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Abstract: Crop yield estimation at a regional scale over a long period of time is of great significance to
food security. In past decades, the integration of remote sensing observations and crop growth models
has been recognized as a promising approach for crop growth monitoring and yield estimation.
Optical remote sensing data are susceptible to cloud and rain, while synthetic aperture radar (SAR)
can penetrate through clouds and has all-weather capabilities. This allows for more reliable and
consistent crop monitoring and yield estimation in terms of radar sensor data. The aim of this
study is to improve the accuracy for winter wheat yield estimation by assimilating time series soil
moisture images, which are retrieved by a water cloud model using SAR and optical data as input,
into the crop model. In this study, SAR images were acquired by C-band SAR sensors boarded on
Sentinel-1 satellites and optical images were obtained from a Sentinel-2 multi-spectral instrument
(MSI) for Hengshui city of Hebei province in China. Remote sensing data and ground data were all
collected during the main growing season of winter wheat. Both the normalized difference vegetation
index (NDVI), derived from Sentinel-2, and backscattering coefficients and polarimetric indicators,
computed from Sentinel-1, were used in the water cloud model to derive time series soil moisture
(SM) images. To improve the prediction of crop yields at the field scale, we incorporated remotely
sensed soil moisture into the World Food Studies (WOFOST) model using the Ensemble Kalman Filter
(EnKF) algorithm. In general, the trend of soil moisture inversion was consistent with the ground
measurements, with the coefficient of determination (R2) equal to 0.45, 0.53, and 0.49, respectively,
and RMSE was 9.16%, 7.43%, and 8.53%, respectively, for three observation dates. The winter wheat
yield estimation results showed that the assimilation of remotely sensed soil moisture improved the
correlation of observed and simulated yields (R2 = 0.35; RMSE =934 kg/ha) compared to the situation
without data assimilation (R2 = 0.21; RMSE = 1330 kg/ha). Consequently, the results of this study
demonstrated the potential and usefulness of assimilating SM retrieved from both Sentinel-1 C-band
SAR and Sentinel-2 MSI optical remote sensing data into WOFOST model for winter wheat yield
estimation and could also provide a reference for crop yield estimation with data assimilation for
other crop types.
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1. Introduction

Food production and security have drawn the attention of scientific communities around the
world. Crop growth simulation and yield monitoring are essential to inform and develop national
food security policies and production management strategies [1,2]. Climate change, environmental
pollution, water scarcity, and change of cultivated land quality have serious effects on crop production [3].
Therefore, timely and accurate information on regional crop growth and yield is of great significance
for food security and the sustainable development of agriculture.

Traditional crop yield estimation mainly includes three methods, as follows: Statistical survey,
agronomy prediction, and the agrometeorological forecast method. Due to their inherent limitations,
it is difficult for these methods to achieve high precision estimations of regional crop yields [4]. The crop
growth model is a process-oriented and machine-based dynamic model, which has been successfully
applied to yield estimation at the field scale, but is not applicable for regional yield estimation. As a near
real time technology, remote sensing can provide crop and soil parameters at a large scale and at lower
costs than the survey method [5], though it is not as mechanistic as the crop model. Data assimilation
is a method that optimally combines crop growth models with remote sensing observations, providing
an effective way to improve crop yield estimation at regional scales and it is recognized as the most
promising approach for crop growth monitoring and yield estimation [1,6,7].

Remotely sensed data derived from both active and passive sensors are utilized to observe the crop,
providing precise and timely information on the phenological status and development of vegetation
to monitor crop growth [8]. As an important state variable, soil moisture provides linkage to the
soil, atmosphere, and plant, and plays a significant role in hydrological, ecological, and biological
processes [9,10]. With the development of remote sensing technologies, soil moisture monitoring at
different spatial and temporal scales has become possible [11,12]. Surface roughness and vegetation
variables are the two main factors influencing soil moisture retrievals on the basis of SAR (synthetic
aperture radar) observations [13]. To overcome the difficulty of obtaining the multiple scattering
between soil and vegetation in vegetated areas, many widely used vegetation scattering models have
been proposed. These models, which can retrieve soil moisture in vegetation covered areas, include
the Tor Vergata model [14], the Michigan microwave canopy scattering (MIMICS) model [15], and the
water cloud model [16].

The potential of the water cloud model for correcting the vegetation effect in various types of
terrain has been previously demonstrated [17–21]. Previous studies have shown that the biophysical
parameters needed for the water cloud model to represent the scattering properties of vegetation can
be estimated from optical remote sensing data [22]. Additionally, the complementary information
from SAR and the optical data provide the possibility to retrieve soil moisture with a high level of
accuracy [23,24]. Several studies have focused on combining optical and remotely sensed SAR data for
soil moisture inversion. Bai et al. combined C-band Radarsat-2 and Landsat-8 OLI (Operational Land
Imager) data to estimate the soil moisture in prairie areas [10], while Tao et al. developed a modified
vegetation backscattering model to retrieve vegetation covered soil moisture based on RADARSAT-2,
GF-1, and ground observations [13], and the results were promising. Thus, in this study, we jointly
used Sentinel-1 C-band SAR data and Sentinel-2 MSI optical data to retrieve soil moisture by using the
water cloud model.

Remote sensing of soil moisture is potentially useful for sequential data assimilation, because
it has an obvious influence on crop growth and especially on crop yields. The spatial and temporal
coverage of satellite soil moisture allows for data assimilation for crop yield estimation at a regional
scale. In the field of crop model applications, several previous studies have used soil moisture as
a state variable in crop model data assimilation systems for crop yield estimations. De Wit and
Van Diepen utilized the Ensemble Kalman filter (EnKF) method to assimilate soil moisture, derived
from a microwave sensor, into the WOFOST (World Food Studies) crop model and the conclusion
indicated that the assimilation of soil moisture into the crop growth model has a beneficial effect on
the overall performance of the yield forecasting system [4]. Ines et al. jointly assimilated the leaf
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area index (LAI) and soil moisture into the CERES-Maize model with the EnKF algorithm and the
results showed that yield estimation was improved substantially [25]. Chakrabarti et al. assimilated
SMOS (Soil Moisture and Ocean Salinity) soil moisture into the DSSAT (Decision Support System for
Agrotechnology Transfer) model to investigate the effects of agricultural drought on crop yield using
the EnKF technique. They found that the assimilated crop yield was improved during the growing
season [26]. However, the soil moisture data used in previous studies were mostly retrieved from SAR
data only or with a coarse spatial resolution (e.g., SMOS soil moisture data at 25 km). Thus, we would
like to assess the ability of assimilating soil moisture at 10 m scale, retrieved from SAR and optical data
together, into the crop model to improve crop yield estimation.

The objectives of this study are twofold, as follows: (1) To evaluate the performance of combining
SAR and optical remotely sensed data in the water cloud model for soil moisture inversion; and (2) to
assess the accuracy of winter wheat yield estimation by assimilating the retrieved soil moisture into
the WOFOST model with the EnKF method. Based on multi-source observations (optical and SAR
remotely sensed data, in situ data, and meteorological data), we developed an assimilation framework
for time series soil moisture images into the WOFOST model to improve its accuracy for winter wheat
yield estimation at a regional scale. The study area and four major datasets are presented in Section 2
and this section also introduces the water cloud model, the WOFOST model, and the EnKF assimilation
algorithm in detail. The results Section 3 is divided into three parts, with (1) the water cloud model
soil moisture retrieval results, (2) the simulation of soil moisture with the WOFOST model and (3)
the assimilation of soil moisture into the WOFOST model with the EnKF method. Uncertainties and
perspectives of this study are described in Section 4 and the conclusion is given in Section 5.

2. Materials and Methods

2.1. Study Area

This study was implemented in a planted area dominated by winter wheat, in Hengshui city of
the southern Hebei province, China (Figure 1). It extends from 37◦03′ N to 38◦23′ N and 115◦10′ E
to 116◦34′ E, covering 8815 km2 in total and consisting of 11 counties. The study area is a temperate
continental monsoon climate, with the average temperature ranging from 9 °C to 15 °C, and an average
annual rainfall ranging from 400 mm to 800 mm. The crop rotation of winter wheat and summer maize
is the main crop planting system in this area [27,28]. Winter wheat is generally planted in October in
the first year and matured in June in the second year. The key phenological stages of winter wheat
in this area are the wintering stage before February, the green-up stage in early March, the jointing
stage before early April, the heading stage from late April to early May, the grain filling stage before
late May, and milk-maturity in early June [29].The climate is seasonally variable, with only 25% of
the precipitation occurring from October to May during winter wheat growing season and about 75%
occurring in June to September during the maize growing season (Data source: China Meteorological
Administration, http://www.cma.gov.cn/). Water is a major limiting factor for winter wheat growth in
this area.

2.2. Data

Four major datasets were used in this study, as follows: WOFOST model input data, optical
remote sensing data, SAR remote sensing data, and field measured data (soil moisture and winter
wheat yield).

The WOFOST model input data includes crop parameters, soil parameters, and meteorological
data. Some parameters of the crop and soil were calculated from the field measurements (e.g., day of
emergence (IDEM), initial total crop dry weight (TDWI), and cumulative temperature from emergence
to anthesis and from anthesis to maturity ((TSUM1/TSUM2) et al.). Others were derived from the
references or default value in the WOFOST model. Ma et al. and Huang et al. provide details
of the sources of the different parameters [30,31]. The meteorological data were obtained from the
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China Meteorological Administration, (http://www.cma.gov.cn/), which includes daily maximum
and minimum temperatures, solar radiation, wind speed, actual vapor pressure, and precipitation.
The meteorological parameters were interpolated into raster data at 10 m resolution. Each winter
wheat assimilation grid has its own meteorological data files.
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Three Sentinel-1A images were acquired during field experiment dates (Figure 2). The two-satellite
Sentinel-1 constellation carries a SAR instrument at C-band and has been designed to address medium-
and high-resolution applications. The Interferometric Wideswath (IW) mode is the pre-defined
acquisition mode over land. This mode provides dual-polarization (VV and VH) imagery at a
resolution of 10 m, with a swath of 250 km (https://scihub.esa.int) [8,21]. In this study, we used
Level-1 single look complex (SLC) data. Data pre-processing, which includes thermal noise removal,
calibration, multi-look, speckle filter, and terrain correction, was accomplished using SNAP to obtain
the σ0 backscatter coefficient.

For the field experiment data, we selected 2 sites in each county (Figure 1) throughout the study
area and monitored the winter wheat growing conditions from March to June in 2017. Each site
had five 1 m × 1 m sampling points in an area of 100 m × 100 m. Field experiment dates (Figure 2)
were selected during the three main growing seasons of winter wheat (jointing stage, heading stage,
and milk-maturity stage). In the field experiment, winter wheat LAI was measured using an LAI-2000
Plant Canopy Analyzer and the soil moisture was measured using a FieldScout TDR 300 Soil Moisture
Meter to collect soil moisture data at a depth of 0–10 cm. Winter wheat yields were measured by
on-site sampling. First, we collected the grain from 1 m2 at each sample plot. Second, they were heated
to collect the dry weight. Finally, winter wheat yields were calculated as the weight per area of the
sample plot in kg/ha.

2.3. Water Cloud Model

Agricultural regions are a combination of vegetation and bare soil and the information obtained
from optical or radar remote sensing images is influenced by both components. The water cloud model
is based on the semi empirical model established by the theory of microwave remote sensing radiation
transmission. This model considers that the signal received by the radar sensor is composed of soil and
vegetation and their mutual scattering [17]. It was initially proposed by Attema and Ulaby [16] and
there are multiple ways of implementing the model [33]. Xu’s version was used in this study, can be
described with the Formulas (1)–(3) [34].

σ0
pq = σ0

veg + σ0
soil, (1)

where σ0
veg and σ0

soil represent the part of overall backscatter coefficient, σ0
pq, from vegetation and soil,

respectively. The values p and q represent different polarizations of radar.

σ0
veg = A ∗Veg ∗ cosθ(1− exp(−2 ∗ B ∗Veg ∗ secθ)), (2)

σ0
soil = σ0

pq_soil∗ exp(−2 ∗ B ∗Veg ∗ secθ), (3)

where Veg represents crop related parameters (in this study, we used NDVI calculated from optical
data), θ represents the detection angle of radar, and A and B represent the vegetation parameters.
The value σ0

pq_soil represents the initial backscatter from the soil and we assumed that it has linear
relationship with soil moisture in this study.

σ0
pqsoil

= C ∗ SM + D, (4)

where C and D are soil parameters. Combined with the above formula, we can get the formula of
soil moisture.

SM =

(
σ0

pq−A∗Veg∗cosθ(1−exp(−2∗B∗Veg∗secθ))
exp(−2∗B∗Veg∗secθ)

)
−D

C
. (5)

In this study, we used field measured soil moisture as a model input parameter, combined with
backscattering and vegetation information, to train the model. As can be seen in Equation (5), we used

https://scihub.esa.int
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field measured soil moisture data to represent SM and NDVI retrieved from Sentinel-2 to represent
Veg and σ0

pq and θ came from Sentinel-1 backscattering coefficient and the Sentinel-1 incidence angle,
respectively. We have 110 field experimental sites, half of which were used for training the water cloud
model and half for validating the soil moisture retrieval accuracy. Thus, we will have 55 equations
with the form of Equation (5) and A, B, C, and D are vegetation and soil parameters to be determined.
These are multivariate non-linear overdetermined systems of equations and we solved the equations
using MATLAB software.

2.4. WOFOST Model

The WOFOST model, developed by the Wageningen University and Research Center (Wageningen,
the Netherlands), is a mechanistic model for analyzing the interactions among soil, water,
the atmosphere, and plants [35,36]. The model’s outputs are directly usable for crop-specific yield
estimation and can provide estimates of biomass and grain yield at a daily time step for different crop
types [1]. The WOFOST model can be run in potential mode, water-limited mode, and nutrient-limited
mode. Soil moisture is an important crop growth parameter and is estimated from forcing data
and soil properties in the WOFOST model. Therefore, SM was adopted as the state variable in the
data-assimilation procedure in this study.

We used the water-limited mode of WOFOST model in our research and assumed that the
simulation of the soil water balance is performed for freely draining soils. The core of the crop model
calibration is fitting the simulated values with the observed data [37]. Our previous studies have
described the parameterization and calibration of the WOFOST model in detail [30,31]. Here, we briefly
show the main soil and crop parameters (Tables S1 and S2), which are of great importance to the
water-limited mode. Each winter wheat pixel was considered as an assimilation grid. Each assimilation
grid has its own unique folder, which contains a soil parameter file, a crop parameter file, and a
meteorological parameter file. We used the Chinese soil database (http://www.soil.csdb.cn) and
followed the Saxton and Rawls method to derive soil moisture content at the wilting point (SMW),
in saturated soil (SM0), and at field capacity (SMFCF) [38]. Other soil parameters were used as the
default value in WOFOST. As for crop parameters, different assimilation grids have different values
of IDEM, TSUM1, and TSUM2, and the remaining parameters are the same. The meteorological
parameters are extracted from 10 m meteorological images interpolated from meteorological stations
(Section 2.2).

2.5. The Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is an optimal recursive data assimilation method introduced
by Evensen [39]. There are several different versions of the EnKF. In this work, we used the EnKF of
Burgers et al. [40]. Therefore, the observations also needed to be treated as random variables and it is
commonly assumed that observation errors have a Gaussian distribution.

The EnKF performs model forecasting where the model responses (state variables) are propagated
forward in time based on the model dynamics and a filter update in which the ensemble of the model
state is adjusted through incorporating available observations [30,41,42]. The EnKF can be considered
as an approximate version of the Kalman Filter, in which the state uncertainty is represented by the
ensemble spread [43]. If we assume that observations are related to the true data xt,

y = Hxt + ε, (6)

xt = Axt−1 + ν, (7)

where y is the observation vector, ε and ν are Gaussian random error vectors with a mean of zero, H is
the observation operator that relates to y, A represents a linear state-transition model that links xt and
xt−1, and in the crop model data assimilation system it represents the crop model. The forecast of xt at t

http://www.soil.csdb.cn
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= k is Gaussian, mean, x f
t=k, and error covariance, P f

t=k, can be calculated as Equations (8)–(9), and yt=k
is observation vector at t = k, as follows:

xa
t=k = x f

t=k + K
(
yt=k −Hx f

t=k

)
, (8)

Pa
t=k = (I −KH)P f

t=k, (9)

where f and a are indices of the prior and posterior estimates, respectively, I is the identity matrix,
and K is the Kalman gain matrix, defined as Equation (10), where Rt=k is the error covariance of the
observation ensemble.

K = P f
t=kHT

(
HP f

t=kHT + Rt=k
)−1

. (10)

The EnKF forecast and analysis error covariance come directly from an ensemble of model
simulations, as follows:

P f HT = (Ne − 1)−1
Ne∑

n=1

(x f
n − x f )(Hx f

n −Hx f )
T

, (11)

where Ne is the number of ensemble members, n is a running index for ensemble member, and x f

represents the ensemble mean, calculated as Equation (12). The observation data should be perturbed
and the variance used in the perturbation is based on the uncertainty of the observation data.

x f = N−1
e

∑Ne

n=1
x f

n. (12)

In this study, the soil moisture retrieved by the water cloud model was the only state variable
that was directly assimilated into the WOFOST model. So, H can be taken as an identity matrix
and the optimal estimation of state variable xt at the time k (Equation (8)). The Kalman gain matrix
(Equation (10)) and the EnKF forecast and analysis error covariance (Equation (11)) can be rewritten as
Equations (13)–(15).

xa
t=k = x f

t=k + K(yt=k − x f
t=k), (13)

K = P f
t=k

(
P f

t=k + Rt=k
)−1

, (14)

P f = (Ne − 1)−1
Ne∑

n=1

(x f
n − x f )(x f

n − x f )
T

. (15)

The uncertainties of the crop model parameters and the remotely sensed observations are an
important part of the EnKF assimilation system. There are two common ways to account for model
uncertainty in the EnKF assimilation system. One is adding a Gaussian perturbation to the model output
state variables. Another is to perturb model input parameters to generate ensemble members. In this
study, we used the first method and an uncertainty level of 10% was introduced to WOFOST model
output soil moisture and perturbed using a Gaussian distribution [25]. Additionally, the uncertainty of
remotely sensed soil moisture was set to 7%. So, when the WOFOST model starts at the emergence
date, WOFOST output soil moisture was perturbed by the method showed above to generate 50 model
ensemble members {MSM1, MSM2, . . . MSM50}. When the observed soil moisture is available at the
time k, the 50 observation ensemble members {OSM1, OSM2, . . . OSM50} were also generated by adding
perturbation to observed soil moisture. Finally, we can calculate the model and observation error
covariance based on the ensemble members and then follow Equations (14) and (13) to calculate the
Kalman gain and analysis vector, xa

t=k, at the time k. We considered the mean value of xa
t=k as the

optimal estimation of soil moisture at the time k.
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2.6. Crop Modeling-Data Assimilation Framework

Figure 3 provides an overall framework for the process of assimilating remotely sensed SM,
retrieved by the water cloud model, into the WOFOST model to estimate the regional winter wheat
yield with the EnKF algorithm. First, we ran the WOFOST model with the calibrated crop and
soil parameters and meteorological data. Meanwhile, we set the ensemble members (in our case,
the ensemble number was set as 50) for the output soil moisture (MSM1−MSMn) from the WOFOST
model. Second, Processed Sentinel-1, Sentinel-2, and field measured data are used in the water
cloud model to retrieve remotely sensed soil moisture, which are treated as the observation soil
moisture (OSM1−OSMn). Third, the EnKF assimilation algorithm will be run at the date when a
new observation soil moisture (OSM1−OSMn) becomes available and will generate the optimized soil
moisture (SM1−SMn) data set. Finally, the optimum soil moisture is input into WOFOST model to
simulate winter wheat yield, which will be validated by ground measured yield.

 

 

Figure 3. Flowchart for the winter wheat yield estimation using the EnKF-based assimilation 
algorithm. 
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3. Results

3.1. Spatial-Temporal Dynamics of Soil Moisture from Inversion of the Water Cloud Model

In this study, soil moisture content, based on field measurements, was used to calibrate the water
cloud model parameters. The values of parameters A, B, C, and D are shown in Table 1. It is noteworthy
that, in the water cloud model, the value of the polarization of VV from Sentinel-1 represents the σ0

pq,
while Veg is replaced by NDVI calculated from Sentinel-2.

Table 1. Parameter values used in the water cloud model for the study area.

Date A B C D

1 April −7.12 −1.56 0.02 −5.71
7 May −1.28 −2.83 0.0015 −0.91
1 June −23.37 −3.57 0.06 −6.84
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Soil moisture maps retrieved from the water cloud model from three dates and the retrieved soil
moisture content of 22 measured sites over the three dates are shown in Figure 4, respectively. From
both figures, we can see that the soil moisture is relatively higher on 1 April and 7 May than 1 June in
most areas. Soil moisture in most areas was more than 20% on 1 April and 7 May, while soil moisture
was mostly less than 20%, or even less than 10%, on 1 June. This is primarily due to the different
irrigation on different dates. Based on our field experiment, we found that the farmers in this area
usually irrigate the winter wheat 2–4 times during the whole growing season and the irrigation dates
are mainly concentrated in the jointing stage, the heading stage, and the grain filling stage, which are
generally from early March to mid-May, while 1 April and 7 May generally belong to the jointing
stage and heading stage, respectively. Figure 5 shows the validation of the water cloud model soil
moisture inversion results. The validation of 7 May has the best precision among the three dates,
followed by 1 June and 1 April, and the R2 is 0.53, 0.49, and 0.45, respectively. RMSE is 7.43%, 8.53%,
and 9.16%, respectively. In general, the trend of soil moisture inversion is consistent with the ground
measurements. Usually, the accuracy of soil moisture retrieval should be higher with less vegetation,
due to less disturbance of the vegetation. However, the precision of the soil moisture retrieved with
the water cloud model on 1 April is not the best among the three periods. We think that there are two
possible reasons. The first is the effect of vegetation. We can see from Figure 2 that the study area was
at the jointing stage of winter wheat on 1 April. We found that the plant height of winter wheat was
approximate 17–33 cm, LAI ranged from 0.7–2.0 m2/m2, and the vegetation coverage was higher than
75% when we performed the field experiments. We think the vegetation influence of this period is not
much different from the other two periods. Second is the impact of irrigation. From the end of March
to early April in Hengshui city is a common irrigation period and the irrigation has a certain impact on
the accuracy of field measurements, which brings errors to the retrieval and validation of soil moisture.

3.2. Simulation of Soil Moisture with the Water-Limited Mode of the WOFOST Model

For the consideration of irrigation, Wang’s strategy that treats irrigation as a part of precipitation
with a direct input into WOFOST model was used in our study [44]. We assumed that the study area
is irrigated three times in DOY (day of year) 95, 110, and 130. The amount of irrigation was set to
100 mm, 60 mm, and 80 mm in DOY 95, 110, and 130, respectively. Moreover, if the SM is greater than
95% of SMFCF (soil moisture field capacity) on irrigation day, irrigation will not proceed. As shown
in Figure 6, the green solid line represents the SM curve simulated by the WOFOST model without
irrigation. We can see that after 28 February the SM curve dropped quickly and the soil moisture
content had almost approached the wilting point since 19 April. So, winter wheat will suffer from
water stress if there is no irrigation during the last 2–3 months of the growing season. This period
covers the jointing stage and the grain filling stage, which proved to be a period of greater water
requirement for winter wheat [45]. After we added the irrigation artificially for three dates on 30
March, 20 April, and 12 May, we could see an obvious increase of the SM curve, shown by the blue
solid line (Figure 6). This effectively alleviates the reduction in biomass caused by water stress.

3.3. Assimilation of Soil Moisture with the WOFOST Model Using the EnKF algorithm

The EnKF assimilation method was implemented for the 10 m grid cells with winter wheat pixels.
The winter wheat yield was validated at the 110 field experiment plots. In this study, an ensemble of
50 members was adopted for the simulations of winter wheat yield in the water-limited mode.
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From the assimilation strategy (Figure 3) we know that the soil moisture retrieved from the water
cloud model will be assimilated into WOFOST model when the observation is available. As can be seen
in Figure 6, the gray solid line encircled by three red circles represents the results of EnKF assimilation
and the soil moisture content increased after data assimilation. Figure 7 shows the comparison results
of the regional winter wheat yield estimation, with and without EnKF assimilation. The spatial
difference of the winter wheat yield map without assimilation is not obvious and most of the estimated
yields were around 6500 to 6800 kg/ha. As for the result with EnKF assimilation, more realistic
spatial variability throughout the study area was observed. The yield estimation ranged from 5900 to
7700 kg/ha. Generally, the northern part of Hengshui city showed lower winter wheat yield estimation
values, while the central and southern part generally had a relatively higher yield estimation. This is
likely due to the differences in temperature, solar radiation, and agronomy activities [31]. In Figure 8,
the WOFOST simulation without SM assimilation could not estimate the winter wheat yield well,
with R2 of 0.21 and RMSE equal to 1330 kg/ha. The winter wheat yield estimation accuracy with EnKF
assimilation was improved, with a higher coefficient of determination (R2 = 0.35) and a much lower
RMSE (RMSE = 934 kg/ha). Overall, the correlation of the assimilated winter wheat yield is higher
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than that without assimilation, although the error of the yield estimation results with assimilation is
not negligible (RMSE = 934 kg/ha).
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and (c) 1 June. Note: 55 sample points were used for validation. 
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4. Discussion

The valuable information obtained from optical and SAR remotely sensed data allows us to
evaluate the combined ability of the two sources of data by assimilating them into the crop growth
model. We considered that there are two strategies to assimilate optical and SAR remotely-sensed data
into the crop model. One strategy is to retrieve state variables from the optical data and SAR data
individually and then assimilate these parameters into the crop model on the date of observation [46–48].
The advantage of this method is that the two data sources can complement each other at a temporal
scale. Another strategy, which was adopted in this study, is to combine the two data sources to retrieve
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state variables (e.g., soil moisture) through a mechanism model and then assimilate the retrieved
parameters into the crop model. An important issue for this strategy is the time consistency of the
two data sources. For this study, we assumed that the NDVI will not change dramatically in a short
time. In this paper, the SM was assimilated into the WOFOST model as a state variable using the EnKF
assimilation algorithm to estimate the winter wheat yield at a regional scale. The SM images were
retrieved by the water cloud model using Sentinel-1 C-band SAR data and Sentinel-2 MSI optical data.

4.1. Uncertainties of this Study

Soil moisture variability is the main driver of crop yield variability and accurate estimates of soil
moisture are important for understanding crop status and estimating crop yields [26,49,50]. Our soil
moisture retrieval results showed that the accuracy of three SM images was acceptable and the
maximum R2 was 0.53 and minimum RMSE was 7.43%. However, large magnitude soil moisture
error can bring a large uncertainty to crop models. The soil moisture retrieval error comes from both
field measurements and the characteristics of the satellite data. It has been found that VV polarized
radiation, which was used in this study, is effective for monitoring early vegetation, whereas it will
cause more errors during the later stages of crop development [51].

In our analysis, the accuracy of the winter wheat yield estimation was improved by the EnKF
assimilation method. The R2 increased from 0.21 to 0.35 and RMSE decreased from 1330 kg/ha to
934 kg/ha and more realistic spatial differences throughout the study area were shown. This indicates
the potential of crop yield estimation by combining the WOFOST model and the water cloud model,
which jointly used the Sentinel-1 C-band SAR data and Sentinel-2 MSI optical data. However, compared
with our previous study about assimilating time series LAI into the WOFOST model using the EnKF
method (R2 = 0.43, RMSE = 439 kg/ha) [1], this study still has a relatively high error (RMSE = 934 kg/ha).
The main reasons for the errors are likely from the following points: First, the uncertainty of soil
moisture retrieved from the water cloud model is a main source of error. About 7% error for soil
moisture is slightly high, because the field capacity of the soil and the wilting point of the crop are
around 0.30 m3/m3 and 0.07 m3/m3 in this study area, respectively. Second, the yield breakdown rate,
which will cause overestimation of the field measured winter wheat yield, was not considered when
calculating the field measured yield. Third, the amount of observation data (there are only three dates
of SM images on April 1st, May 7th, and June 1st) was very limited for the crop model to conduct data
assimilation. Sufficient observations during the crop growth period are of great importance for data
assimilation to improve crop yield estimation. It is proven that the data assimilation algorithm is
sensitive to sampling size and update frequency [44] and the EnKF method is limited by the finite
ensemble size, which will bring sampling error into the background covariance [52,53]. Fourth, the soil
moisture in WOFOST model is an average quantity, which is obtained by dividing the total water
content of the root zone by the root length. In this study, we only used the 0–10 cm soil moisture data
in the water cloud model. Thus, it is better to use soil moisture data at different depths.

4.2. Future Work

In summary, there are still several limitations of this study, although it has been proven to have
potential for winter wheat yield estimation at the regional scale. We have summed up three points to
help improve the assimilation framework in the future. Firstly, as a semi empirical model, the accuracy
of the water cloud model strongly relies on in situ measurements, which causes errors and is difficult to
extend to a large regional scale. A more mechanistic model can be imported to replace the water cloud
model (e.g., Michigan Microwave Canopy Scattering (MIMICS)). Secondly, owing to the deficiency of
the WOFOST model in the irrigation module [4,44], the irrigation and soil water balance only received
cursory attention in this study. A soil water atmosphere plant (SWAP) model with more complex soil
subroutines could be taken into account. The principal difference between the SWAP and WOFOST
models is in the soil water balance component calculations. The SWAP model will have a more accurate
modelling of the soil water balance [54]. Thirdly, this study was simulated at 10 m scale in Hengshui
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city, which has more than one million pixels. There is no doubt that this will increase the demand on
the computing power of computers if we want to run the model at a larger scale. As such, a higher
efficiency assimilation strategy needs to be considered to improve computing efficiency, for example
a cluster strategy on the grid can effectively improve the computing efficiency [55,56]. Therefore,
it would be interesting to try to achieve a better result using the aspects above.

5. Conclusions

In this study, the SM mapping retrieved from the water cloud model, using Sentinel-1 C-band SAR
data and Sentinel-2 MSI optical data, was assimilated into WOFOST model with the EnKF algorithm to
improve winter wheat yield estimation at a regional scale in Hengshui city. The following conclusions
can be drawn:

• First, SM retrieval results demonstrated that it is feasible to retrieve soil moisture content with the
water cloud model by combining remotely sensed Sentinel-1 and Sentinel-2 data. Results showed
an acceptable accuracy on three dates where R2 was 0.45, 0.53, and 0.49, respectively, and RMSE
was 9.16%, 7.43%, and 8.53%, respectively.

• Second, the assimilation results indicated that, with assimilation of the SM in the WOFOST
water-limited mode, the winter wheat yield estimation achieved a higher accuracy, with R2 = 0.35
and RMSE = 934 kg/ha, than that without assimilation, with R2 = 0.21 and RMSE = 1330 kg/ha.
Consequently, our results highlight the usefulness and ability of assimilating SM, which was
retrieved by combining Sentinel-1 C-band SAR and Sentinel-2 MSI optical data into the WOFOST
model to improve regional winter wheat yield estimations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/13/1618/s1,
Table S1: Values of soil parameters for WOFOST model; Table S2. Values of crop parameters for WOFOST model.
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