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Abstract: Targeted energy management and control is becoming an increasing concern in the building
sector. Automatic analyses of thermal data, which minimize the subjectivity of the assessment and
allow for large-scale inspections, are therefore of high interest. In this study, we propose an approach
for a supervised extraction of façade openings (windows and doors) from photogrammetric 3D
point clouds attributed to RGB and thermal infrared (TIR) information. The novelty of the proposed
approach is in the combination of thermal information with other available characteristics of data for a
classification performed directly in 3D space. Images acquired in visible and thermal infrared spectra
serve as input data for the camera pose estimation and the reconstruction of 3D scene geometry.
To investigate the relevance of different information types to the classification performance, a Random
Forest algorithm is applied to various sets of computed features. The best feature combination is
then used as an input for a Conditional Random Field that enables us to incorporate contextual
information and consider the interaction between the points. The evaluation executed on a per-point
level shows that the fusion of all available information types together with context consideration
allows us to extract objects with 90% completeness and 95% correctness. A respective assessment
executed on a per-object level shows 97% completeness and 88% accuracy.

Keywords: thermal infrared imagery; 3D point cloud; semantic classification; building façades

1. Introduction

Energy efficiency in buildings is a multifaceted topic that has gained great attention in the last
decade. Various national regulations have led to the creation of technical standards designed to
make energy consumption transparent and optimized. To execute the legislation resolutions, existing
buildings require inspections of their energy distribution. The most widely used technique for the
performance of energy studies in built-up areas is infrared thermography. The method detects the
infrared energy emitted from an object, converts it to temperature, and displays an intensity color-coded
image of temperature distribution. Thermal infrared (TIR) images enable us to visualize different
thermal faults such as air infiltrations or moisture areas and to detect damages to the building structure;
for example, cracks, delamination, or loose tiling. Depending on the final aim of energy auditing,
thermal data can be collected in an indoor environment [1,2] or by outdoor measurements including
airborne platforms [3] and close-range techniques [4]. A broad review of various infrared thermography
applications for building diagnostics is presented in Kylili et al. [5].

Established thermographic building inspection procedures are performed on-site by a human
operator. Such interpretation is not only time consuming, but also highly depends on the expertise of
the operator. Hence, the current trend in building energy audits has led to an automatic interpretation
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of TIR data, minimizing subjectivity of the assessment and allowing large-scale inspections. To provide
a spatial reference for thermal images and to facilitate their interpretation, thermal measurements
are often integrated with other data sources. The complementary geometric information often comes
from laser scanning [6,7], photogrammetric spectral imagery [8,9] or existing building models [10].
Meanwhile, sensor solutions are also now available that offer a laser scanner with integrated thermal
camera technology (Leica BLK360). It is worthy of note that there are also new, professional plug-on
modules in the market of thermal imaging devices to upgrade a smartphone to a low-cost infrared
camera (e.g., the FLIR ONE pro).

The georeferenced TIR images enable us to analyze thermal data, to extract corresponding
information, and to map them to the 3D space. Considering an understanding of an automatic façade
for energy saving, the literature focuses on the automatic detection of thermal leakages, windows,
and other structures, which is performed for 2D textures with a reference to the building. In Hoegner
and Stilla [11], heat leakages on building façades are detected using a region-growing algorithm applied
to a strong image gradient. The outcomes of the work show that the presence of windows and doors in
the analyzed image influences the automatic investigation of a façade state and leads to false results.
Since glass in thermal data reflects the temperature of the surroundings, the captured windows do not
present the real temperature of the façade but relate to the temperature of the sky and neighboring
objects. Therefore, an automatic classification of these façade objects and their removal from the input
data is of great importance for the reliable accuracy of the following thermal inspection. A procedure
for window detection in thermal texture images presented by Iwaszczuk et al. [12] starts with image
segmentation using local dynamic thresholds. Masked correlation for corner detection is then applied
in order to detect the position and the size of the extracted rectangular bounding box. To detect
windows and doors from rectified thermal images, the research described in Sirmacek et al. [13] used
L-shaped features and perceptual organization rules. When the detected objects are removed from
a wall, heat leakage areas on the investigated façade are marked by applying the region-growing
algorithm at local maximum values of the façade surface. In the work by Michaelsen et al. [14],
the authors present an attempt at window detection using gestalt grouping. For this purpose, structural
knowledge about façade objects, such as their hierarchy, geometry and mutual relations, is coded in a
declarative way using two different systems of production rules.

In the literature, the performance assessment of object detection methods that use TIR information
is mostly limited to visual evaluation. Numerical statistics for unsupervised window extraction from
thermal data are given in Lin et al. [15]. They show 85% correctness and 82% completeness, calculated
on a per-object level. Performance metrics are more often reported for façade opening detection from
laser scanning point clouds or RGB images. The method presented in Malihi et al. [16], applied to
photogrammetric point clouds, achieves 92% correctness and 96% completeness on a per-object level.
The automatic window detection in façade images described in Neuhausen et al. [17] reveals a 95%
detection rate with a precision of 97%, depending on the complexity of a building being processed.
A more precise assessment, performed at a smaller level—point or pixel-based—is usually given
during the semantic classification of façades. The pixel-based accuracy of window extraction achieved
by Markus et al. [18] is 78%, and Cohen et al. [19] achieved 85%. A deep learning approach for façade
parsing, described by Liu et al. [20], achieved 93% accuracy for the class window.

Although a thermal reconstruction of 3D scenes based on sensor fusion has already often been
discussed in the literature, the further automatic processing of thermal data is very seldom presented.
Moreover, the presented studies of thermal information analyses are performed on TIR textures in 2D
space by classical image processing algorithms. Only in the final step are detected objects back-projected
to the 3D space using previously provided 3D references. Consequently, the investigation procedures
neglect the geometric characteristics of the data and do not exploit the full potential of currently
available photogrammetric techniques. On the other hand, the existing algorithms for semantic
interpretations of 3D point clouds are mostly dedicated to laser scanning data and focus only on their
geometric features without taking into consideration any other possible information. To cover this gap,
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we present a new approach that brings the investigation of thermal data into the 3D space. The novel
part of the research is the combination of thermal information with other available characteristics of a
3D scene for a further thermal analysis executed directly on a 3D point cloud. The goal of this paper is
to investigate how spectral and geometric characteristics may support thermal analysis. Furthermore,
we aim to evaluate the utility of 3D thermal point clouds for object extraction. Since façade openings,
such as windows and doors, impede automatic thermal inspection, the aim of the presented façade
classification procedure is their prior detection. The performance of object extraction is compared and
evaluated according to the achieved classification accuracy, completeness, and visualization results.

The input data consist of two types of image sequences, acquired in the thermal infrared and
visible RGB spectrum. The Structure-from-Motion (SfM) technique is used on both image types to
estimate camera orientations and 3D scene geometry without any initial information. The resulting 3D
point cloud is attributed using geometric, RGB, and TIR information. The fusion of the different input
information sources offers the opportunity to capitalize on the synergies between them and to improve
the classification process. Therefore, the executed experiments are designed to investigate different
data combinations and their impact on the final results. In order to focus purely on feature influence
and label each point independently, we use a context-free supervised algorithm: the Random Forest.
The best feature combination is then used in the final part of the study as an input for Conditional
Random Fields that incorporate neighboring relations between points and their common interaction.
The data preparation was done using the commercial software tools Photoscan (3D point cloud
generation) and MeshLab (texture matching). For the classification algorithms, we developed our
own software.

The structure of this paper is as follows: we start with a description of the data acquisition and
the generation of TIR-attributed 3D point clouds. The next section addresses the methodology for the
investigation of the relevance of different information types for the classification performance. This is
followed by the explanation of an algorithmic frame applied for the contextual classification of thermal
façades. Then, a thorough evaluation of the approach is presented and discussed. The final section
summarizes conclusions and gives an outlook on future work.

2. Data Preparation

2.1. Data Acquisition

The test object in our study consists of two ensembles of complex building façades, located in
the old part of the city of Dresden (Germany). For each façade ensemble, we acquired two image
sequences, using thermal and RGB cameras. The captured façades are approximately 20 m height and
180 m length. Considering the small frame of the thermal camera and the narrow streets in front of
the façades that restrict viewing range, the images were taken at regular distance intervals, capturing
the bottom, middle and the top part of the 3D scene (cf. Figure 1). Altogether, around 250 thermal
and 250 RGB images were acquired. For RGB images, we used a Canon 1200D camera with 20 mm
focal length, a pixel size of 4.3 µm, and a sensor size of 5196 pixel × 3464 pixel. The TIR images
were captured by an uncooled FLIR a65 thermal camera with 25 mm focal length and a temperature
range between −25 ◦C and +135 ◦C. The sensor has a spectral response between 7.5 µm and 13 µm
and allows for the collection of images with a resolution of 640 pixel × 512 pixel, with a pixel size of
17 µm. The 13 mm wide-angle lens (45◦ × 37◦) of the camera provides a suitable field of view for the
application at hand. The high-quality data sets which are currently used for urban object detection
and classification provide point clouds with a density of 1000–2000 points per square meter on the
ground (e.g., [21]). Such a density corresponds to an average spacing of 2–3 cm. Considering the
characteristic of a typical TIR sensor, the object distance should not be smaller than 30–40 m in order to
keep similar image resolution in the presented urban scene. For an average 25 m imaging distance in
our experiment, the façade pixel spacing is equal to ~2 cm for TIR images and 0.5 cm for RGB images.
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Since the uncooled thermal camera output depends not only on the object irradiance but also on
its time-variant sensor temperature, it is necessary to use radiometric calibration methods to remove
the response from the sensor temperature and to accurately determine object temperature. For the
radiometric calibration of the first thermal image sequence, we used the commercial software FLIR
GEV (version 1.7), which uses a conventional shutter-based method. The second set of thermal
images was processed by the algorithms for radiometric calibration presented in Lin et al. (2017) [22],
which represent a shutter-less method. It must be noticed that exact kinetic temperatures, which refer
to the internal or true temperature, are unknown as long as the material type and the corresponding
emissivity of the object are unknown. Emissivity describes a surface condition determined by color,
finish, and intrinsic material properties; it is defined by the ratio of how well a surface performs as an
emitter of infrared radiation in comparison to a blackbody. Although emissivities are not constant
over all wavelengths, it is generally accepted practice to assume them as such, due to the small
amount of variation over the different wavelengths for most materials [23]. Moreover, in most cases of
thermographic building inspections, absolute temperatures depend on material type, which is not
known a prior; however, the differences in the raw measurements are useful as a discriminator in
classification. A quantitative temperature evaluation regarding three types of material specific to
façades—concrete, glass, and plastic—is presented in our other research, as described in Lin et al.
(2019) [24]. Since the influence of emissivity on the temperature value is very small, the emissivity
correction can be neglected for the presented application case.
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Figure 1. Samples of RGB (left) and thermal infrared (TIR) (right) images collected from one station.

2.2. Thermographic 3D Point Cloud Generation

The reconstruction of 3D geometry using images and Structure-from-Motion techniques ensures
the best fit between the generated 3D scene and corresponding textures [25]. Dense image matching
methods based on the imagery in a visible domain are already widely used for the generation of 3D
point clouds and meshes [26]. In the case of thermal imagery, however, the 3D reconstruction process
becomes much more challenging due to the low resolution, low signal-to-noise ratio, and consequently
the smaller number of tie points in thermal image pairs. In the case of building façades, additional
difficulties are related to repetitive structures that may cause the false matching of point pairs. In such
circumstances, the resulting thermal 3D point clouds will usually be much sparser and less accurate than
the 3D data extracted from the visible spectrum. The thermographic point cloud generation used for
this study is therefore based on the common registration of all information (thermal and spectral point
clouds as well as both image sequences). The camera pose estimation is performed by the co-registration
of both generated point clouds (spectral and thermal) using homologous points. The estimated camera
poses are then used to assign TIR attributes to the 3D dense point clouds reconstructed from spectral
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images. The thermal value of each 3D point is computed using a multivariate blending function that
weights all available pixel data with respect to geometric, topological and colorimetric criteria [27].
The final result of the image processing is a dense 3D point cloud which can simultaneously represent
both RGB and thermal-infrared data (Figure 2).
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Figure 2. Façade 1 (a) and façade 2 (b) datasets: a dense 3D point cloud visualized using RGB (top)
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3. Classification in 3D Space

While the classification of laser scanning data based on geometric features has already been well
addressed in the literature (e.g., [28,29]), experiments executed in the 3D space on SfM point clouds,
which also take other geometric features into consideration, are rarely met. Therefore, in the first part of
the presented classification study, we investigate the relevance of different information types—thermal,
geometric, color, and their combinations—for the object extraction. Finally, we aim at the adaptive
smoothing of the results, which avoids wrongly classified single points but at the same time does not
cause an artificial over-smoothing and allows us to detect object edges. The feature combination set
providing the best classification performance is then used for Conditional Random Field (CRF) object
extraction adding context information.

3.1. Data Structure Approximation and Feature Extraction

For many tasks related to understanding 3D scenes, relative differences between point
characteristics are more relevant than the values originally measured by a sensor. Hence, in the
presented method, we use two types of point descriptors: direct values belonging to a point, and relative
values based on differences between neighboring points. Although many classification approaches
presented in the literature are based on a single neighborhood recovery, the application of multiple
neighborhoods is found to be favorable [30,31]. In the set of descriptors, we use the combination
of three spherical neighborhoods starting with a radius of 10 cm (considering the TIR resolution of
2.5 cm), followed by radii of 30 cm, and 50 cm. The extracted neighbors serve as a base to describe the
local geometric 3D structures and local differences between the points.

The set of descriptors computed for each point in 3D space is presented in Table 1. For the
computation of geometric features, we adapt the method based on eigenanalyses, which is widely
applied in the classification literature [32,33]. The spatial coordinates of the neighboring points are
used to compute a local 3D structure covariance tensor, whose eigenvalues of λmax ≥ λmed ≥ λmin

together with the eigenvector emin serve as a base for the computation of local geometry features.
Since our work focuses on façade classification, we augmented the geometric feature set by the largest
difference of depth values (dmax and dmin) extracted within the given spherical neighborhood Np with
the radius r.

Table 1. Set of descriptors computed for each 3D point (the variables are explained in the corresponding
section).

Geometry

Plane fitting quality λmin
Anisotropy (λmax− λmin)/λmax
Linearity (λmin− λmed)/λmin
Planarity (λmed− λmin)/λmax
Sphericity λmin/λmax

Omnivariance (λmin·λmed·λmax)
1
3

Verticality 1−
∣∣∣〈[0, 0, 1], emin〉

∣∣∣
Depth span dmax{Np(r)}

− dmin{Np(r)}

Color

Point color
[
Hp, Sp, Vp

]
Color span

[
Hp, Sp, Vp

]
max{Np}

−

[
Hp, Sp, Vp

]
min{Np}

Color average 1
|Np(r)|

∑
n∈Np(r)[Hn, Sn, Vn]

Color variance
(

1
|Np(r)|

∑
n∈Np(r)

(
[Hn, Sn, Vn] − [HN , SN , VN ]

)) 1
2

Thermal
Infrared

Point TIR TIRp
TIR span TIRmax{Np} − TIRmin{Np}

TIR average 1
|Np(r)|

∑
n∈Np(r) TIRn

TIR variance
(

1
|Np(r)|

∑
n∈Np(r)

(
TIRn − TIRN

)) 1
2
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The second type of features that are investigated is based on colors. In our work, color features are
computed in the HSV color space (the Hue, Saturation, and Value of each 3D point is noted in Table 1
as Hp, Sp, Vp, respectively). Unlike RGB, HSV separates color components from the intensity, giving
more robust information. The robustness to lighting changes and the ability to remove shadows means
that this color space is often employed in computer vision tasks. Regarding point cloud classification,
the advantage of HSV over the RGB domain is, for example, stated in Becker et al. [34]. The set of color
descriptors applied in our method is composed of 12 values. Besides each component of the color
space (hue, saturation, value), we compute the color span, average, and variance at all levels of the
multiple neighborhoods.

Finally, the set of features related to the point temperature is extracted. The set consists of
the intensity index measured by a thermal infrared camera and statistical components showing the
differences between adjacent objects. The relative values assigned to each point are computed based
on its nearest neighbors, extracted at three different scales of the neighborhood. Like color feature
extraction, relative TIR features contain the values of the span, average, and variance.

3.2. Context-Free Classification Based on Different Information Types

Given the extracted set of point descriptors, we learn a supervised classifier that predicts the
conditional probabilities P(y|x) of different class labels, y. Among the large number of standard
classification approaches, we have chosen the Random Forest classifier, which has been shown to
provide an accurate classification and runs efficiently for large point clouds [35]. As a classical standard
approach, the Random Forest allows the direct evaluation of the influence of the feature descriptors on
the classification result. The Random Forest learning method proposed by Breiman [36] is composed
of an ensemble of randomly trained decision trees. Each tree predictor is trained on a random subset
of the training data, depending on the random vector of features sampled with the same distribution
for all trees in the ensemble. Consequently, the resulting set of decision trees can be considered as
decorrelated, which improves the generalization and robustness of the classification performance.
During the point cloud classification process, each tree in the Random Forest gives a unit vote for the
most popular class for each 3D point. The final point label is determined by taking the respective
majority vote Nl over the predictions of all decision trees T [37]:

P(x, yi = l) =
Nl
T

(1)

For the presented experiments, we use a Random Forest consisting of 50 fully grown trees.
To estimate this value, we used a standard method based on the relation between the number of trees
and Out-Of-Bag (OOB) error [34]. With the chosen number of trees, the OOB error becomes stabilized
in our experiment, providing an optimal balance between the prediction performance and computation
time. The number of differentiating features randomly chosen at each split is set to the square root of
their total number (64 features calculated at different scales). The points are split based on the impurity
information given by the Gini index.

3.3. Contextual Classification

Contextual information is an important clue in complex data that can improve classification
results. Therefore, after the investigation of the relevance of different features for object extraction
and by choosing the most optimal setup, we enhance the classification process by adding context
explicitly. For this purpose, we apply the Conditional Random Field (CRF), which belongs to the group
of undirected graphical models, providing a probabilistic framework for context-based classification.
CRF has become a popular technique for class derivation, especially in image processing [38–40];
however, its application to 3D point clouds [28,41] has been relatively less reported. In the general
formulation of the CRF framework, the underlying graph structure G(n,e) consists of a set of nodes n
and a set of edges e. In the presented case, each node ni ∈ n corresponds to a 3D point, while each
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edge eij represents a contextual relation linking a pair of neighboring nodes, ni and nj. The goal of
classification is to find the most probable configuration of class labels yi ∈ y determined for all points
simultaneously, given an observed data point x (input point cloud). Thus, the CRF has to maximize
the posterior probability P(y

∣∣∣x) as follows [42]:

P(y
∣∣∣x) = 1

Z(x)

∏
i∈n

ϕi(x, yi)
∏
ei j∈e

ψi j
(
x, yi, y j

) (2)

In Equation (2), Z(x) is a normalization constant, which turns potentials into probabilities.
The terms ϕi(x, yi) are called the unary potential. They link the class label of each node ni to the
observed data. The terms ψi j

(
x, yi, y j

)
are called the pairwise potentials. They are responsible for the

model of contextual relation. In the presented experiments, the unary and pairwise potentials are
weighted equally. The general formulation of CRF allows the application of arbitrary discriminative
classifiers with a probabilistic output to model both types of the potentials.

Besides differences in potential modelling, CRF differs in its definition of the graph structure.
Three-dimensional points, unlike images, are irregularly distributed in 3D space; thus, there is no
direct definition of the neighborhood which allows for the computation of a CRF graph structure.
In the presented research, we use the neighborhood information already extracted during feature
computation (c.f. Section 3.1). Each 3D point is linked by edges to all its neighbors within the spherical
neighborhood with a radius of 10 cm. Since the Random Forest is considered to be one of the best
classifiers, we applied it to model both types of potential. The unary potential is already provided by
the probabilistic outputs of the best feature combination, executed in the previous step of the research.
In order to avoid zero values for unlikely classes, we compute the exponent of the calculated posteriors:

ϕi(x, yi = l) = exp
Nl
T

(3)

The pairwise potential is provided in many CRF applications by relatively simple models,
such as the Potts model and its enhanced variations, favoring identical labels at neighboring nodes.
More complex models are based on the joint posterior probability of two node labels given the observed
data x. They enable the avoidance of over-smoothing and lead to better classification performance at
the cost of a much higher computational effort. In the presented case, a new RF is trained to predict the
conditional probabilities of a different class label for each edge eij connecting two neighboring points.
For c classes to be discerned during point classification, the classifier has to differentiate between
c2 possible configurations of classes. The observed data are represented by an interaction feature
vector gi j(x) computed for each edge eij. The vector is usually provided either by concatenating the
feature values of two points connected by the edge, fi(x) and f j(x), or by calculating their difference,
gi j(x) = fi(x) − f j(x). Similar feature values of neighboring points often result in the differences
being close to zero, thus hindering class differentiation. Therefore, in the presented experiment,
the interaction feature vector is provided by concatenating point features of the edge ends. For the
computation of the pairwise potential, we propose the use of different sets of features than those for
the calculation of the unary potential. Since the edges of the graph structure link points within a 10 cm
radius spherical neighborhood, features calculated at larger scales do not give a large differentiation
boost to the classification process of locally similar points. Thus, the used feature set contains 48
features resulting from a concatenation of the descriptors belonging directly to the endpoints and their
close neighborhood (24 features each, as presented in Table 1). In a similar manner to Equation (3),
the RF pairwise potential is defined by

ψi j
(
x, yi = l, y j = k

)
= exp

Nl,k

T
(4)

where l and k reflect the label configuration of adjacent nodes.



Remote Sens. 2020, 12, 543 9 of 17

Given the model for the posterior according to Equation (2) and the parameters of the unary
and pairwise potentials according to Equations (3) and (4), respectively, the goal of inference is to
determine the label configuration for which P(y|x) becomes a maximum. For the optimization, we use
an iterative message passing algorithm that can be applied to CRF with arbitrary formulations of
interaction potentials: Loopy Belief Propagation (LBP).

4. Results and Discussion

The experimental part of our research starts with the investigation of the relevance of different
information types for the classification performance. We examine the utility of the generated 3D point
clouds, combining thermal information with supportive color and geometric characteristics. The most
optimal setup is enhanced by the consideration of context, leading to the final classification results.
To validate the presented approach in terms of its applicability and performance, the accuracy and
the quality of the classification outputs was evaluated. Experiments were conducted applying our
procedure to two sets of data—façade 1 and façade 2—which were generated as described in the
previous sections and differin the calibration method used to extract their TIR attributes. Both data sets
present large and complex building façades collected along 180 m, with 371 façade openings (windows
and doors) reflected respectively by ~770,000 point samples.

The classification algorithm was executed on the point clouds, which were down-sampled with
a resolution of 3 cm (around 25 times fewer points than the original data sets stemming from RGB
imagery). The value is related to the lowest resolution of TIR images on the furthest parts of the façades.
The point clouds were provided with reference labelling containing manually marked 3D points of
façade openings (windows and doors).

4.1. Investigation of Different Information Types for the Classification Performance

In the experiments, each dataset was split into disjointed training and testing sets through a
vertical plane. The resulting point clouds are similar with respect to the number of points and class
distribution. Respective data characteristics are collected in Table 2.

Table 2. Characteristics of the data sets used for the evaluation of the presented method.

Data Set Data (Points) Windows & Doors
(Objects)

Windows & Doors
(Points)

Windows & Doors
(Points %)

Training: Façade 1 629,367 85 160,286 25
Training: Façade 2 395,863 61 120,008 30

Test: Façade 1 876,050 120 222,968 25
Test: Façade 2 890,037 105 270,261 30

Since the number of points belonging to façade openings significantly differs from the number
of points of other object classes, using the whole training set for classifier learning might have a
detrimental effect on the classification results [43]. Thus, in order to avoid an unbalanced training data
set, we sample the same number of training examples for each class (160,286 and 120,008, respectively,
for façade 1 and façade 2).

The main objective of the first part of the conducted experiments was to evaluate the utility of
different types of information for the classification process. Therefore, the classifier performance was
tested against different feature sets, considering the following scenarios:

• Thermal infrared only;
• Thermal infrared and geometric;
• Thermal infrared and colors;
• Thermal infrared, geometric, and colors (i.e., all extracted features).
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Once the classifier was trained on the training data using the respective set of features, we predicted
the labels for the test data and then compared them to the reference labelling. The quality assessment
was executed on a per-point level. To evaluate the performance of our framework, we computed two
final evaluation metrics,—completeness (Equation (5)) and correctness (Equation (6))—related to the
quality of façade object extraction [44]:

Comp =
#TP

#TP + #FN
(5)

Corr =
#TP

#TP + #FP
(6)

where #TP, #FN, and #FP are the numbers of true-positive, false-negative, and false-positive 3D
points, respectively.

The corresponding quality metrics obtained for each scenario are collected in Table 3.
The highest indicator values achieved in the whole experiment were obtained for the fusion of

all the available information types (74% completeness and 92% correctness for façade 1, and 85%
completeness and 95% correctness for façade 2). The results of both data sets show a very similar
distribution of relative improvements in the consecutive experiments. It is important to notice that
progress is observed at the same time for the completeness and correctness of the outputs. The statistics
also demonstrate that the enhancement of TIR data by color information brings better performance
than the TIR fusion with geometric information (with an up to 9% difference in the completeness and
8% in the correctness).

Table 3. Evaluation metrics of the façade object extraction obtained for different experiment scenarios.

Features
Façade 1 Façade 2

Completeness (%) Correctness (%) Completeness (%) Correctness (%)

TIR 46 73 66 73
TIR + Geometric 60 83 79 84

TIR + Color 69 91 82 91
TIR + Geometric + Color 74 92 85 95

Discrepancies between the final results of the façade 1 and façade 2 processing are easy to capture
in a graphical overview of the computed statistics (Figure 3). The correctness values obtained for each
set show large differences between each other of up to 20%, which decrease together with the addition
of other features supporting thermal infrared information. Such differences between data sets are most
likely related to the different method of thermal information extraction during data acquisition. The 3D
point cloud of façade 1 was attributed to TIR data calibrated with commercial software, while the
second set of thermal images was processed by our own algorithm [22]. The latter workflow of data
processing proves itself to be more suitable for the classification purpose, due to the better accuracy of
the finally obtained thermal information and its higher consistency within the whole data set (also
visible by comparing Figure 2a,b). Despite clear differences in classification completeness, in each
scenario, the correctness indicators are largely correlated for both data sets. The statistics show that
even though the quality of TIR information has a large influence on the number of detected objects,
it does not contribute to false object detection.
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Important feedback of the classification performance achieved in various feature scenarios is
given by a visual comparison of the resulting 3D point clouds. Figure 4 illustrates the classification
outputs with marked semantic class. It is easy to notice how different methods of TIR data calibration
and pre-processing affect the classification results. The differences between the two data sets are
especially large when TIR is the only considered feature. Adding a second type of information may
often improve the classification performance by the effect of synergy. Supplementing thermal data
with geometric features, however, does not bring about a significant improvement in the visualized
results. On the other hand, merging thermal infrared data with color only gives a large boost to the
classification performance, making the biggest visual difference in the detection results. Still, in this
experiment, some portions of points (mostly on the roofs) are falsely recognized as window openings.
The fusion of TIR and color information with geometric data enables us to reduce the percentage of
such misclassified points and to achieve the best classification results.
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4.2. Contextual Classification of TIR-Attributed Point Clouds

In order to enhance our experiments by the direct consideration of context, we integrate a Random
Forest classifier into a Conditional Random Field framework. The RF probabilities for the classes
calculated in the previous step are plugged into the CRF as unary potentials. For the computation of
edges, we use the same method as in the unary potential computation case: disjointed training and
testing data sets. The direct input data for the calculation of pairwise potential contained 7,171,967
training edges and 9,854,536 test edges for façade 1 and 4,548,491 and 10,254,142 edges, respectively,
for façade 2. The training sets are balanced according to the class with the smallest number of samples
by a random selection of the same number of samples for all four classes: 110,829 edges for façade 1
and 122,857 edges for façade 2.

Given the probability values for the unary and pairwise potential, we determine the most optimal
label configuration by applying Loopy Belief Propagation. To evaluate the final results of façade
opening extraction, the output is compared with the reference labelling. The quality assessment on
a per-point level is executed according to Equations (5) and (6) by the examination of every single
point and by calculating classification completeness and correctness measures. In order to take a
broader view of the algorithm performance, we also execute the evaluation on a per-object level.
The assessment is based on the overlap concept described in Rutzinger et al. [44]. In a general context,
an object is considered to be a true positive if a certain minimum percentage of its area is covered by
objects in the other data set. In our research, similarly to the window detection evaluation presented
in [15,16], the detected object is considered to be true positive (TP) if at least 70% of its points are
properly classified. If at least 50% of object points are classified incorrectly, the object is considered to
be a false negative (FN). Figure 5 presents the visualization of the final results. The statistics measures
of the classification performance are collected in Table 4.
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Table 4. Evaluation metrics of the contextual classification. TP: true positive; FP: false positive; FN:
false negative.

Analysis Data Set TP FP FN Completeness (%) Correctness (%)

Point-Based
Façade 1 183,841 17,254 41,128 82 91
Façade 2 260,447 13,693 29,815 90 95

Object-Based Façade 1 117 11 6 95 91
Façade 2 92 13 3 97 88

In comparison with the best performance indices obtained for RF in the previous experiment,
we observe a large improvement in the point-based completeness: from 74% to 82% for façade 1
and from 85% to 90% for façade 2. The consideration of context enables us to extract the full shapes
of objects by the proper labelling of missed neighboring points. It is important to notice that the
improvement in the classification completeness was not achieved to the significant detriment of
the correctness measurement (no changes for façades 2, and one percentage point of performance
deterioration for façade 1). The statistical changes are also reflected in the visualization of the final
results (Figure 5). We can clearly observe the improvement in the completeness of the shapes of
detected objects. Furthermore, the restriction of edge features to local ones during the pairwise
potential calculation enables us to detect the sharp edges of the windows, which should be especially
important in the case of further post-processing and polygon boundary extraction.

The quality assessment executed on a per-object level revealed much higher completeness values
than the values computed per-point (95% vs. 82% for façade 1, and 97% vs. 90% for façade 2).
This is due to the fact that, in both data sets, nearly all of the objects were detected; however, with
slightly missing points. On the other hand, the object-based correctness compared to the same metric
calculated on a per-point level was the same (91% for façade 1) or even lower (88% vs. 95% for façade
2). Such a result indicates that the structures falsely recognized as windows openings are mostly very
small. Our achieved values of 90% completeness and 95% correctness, compared against the same
metrics reported in the literature (85% and 82% [15], or 92% and 96% [16]), prove the quality of the
applied method.

5. Conclusions

We have presented a method for the supervised extraction of façade openings from
photogrammetric 3D point clouds attributed to TIR and RGB information. Detected objects are
removed from the data, allowing for the reliable accuracy of the following investigation and the
monitoring of thermal changes on a building façade. The novelty of the research is the direct
combination of thermal information with other available characteristics of data, as well as the
classification workflow being performed entirely in 3D space. Unlike thermal analyses processed
on 2D textures, the processing of 3D data allows us to benefit from the geometric characteristic of
a classified 3D scene. Furthermore, we aimed to investigate how spectral and geometric data may
support thermal analysis. The experiments have shown the supremacy of color-based features over
geometric characteristics as a complementary information source for thermal data. We also observed
that differences in TIR information pre-processing led to significant changes in the classification
completeness, while they doid not affect the correctness measurement. The visual comparison of
the processing results clearly shows the advantage of feature fusion over classification based on a
single information type. The fusion of all available information—i.e., thermal, geometric, and color
attributes—allows the recognition of 74% object points with an exactness of 92% for façade 1 and
85% object points with an exactness of 95% for façade 2. Considering the context in our experiments
improved the point-based classification accuracy by eight percentage points and five percentage points
for façades 1 and 2, respectively. Analyzing the algorithm performance on a per-object level, we notice
larger values of the completeness metric than in point-based evaluation together with lower values of
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correctness. The comparison indicates that falsely detected structures are mostly very small, and that,
besides a small portion of missing points, nearly all of the objects were successfully detected.

In the presented study, we focused on the examination of the suitability of TIR and RGB-attributed
3D point clouds for a classification in a 3D space. Therefore, the algorithm classified single 3D points.
Windows and doors, however, heavily depend on the size of regions and symmetry considerations,
which can be exploited, for example, by shape grammars. In this respect, the presented results could
provide a valuable input for further investigation. In the future, we also plan to extend the studies
by taking into consideration a larger number of semantic classes and by classifying different urban
materials. Since the values displayed in thermal images are dependent on the emissivity of object
materials, knowledge about the material type should improve the emissivity calculation and result in a
more precise calculation of the surface temperature.

Author Contributions: Conceptualization, M.J.-R. and H.-G.M.; Data acquisition and pre-processing, D.L. and
M.J.-R.; Investigation, M.J.-R.; Methodology, M.J.-R.; Resources, D.L.; Supervision, H.-G.M.; Visualization, M.J.-R.;
Writing—original draft, M.J.-R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Open Access Funding by the Publication Fund of the TU Dresden.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lopez-Fernandez, L.; Lagüela, S.; Gonzalez-Aguilera DLorenzo, H. Thermographic and mobile indoor
mapping for the computation of energy losses in buildings. Indoor Built Environ. 2016, 26, 771–784. [CrossRef]

2. Perilli, S.; Sfarra, S.; Ambrosini, D.; Paolettia, D.; Mai, S.; Scozzafava, M.; Yao, Y. Combined experimental and
computational approach for defect detection in precious walls built in indoor environments. Int. J. Therm.
Sci. 2018, 129, 29–46. [CrossRef]

3. Bannehr, L.; Schmidt, A.; Piechel, J.; Luhmann, T. Extracting urban parameters of the city of Oldenburg from
Hyuperspectral, Thermal, and Airborne Laser Scanning Data. Photogramm. Fernerkund. Geoinf. 2013, 2013,
367–379. [CrossRef]

4. Garrido ILagüela, S.; Ariasa, P.; Baladoa, J. Thermal-based analysis for the automatic detection and
characterization of thermal bridges in buildings. Energy Build. 2018, 158, 1358–1367. [CrossRef]

5. Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building
diagnostics: A review. Appl. Energy 2014, 134, 531–549. [CrossRef]

6. Lagüela López, S.; Cereijo García, J.; Martínez Sánchez, J.; Roca Bernárdez, D.; Lorenzo Cimadevila, H.
Thermographic mobile mapping of urban environment for lighting and energy studies. J. Daylighting 2014, 1,
8–15. [CrossRef]

7. Costanzo, A.; Minasi, M.; Casula, G.; Musacchio, M.; Buongiorno, M.F. Combined Use of Terrestrial Laser
Scanning and IR Thermography Applied to a Historical Building. Sensors 2015, 15, 194–213. [CrossRef]

8. Boyd, G. Zeroing in on energy savings with thermal imaging. Photogramm. Eng. Remote Sens. 2013, 79,
313–316.

9. Vidas, S.; Moghadam, P.; Bosse, M. 3D thermal mapping of building interiors using an RGB-D and thermal
camera. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe,
Germany, 6–10 May 2013.

10. Iwaszczuk, D.; Stilla, U. Camera pose refinement by matching uncertain 3D building models with thermal
infrared image sequences for high quality texture extraction. ISPRS J. Photogramm. Remote Sens. 2017, 132,
33–47. [CrossRef]

11. Hoegner, L.; Stilla, U. Thermal leakage detection on building Facades using infrared textures generated by
mobile mapping. In Proceedings of the Urban Remote Sensing Event 2009 Joint, Shanghai, China, 20–22 May
2009; pp. 1–6.

12. Iwaszczuk, D.; Hoegner, L.; Schmitt, M.; Stilla, U. Line based matching of uncertain 3d building models
with IR image sequences for precise texture extraction. Photogramm. Fernerkund. Geoinf. 2012, 2012, 511–521.
[CrossRef]

http://dx.doi.org/10.1177/1420326X16638912
http://dx.doi.org/10.1016/j.ijthermalsci.2018.02.026
http://dx.doi.org/10.1127/1432-8364/2013/0183
http://dx.doi.org/10.1016/j.enbuild.2017.11.031
http://dx.doi.org/10.1016/j.apenergy.2014.08.005
http://dx.doi.org/10.15627/jd.2014.2
http://dx.doi.org/10.3390/s150100194
http://dx.doi.org/10.1016/j.isprsjprs.2017.08.006
http://dx.doi.org/10.1127/1432-8364/2012/0135


Remote Sens. 2020, 12, 543 16 of 17

13. Sirmacek, B.; Hoegner, L.; Stilla, U. Detection of windows and doors from thermal images by grouping
geometrical features. In Proceedings of the Joint Urban Remote Sensing Event (JURSE’11), Munich, Germany,
11–13 April 2011.

14. Michaelsen, E.; Iwaszczuk, D.; Sirmacek, B.; Hoegner, L.; Stilla, U. Gestalt grouping on faade textures from
IR image sequences: Comparing different production systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf.
Sci. 2012, 39, 303–308. [CrossRef]

15. Lin, D.; Dong, Z.; Zhang, X.; Maas, H.-G. Unsupervised Window Extraction from Photogrammetric Point
Clouds with Thermal Attributes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 45–51.
[CrossRef]

16. Malihi, S.; Valadan Zoej, M.; Hahn, M.; Mokhtarzade, M. Window Detection from UAS-Derived
Photogrammetric Point Cloud Employing Density-Based Filtering and Perceptual Organization. Remote
Sens. 2018, 10, 1320. [CrossRef]

17. Neuhausen, M.; König, M. Automatic window detection in facade images. Autom. Constr. 2018, 96, 527–539.
[CrossRef]

18. Markus, M.; Martinovic, A.; van Gool, L. ATLAS: A three-layered approach to facade parsing. Int. J. Comput.
Vis. 2016, 118, 22–48.

19. Cohen, A.; Schwing, A.G.; Pollefeys, M. Efficient structured parsing of facades using dynamic programming.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus,
OH, USA, 23–28 June 2014.

20. Liu, H.; Zhang, J.; Zhu, J.; Hoi, S.C. Deepfacade: A deep learning approach to facade parsing. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August
2017; pp. 2301–2307.

21. Roynard, X.; Deschaud, J.-E.; Goulette, F. Paris-lille-3d: A large and high-quality ground truth urban point
cloud data set for automatic segmentation and classification. Int. J. Robot. Res. (IJRR) 2017, 37, 545–557.
[CrossRef]

22. Lin, D.; Maas, H.-G.; Westfeld, P.; Budzier, H.; Gerlach, G. An advanced radiometric calibration approach for
uncooled thermal cameras. Photogramm. Rec. 2017, 33, 30–48. [CrossRef]

23. Vollmer, M.; Möllmann, K.P. Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley:
Brandenburg, Germany, 2010; p. 612.

24. Lin, D.; Jarzabek-Rychard, M.; Tong, X.; Maas, H.-G. Fusion of Thermal imagery with Point Clouds for
Building Façade Thermal Attribute Mapping. ISPRS J. Photogramm. Remote Sens. 2019, 151, 162–175.
[CrossRef]

25. Schönberger, J.L.; Frahm, J. Structure-from-Motion Revisited. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.

26. Verdie, Y.; Lafarge, F.; Allie, P. LOD Generation for Urban Scenes. ACM Transactions on Graphics. Assoc.
Comput. Mach. 2015, 34, 15.

27. Callieri, M.; Cignoni, P.; Corsini, M.; Scopigno, R. Masked photo blending: Mapping dense photographic
data set on high-resolution sampled 3D models. Comput. Graph. 2008, 32, 464–473. [CrossRef]

28. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of lidar data and building object detection
in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [CrossRef]

29. Weinmann, M.; Jutzi, B.; Mallet, C.; Weinmann, M. Geometric features and their relvance for 3D point cloud
classification. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 4, 157. [CrossRef]

30. Brodu, N.; Lague, D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale
dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68,
121–134. [CrossRef]

31. Hu, H.; Munoz, D.; Bagnell, J.A.; Hebert, M. Efficient 3-D scene analysis from streaming data. In Proceedings
of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 17 October 2013;
pp. 2297–2304.

32. Chehata, N.; Guo, L.; Mallet, C. Airborne lidar feature selection for urban classification using random forests.
In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, Paris, France, 1–2 September 2009; pp. 207–212.

33. Hackel, T.; Wegner, J.D.; Schindler, K. Fast semantic segmentation of 3d point clouds with strongly varying
density. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 177–184. [CrossRef]

http://dx.doi.org/10.5194/isprsarchives-XXXIX-B3-303-2012
http://dx.doi.org/10.5194/isprs-annals-IV-2-W5-45-2019
http://dx.doi.org/10.3390/rs10081320
http://dx.doi.org/10.1016/j.autcon.2018.10.007
http://dx.doi.org/10.1177/0278364918767506
http://dx.doi.org/10.1111/phor.12216
http://dx.doi.org/10.1016/j.isprsjprs.2019.03.010
http://dx.doi.org/10.1016/j.cag.2008.05.004
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.001
http://dx.doi.org/10.5194/isprs-annals-IV-1-W1-157-2017
http://dx.doi.org/10.1016/j.isprsjprs.2012.01.006
http://dx.doi.org/10.5194/isprsannals-III-3-177-2016


Remote Sens. 2020, 12, 543 17 of 17

34. Becker, C.; Häni, N.; Rosinskaya, E.; d’Angelo, E.; Strecha, C. Classification of aerial photogrammetric 3D
point clouds. arXiv 2017, arXiv:1705.08374.

35. Weinmann, M.; Urban, S.; Hinz, S.; Jutzi, B.; Mallet, C. Distinctive 2d and 3d features for automated
large-scalescene analysis in urban areas. Comput. Graph. 2015, 49, 47–57. [CrossRef]

36. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
37. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Data Mining, Inference, and Prediction,

2nd ed.; Springer: New York, NY, USA, 2016; pp. 587–604.
38. Wegner, J.D.; Hansch, R.; Thiele, A.; Soergel, U. Building detection from one orthophoto and high-resolution

InSAR data using conditional random fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 83–91.
[CrossRef]

39. Hoberg, T.; Rottensteiner, F.; Heipke, C. Context models for CRF-based classification of multitemporal
remote sensing data. In Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, Melbourne, Australia, 25 August–1 September 2012; pp. 128–134.

40. Yang, M.Y.; Förstner, W. A hierarchical conditional random field model for labeling and classifying images of
man-made scenes. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona,
Spain, 6–13 November 2011; pp. 196–203. [CrossRef]

41. Vosselman, G.; Coenen, M.; Rottensteiner, F. Contextual segment-based classification of airborne laser scanner
data. ISPRS J. Photogramm. Remote Sens. 2017, 128, 354–371. [CrossRef]

42. Kumar, S.; Hebert, M. Discriminative random fields. Int. J. Comput. Vis. 2006, 68, 179–201. [CrossRef]
43. Criminisi, A.; Shotton, J. Decision forests for computer vision and medical image analysis. In Advances in

Computer Vision and Patter Recognition; Springer: London, UK, 2013.
44. Rutzinger, M.; Rottensteiner, F.; Pfeifer, N. A Comparison of Evaluation Techniques for Building Extraction

from Airborne Laser Scanning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 11–20. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cag.2015.01.006
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/JSTARS.2010.2053521
http://dx.doi.org/10.1109/ICCVW.2011.6130243
http://dx.doi.org/10.1016/j.isprsjprs.2017.03.010
http://dx.doi.org/10.1007/s11263-006-7007-9
http://dx.doi.org/10.1109/JSTARS.2009.2012488
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data Preparation 
	Data Acquisition 
	Thermographic 3D Point Cloud Generation 

	Classification in 3D Space 
	Data Structure Approximation and Feature Extraction 
	Context-Free Classification Based on Different Information Types 
	Contextual Classification 

	Results and Discussion 
	Investigation of Different Information Types for the Classification Performance 
	Contextual Classification of TIR-Attributed Point Clouds 

	Conclusions 
	References

