was a large variation in the time series of the polarimetric variables Zdr and Kdp
between 0800 and 0930 UTC, associated with the DSD variability during the mature stage. The two
variables then remained steady at around 0.5 dB and 0 deg km−1, respectively, as the system became
stratiform rainfall.Remote Sens. 2018, 10, x FOR PEER REVIEW  20 of 25 
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Figure 13. Time-series data of the polarimetric variables: (a) Zh (dBZ); (b) Zdr (dB); and (c) Kdp

(deg km−1). The data were collected between 0614 and 1519 UTC on 8 June 2014. The blue curve
indicates disdrometer observations, and the red dots are the radar measurements.

Figure 14 shows the results of rainfall rate estimation by IM, R(Zh), and R(Zh, Zdr). In general,
the three retrievals well match the disdrometer observations with the correlation coefficient of 0.931,
0.932, and 0.937, respectively, while the MSE of IM is 95.2, about half that of R(Zh) and R(Zh, Zdr).
However, all three algorithms tend to give an underestimation of the rainfall rate at the mature stage
between 0800 and 0900 UTC. It is more evident from the one-hour rain accumulation (R1h), as shown
in Figure 15. When R1h reaches its maximum at the third hour of the precipitating process, the bias
(relative error) of IM is 1.63 mm (4.5%), comparing to 6.62 mm (18.2%) for R(Zh) and 11.69 mm (32.2%)
for R(Zh, Zdr). It can be concluded that the inverse model gives some advantages over the power-law
relations, particularly for the periods with high DSD variability.
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6. Summary and Conclusions

In this paper, an inverse model for raindrop size distribution (DSD) retrieval has been designed
and validated using observations from polarimetric radar and a two-dimensional video disdrometer.

First, the polarimetric variables, Zh, Zdr, and Kdp, were calculated via the T-matrix method to
study the combined effects of the DSD and scattering properties of raindrops. Subsequently, a forward
operator was obtained for each polarimetric variable by performing simulations for monodisperse
raindrops under assumptions of ambient temperature, radar frequency, drop shape, and orientation.
To yield an explicit form for the forward operator, the high-order polynomial approximation was
utilized and optimized according to the mean square error test. The forward operator was then applied
to assumed DSDs to generate a pseudo training dataset used by the inverse model. In addition, an
empirical relation between the shape parameter µ and the slope parameter Λ was used as an additional
constraint to reduce the effect of instability in the forward operator when the maximum diameter was
taken into account.

Secondly, a non-parametric estimator based on the nearest-neighborhood method was developed
to map the polarimetric variables to DSD parameters. Since the input variables were on different
scales, a normalization procedure was introduced to produce a zero-mean and unity-variance data
matrix. The inverse model was then trained with regard to the mass-weighted mean diameter
(Dm) and liquid water content (W), since these two microphysical quantities were important for
the representation of DSD. Moreover, the characteristics of measurement errors of the polarimetric
variables were investigated, leading to the conclusion that the error thresholds for Zh, Zdr, and Kdp are
0.2 dB, 0.1 dB, and 0.01 deg km−1, respectively.

Finally, the inverse model was validated by ten-year disdrometer data, and five-year joint
observations from polarimetric radar. The results were also compared to an existing algorithm
called a Bayesian approach. When the inverse model was applied to the simulated data, it generally
yielded better agreement with the disdrometer observations when compared to the Bayesian approach.
For real radar data, both the inverse model and Bayesian approach produced DSD retrievals with
large uncertainties due to the measurement errors, noise, and sampling problems of the instruments.
However, the inverse model still resulted in better DSD retrievals than the Bayesian approach in terms
of mean square error, mean absolute error, relative square error, relative absolute error, and correlation
coefficient. To make an operational use, the rainfall rate derived from the inverse model was compared
to the power-law relations R(Zh) and R(Zh, Zdr), showing that the inverse model can improve rainfall
rate estimation, particularly for the rainfall regimes with highly varied DSDs.
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The inverse model may be extended to other DSD models, such as normalized Gamma model in
Equation (5) and generalized Gamma model in Equation (10). In the normalized Gamma model, the
normalized intercept is independent from the shape parameter µ in Equation (6), thus the retrieval
procedure is equivalent to the ones proposed in this paper. In the generalized Gamma model, the
moments play a key role in calculations of Zdr and Kdp/Zh via Equation (12). An inverse mode is then
constructed to retrieve the moments within the generalized Gamma model.

The X-band radar has attracted increasing attentions in recent years, due to its low-cost, fine
resolution, and high sensitivity to light rain. The inverse model may be adapted to the X-band
frequency by considering three variables as a result of Mie effects, namely, specific attenuation (AH),
differential attenuation (ADP), and differential phase shifts upon scattering (δb). Therefore, we can
simultaneously obtain the rain-path attenuation correction and raindrop size distribution retrieval by
using an iterative approach. Some pioneer work for X-band radars can be found in [19,20,77,78].

In the future, we will also apply the inverse model to the radar observations in the complex
terrain [79]. With the intervention of the surface topography, the precipitation near the surface cannot
be observed, giving a significant challenge on the DSD retrieval as well as rainfall rate estimation.
Furthermore, we will investigate the rain characteristics in a tropical regime [72], with the DSD
parameters derived by the inverse model.
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