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Abstract: Current scene classification for high-resolution remote sensing images usually uses
deep convolutional neural networks (DCNN) to extract extensive features and adopts support
vector machine (SVM) as classifier. DCNN can well exploit deep features but ignore valuable
shallow features like texture and directional information; and SVM can hardly train a large amount
of samples in an efficient way. This paper proposes a fast deep perception network (FDPResnet)
that integrates DCNN and Broad Learning System (BLS), a novel effective learning system, to extract
both deep and shallow features and encapsulates a designed DPModel to fuse the two kinds
of features. FDPResnet first extracts the shallow and the deep scene features of a remote sensing
image through a pre-trained model on residual neural network-101 (Resnet101). Then, it inputs
the two kinds of features into a designed deep perception module (DPModel) to obtain a new set
of feature vectors that can describe both higher-level semantic and lower-level space information
of the image. The DPModel is the key module responsible for dimension reduction and feature fusion.
Finally, the obtained new feature vector is input into BLS for training and classification, and we
can obtain a satisfactory classification result. A series of experiments are conducted on the challenging
NWPU-RESISC45 remote sensing image dataset, and the results demonstrate that our approach
outperforms some popular state-of-the-art deep learning methods, and present high-accurate scene
classification within a shorter running time.

Keywords: high-resolution remote sensing images; broad learning system (BLS); scene classification;
ResNet101; feature representation

1. Introduction

The ever-advancing remote sensing technology now can generate a large number of high-resolution
remote sensing images in a fast and effective way. This deftness has promoted its applications throughout
numerous fields, including natural disaster monitoring, geospatial object detection, traffic supervision,
weapon guidance and urban planning [1-3]. High-resolution remote sensing images, however, contain
unique characteristics that make classifying scenes in them quite difficult. They usually stretch
in different sizes, and contain diversified contents, like multi-directional targets standing against
complex backgrounds. Some scenes in different classes may exhibit similar geographical features,
while some belonging to the same class may look quite different, which easily leads scene classification
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to the wrong direction. Therefore, how to effectively classify scenes in high-resolution remote sensing
images remains a challenging task.

The breakthrough that deep convolutional neural networks (DCNN) brought to image classification [4]
has attracted attention from both academia and industry. DCNN exhibit the extraordinary ability of feature
expression and outstrip traditional methods of image processing. They have been widely used
throughout diverse research fields of computer vision, as well as target recognition and detection
for natural images and other tasks [5,6]. A DCNN consists of a multi-stage architecture composed
of convolution, pooling, and fully connected layers. At present, several powerful deep convolutional
network models have been constructed for image processing, and representative network models
are AlexNet [4], VGGNet [7], GoogLeNet [8], ResNet [9], etc.

Many researchers in remote sensing have noticed DCNN and adopted them for scene recognition
of remote sensing images [10-14]. Actually, training a brand-new network specifically for high-resolution
remote images is impractical, because it requires numerous samples and much longer training time.
Plus, labeled samples are still insufficient, and training on small amount of samples would cause
over-fitting. Current solution is to pretrain DCNN models on large datasets, like ImageNet [4],
extract features from the trained models, and fuse those features to improve classification accuracy.
Liu et al. [15] proposed a method to fuse all features of that DCNN convolutional layers provided
and input them into a support vector machine (SVM) classifier. Penatti et al. [11] further improved
classification accuracy by fusing the extracted CaffeNet and OverFeat features and inputting them
into a SVM classifier [16]. Grant ]J. Scott [17] investigated a variety of fusion techniques and integrated
multiple DCNN land cover classifiers into a single aggregate classifier. Their experiments reached
satisfactory results of better accuracy and lower errors. [18] proposed a two-stage deep feature
fusion model to improve the classification performance. The model can adaptively and explicitly
combine the activations from intermediate and FC layers to generate a new CNN with directed
acyclic graph topology, and achieve a state-of-the-art performance in scene classification tasks.
Souleyman Chaib [19] designed a framework that targets VHR images. It establishes a VGG-Net-trained
model to extract information from VHR images, and adopts, the discriminant correlation analysis
(DCA) to fuse features selected from the fully connected layers. This approach can better describe
the low-dimensional scenes in remote sensing images and achieve a higher recognition rate.
These studies demonstrate that extracting features from convolutional neural networks and fusing
them is an effective way to improve recognition rates. Most of them, however, adopt support
vector machine (SVM) to classificate the extracted and fused features [11,15,17,19]. SVM projects
samples into a high-dimensional space through a kernel function, and distinguishes sample categories
by learning to classify hyperplanes. It can achieve satisfactory classification within a small amount
of samples [20], but costs a longer training time for a large amount of samples. Scene recognition
in an extensive dataset, like remote sensing image dataset NWPU-RESISC45 [21], requires a more
efficient alternative.

Broad Learning System (BLS) [22], proposed by Chen and Liu, is an efficient and effective
approximation approach for deep learning. BLS transfers the original inputs into “mapped features”
and expands the structure with “enhancement nodes”, thus the whole system is strengthened.
This network requires no iteration and the output weights can be easily calculated by ridge regression.
BLS has been conducted on some datasets, like Minist, and NORB, and effective performances
have been fulfilled beyond the benchmark. However, it fails to achieve expected results on some
large-scale remote sensing datasets, because the images there are large and have high dimensions.
Some scholars have made certain improvements. Liu [23] proposed a modified broad learning
structure based on the K-means feature extraction. The model takes both of their advantages
and presents acceptable results, and this work proves that BLS model is flexible and has potential
for various applications. Kong et al. [24] introduced BLS into the field of hyperspectral remote sensing
image classification, and proposed a semi-supervised image learning method. Their experiments
demonstrated the approach’s superiority.
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Motivated by these advantages, we propose a fast deep perception network based on ResNet101
(Abbreviated as FDPResNet) that specifically targets scene classification for remote sensing images.
First, a ResNet101 [9] model is trained on ImageNet to extract shallow and deep features of remote
sensing images. Second, the shallow and the deep features are input into the deep perception module
and converted to a set of depth-dense vectors. Finally, the vectors are input into the BLS-based pattern
recognition system for training and classification. The contribution of our study can be summarized
as follows,

1. Our study integrates DCNN and BLS into a framework to appropriate both DCNN’s effective
feature learning and BLS’s fast decision-making. The proposed framework inherits can obtain
the semantic information in high-resolution remote sensing images, as well as achieve fast
pattern recognition.

2. We propose a deep perception model (DPModel)that can utilize both shallow and deep features of an
image and extract richer semantic information from it. The model uses near-scale averaging operation
to average the obtained shallow features, that is, integrating close convolutional layers into new
convolutional layers that are then transformed into feature vectors through a vectorization operation.
DPModel also adopts principal component analysis (PCA) [25] to avoid curse of dimensionality
that arises with high dimensional vectors after features aggregation. Finally, the model cascades
deep features and shallow features after dimension reduction from top to bottom and present new
feature vectors that can present richer semantic information of the image.

The rest of the paper is organized as follows: Section 2 describes the principles and workflows
of the proposed method; Section 3 presents the experiment and discussions. Conclusions are drawn
in Section 4.

2. The Proposed Model

Figure 1 explains the framework of the proposed FDPResNet. It consists of three steps.
First, the high-resolution remote sensing images are input into a model that is pre-trained by ImageNet
on ResNet101, where no retraining or fine-tuning the network is involved, and the shallow and the deep
features are obtained. Second, the shallow features are integrated by close-scale averaging operations,
and the nearby convolutional layers are converged to new convolutional layers. The features the new
layers contain are then flattened into vectors. Here PCA is adopted to reduce the dimensions of these
new vectors, and thus the reduced shallow features and the deep features are cascaded to form new
depth-dense feature vectors. Third, the depth-dense feature vectors are trained in the BLS network
for classification.

2.1. Feature Extraction

Residual neural networks are a kind of deep neural networks that are based on the highway
networks, proposed by He et al. [9]. The network replaces the gateway unit in the highway network
with a shortcut connection to reduce network parameters while preserving original information.
The advent of ResNet is a milestone of the advancement of deep learning. ResNet can accelerate
the training of ultra-deep neural networks while greatly improving the accuracy. It can also circumvent
the tricky situation that the increasing number of network layers would incur gradient
disappearance or gradient explosion, which makes training extremely deep networks possible.
Recently, some researchers have proved that ResNet with only one neuron per hidden layer
is a general function approximator. The identity mapping enhances the expression ability of deep
networks, and also indicates that Resnet can reduce the redundancy of information in data [26].
Therefore, we choose ResNet101 as the backbone network of our approach.
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Figure 1. Framework of the proposed fast deep perception network (FDPResnet).

Current scene classification for remote sensing images usually extracts features from the convolutional
layers of the pretrained CNN model or features of the most end (fully connected layers). The former contains
local information and rich spatial data, while the latter contains semantic category information but
lacks enough spatial information. Exploiting the features of the two kinds that mutually complement
each other can provide a powerful representation. Therefore, FDPResNet extracts information
from both the convolutional layer and the fully connected layer in this step.

This paper adopts a model that is trained by ResNet101 on ImageNet for feature extraction.
The extracted features are divided into two categories: (1) The shallow features that have looped
through the first convolution and the max pooling of the ResNet101 pre-trained model. (2) The deep
features that have undergone the fifth convolution and the average pooling of the ResNet101
pre-trained model (close to the last layer of the classification performance).

The detailed process of extracting features is elaborated as follows. First, an image I
that has been trimmed as n X # to fit training is input into the network. Second, The image loops
through the network in a forward direction. Suppose there is a convolution layer L;, locating in the /th
layer. After the image passes the layer L;, am x m x d feature map M’ can be obtained. For convenience,
we denote map; = m x m. Thus for a feature map M, the feature of each frame can be denoted as map!,
where 1 < i < d, d represents the overall dimension of the shallow feature, and the feature map

M! can be represented as M = {map,l, maplz, ey map? } e Rm>mxd_Therefore, the extracted shallow

features can be denoted as:

M! = {map%,map%,..., map?‘*} € RO6*56x64 (1)
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The deep features can be expressed as:
M’ = {map}-,, maps, ..., map%ms} e RIx1x2048 )

Third, M! and M® are input into the depth perception module to obtain the final features
that can represent the image.

2.2. Deep Perception Model

Figure 2 is the internal process of the deep perception module (DPModel), which is divided
into three steps.

l'-"deep

Deep feature

Feature vector

dlast=2048

Shallow feature - h
Fshatlow Fshallow aggreage

Figure 2. Deep perception module.

2.2.1. Processing Shallow Features

The obtained feature M! as described in Section 2.1 is a multi-dimensional feature. Figure 3
displays the visualization of M. It implies that not every channel feature can effectively represent
the spatial information of the image. To this end, we propose a strategy of near-scale averaging
to intelligently extract some shallow features from this d dimensional feature map, thus the features
can represent texture information and spatial direction information.

As mentioned in Section 2.1, an m x m feature map can be denoted as map!. Suppose Fal;,y is

a single eigenvalue in ma pf, wherel < x <m,1 <y <m,and EL, represents mean of the eigenvalues
of map;.
1 xX=m,y=m

Y. Fy @)

x=1y=1

Fl,=
ave m X m
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For M, the set of mean eigenvalues of each channel can be expressed as F1 = {F},.,F2,, ..., Fi }.
Then the sum of values in F! set, denoted as MAP can be expressed as

1 i=d____
MAP = = ¥ Fl, @
i=1

We need to find such a channel in M!:
IMAP — Fg,. | € [0,0.5] )

Thus, the channel that is the closest to the average can be obtained as C = {ci,¢,.., CW}'
and the feature set of the channel can be denoted as MAP,;,, = {MAP;', MAP;?>, MAP}?, ..., MAPlc'7 }e
R56X56X7 et Dim = m x m x 1. The results of several experiments we have conducted demonstrate
that performance of scene recognition will reach the best when y = 3, Therefore, MAP,;,
can be flattened into a vector of 1 x Dim, denoted as Fgpaiiow-

(b)

Figure 3. Visualization of shallow features in a remote sensing image. (a) Original. (b) Visualization

of shallow features.
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2.2.2. PCA Reducing Dimensions

The dimensions of Fgpaj1ow have been reduced to # after the previous step, but still contain
redundant features. For example, suppose Fspajjow = 1 X (m x m x1). Whenm = 54, n = 3,
the dimensions of the shallow feature is 1 x 8748, which will easily cause curse of dimensionality.
Therefore, we adopt principal component analysis (PCA) to reduce the dimension of Fgpa11ow-

The core of PCA is to project each sample to the sample space in a direction toward large
variance, that is, to find a large variance component in order to retain the original information as much
as possible after dimension reduction. In other words, PCA avoids curse of dimensionality through
discarding part of the information during dimension reduction. The features after PCA dimension
reduction are also independent from each other [27].

In this paper, the reduced dimension is denoted as Dfﬁlﬁow. Given the key role that an appropriate
dimension could play in classification, we conducted a grid search between [256, 2048] with an nterval

of 128 to find a perfect dimension, and find that when thiﬁ ow = 012, the obtained shallow features
achieve better scene classification. Thus, the feature after dimension reduction is denoted as FFC4

shallow"

2.2.3. Aggregation of Features

The deep features obtained through feature extraction, as described in Section 2.1, represent
the high-level semantic information and the shallow features describe the space information and texture
information. Scene classification mostly depends on the semantic information, and uses the space
and texture information as supplement. Therefore, our approach adopts a top-down aggregation to fuse
the two kinds of features. First, the deep feature M°> obtained through feature extraction is flattened
into a vector Fyeep with a dimension 1 X dj,s; Then, the two kinds of features can be aggregated as
Faggreage = [Fdeep Fgfa‘?l ow]» Where the dimension of Faggreage is 1 X (g5t + th%‘ o). PCA is also
utilized here to find the optimal dimension, and results indicated that when dimension of Fgeep, dj4st

is 2048, the best classification results can be achieved.

2.3. Broad Learning System

Broad learning system is actually a derivative variant of the random vector functional link
neural network (RVFLNN) [28]. A BLS network [22], as exemplified as the purple box in Figure 1,
works in three steps: First, the features of the input data mapping are used as the “feature nodes”
of the network; second, the features of the mapping are elevated to “enhanced nodes” with randomly
generated weights; third, all mapped features and enhanced nodes are directly connected to the output,
and the corresponding output coefficients can be derived from the fast pseudo-inverse.

According to Section 2.2.3, the depth-dense vector is denoted Faggreage with a dimension D
of 2048. Suppose the number of samples in the data is N, the input sample can be defined ad
Fc RN*D and F = [F}lggreage, Flgereages v FaNggreage} . The mapping feature in the BLS system is set
to Z and the number of feature nodes are b, then the mapping feature of the dataset on the feature

plane is
ZNXb :FNXD'WEXb (6)

where W, is the optimal input weight matrix obtained by sparse self-encoding. If k enhanced nodes
are generated in BLS, and H is used to represent the enhanced feature matrix, the enhanced feature
matrix of the dataset can be expressed as,

HNXk — (P(ZNXh . wZXk +ﬁhNXk) (7)

where W), and f, represent the random matrix and bias respectively; ¢(-) is an optional non-linear
activation function, and tansig is selected as the excitation function in this paper. BLS is a merging
matrix that connects feature nodes and enhancement nodes. The merging matrix is the actual input
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of BLS, that is, A= |ZN*b |H Nxk| We assume that the output matrixis L € RN*C where C represents
the number of categories of the dataset, then the output matrix can be obtained according to BLS as,

LNXC — ANX(b+k) . w(b-‘rk)XC — |:ZN><b|HN><k:| . W(b-‘rk)XC (8)

where W represents the connection weight matrix, and W is obtained by taking the ridge regression
approximation of A", as shown in Equation (9)

AT 9)

At = lim (A1 + AAT)
A—0
Therefore, in a BLS system, the network only needs to learn the output matrix W. In this formula,
A is a regular 12-norm regularization, and set as A = 2710,

3. Experiments and Results

3.1. Dataset

We conducted a series of experiments on NWPU-RESISC45 dataset [21], which was created
by a research team of the Northwestern Polytechnic University in 2017. It contains 31,500 remote
sensing images and 45 scene categories. Each scene category contains 700 images of size 256 x 256.
The spatial resolution of most images can reach 30 m~0.2 m/pixel, and images in certain categories
of special landforms may be in lower-resolution, like islands, lakes, regular mountains and snow
mountains. This dataset includes abundant scene categories, and each category retains enough
inner-diversity and inter-similarity with other classes. It is a challenging benchmark to test scene
classification for remote sensing images.

3.2. Implementation Details

We randomly selected training samples and test samples from each category at a ratio of 2:8
and 1:9, respectively. Each set of experiments was repeated 10 times. The final classification
performance was evaluated by the average of the accuracies of all experiments. We adopted
the LibLinear library [16] to exert linear SVM training and testing.

All the experiments were conducted on a personal computer with a quad-core CPU of 2, 4 GHz,
a graphics card of GeForece GT1080 8G GPU, and equipped with MathWorks MATLAB R2018b.
Multiple pre-tests helped us to determine the values of key variables: 7 = 3, DP¢4 =512, A = 2710,

shallow

3.3. Effectiveness of Fusion of Shallow and Deep Features

We used ResNetl0l to extract shallow features and deep features from images
in NWPU-RESISC45, and used our approach to fuse the two levels of features. Then, three kinds
of results were visualized by t-SNE and exhibited in Figure 4. Each dot in Figure 4 represents
a sample of a category, and different categories are distinguished by different colors. The shallow
features in Figure 4a are nearly messy lines of dots that demonstrate linear features, rather than
clustering characteristics; while the deep features in Figure 4b are presented in a high level
of abstraction with obvious clustering features, but the boundaries between classes are still blurred.
The fusion of the two levels of features in Figure 4c indicates the final features of those categories.
Compared to Figure 4a—c presents a clearer classification with increased distances and similarity
between classes. The final results validate that our approach of feature fusion can effectively improve
scene classification performance.
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Figure 4. Two-dimensional visualization results of scene features for images in NWPU-RESISC45 dataset.

In this paper, t-SNE was used to map shallow features, high-level features, and shallow and high-level

features into 2D space.
and high-level features.

3.4. Comparison of FDPResNet and Other State-of-the-Art Methods

3.4.1. Comparison of the Accuracy

(a) Shallow features, (b), High-level features, (c) Fusion of shallow

We compared the classification results of the proposed FDPResNet with those of seven
state-of-the-art methods that were also conducted on NWPU-RESISC45 [21], as elaborated in Table 1.
The accuracies in Table 1 indicate that our approach is superior to both transferred learning
and fine-tuning methods [21]. Compared with the result of the D-CNN with VGGNet-16 [13] method
that performed the best among the seven, the accuracy of our approach is 4% higher. The accuracy
comparison demonstrates better effectiveness of our approach on NWPU-RESISC45.
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Table 1.
NWPU-RESISC45 dataset.

Training Ratio

Method

20% 10%
Transferred AlexNet + SVM [21] 79.85+0.13  76.69 4+ 0.21
Transferred GoogLeNet + SVM [21] 7848 £0.26  76.19 £ 0.38
Transferred VGGNet-16 + SVM [21]  79.79 £ 0.15 76.47 £ 0.18
Fine-tuned AlexNet + SVM [21] 85.16 £ 0.18  81.22 +0.19
Fine-tuned GoogLeNet + SVM [21]  86.02 +0.18  82.57 £+ 0.12
Fine-tuned VGGNet-16 + SVM [21]  90.36 £0.18  82.15 £ 0.45
D-CNN with VGGNet-16 [13] 91.89 £ 0.22  89.22 +0.50
FDPResNet 95.40 +0.11  92.32 £+ 0.32

10 0of 13

Comparison of accuracies and standard deviations (%) of different methods on the

3.4.2. Comparison of Training and Testing Time

Table 2 compares the training time and test time of the proposed FDPResNet and those
methods [21] with SVM as the classifier. Here, the ratio of the training samples and test samples
on the NWPU-RESISC45 dataset is 20%. Table 2 indicates that compared with the methods using
SVM [21], FDPResNet saves approximately three times the training time and four times the test time.
We also input the vectors obtained from our proposed DPModel into a SVM-based method
for classification, and the resulted accuracy is higher than that of the six methods [21] and lower
than that of the FDPResNet framework. This well demonstrates that features obtained by the DPModel
can better represent the semantic information of the image, and has good generalization.
As for operating efficiency, the training time and the test time that the DRResNet+SVM methods
cost are greater than those of the FDPResNet, which means that BLS adopted in the FDPResNet
framework can better fulfill scene classification for remote sensing images.

Table 2.  Comparison of training time and testing time of different methods on the
NWPU-RESISC45 dataset.

Method Overall Accuracies (20%) Training Times (s) Testing Times (s)
Transferred AlexNet + SVM 79.85 £0.13 163.23 69.12
Transferred GoogLeNet + SVM 78.48 - 0.26 238.46 79.23
Transferred VGGNet-16 + SVM 79.79 £0.15 196.11 73.24
Fine-tuned AlexNet + SVM 85.16 - 0.18 165.25 68.86
Fine-tuned GoogLeNet + SVM 86.02 +£0.18 235.46 78.46
Fine-tuned VGGNet-16 + SVM 90.36 £ 0.18 195.25 7242
DPModel + SVM 91.89 £ 0.22 162.05 75.41
FDPResNet 95.40 £ 0.11 62.8526 17.2844

3.4.3. Confusion Matrix

To better understand the performance of our approach, we depicted a confusion matrix
to illustrate the correctness of the classification results, as shown in Figure 5. Each row of the matrix
represents the class predicted by our approach while each column represents the actual class.
Thus, cells on the diagonal indicate the correct prediction while cells on other are as imply errors.
Numbers in each cell represent the total number and the percentage of the predicted instances, and the
classes are organized in a descending order of correctness along the diagonal from the left to the right.
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In Figure 5, the recognition accuracies higher than 90% appear in more than 86% of the classes, and those
lower than 80% only account for 4% of the classes. This further demonstrates that the FDPResNet
is applicable to images with complex contents, like those in NWPU-RESISC45. Those scenes
that the FDPResNet can recognize in high accuracy contain single texture and exhibit little within-class
similarity, such as basketball_court, rectangular_farmland, mountain; and those that the FDPRseNet
recognized in low accuracy contain more complex contents, exhibit high similarities between-class
and larger diversity within-class, such as wetland, commercial_area, intersection. While great success
has been obtained so far, the problems of within-class diversity and between-class similarity are still
two big challenges.
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Figure 5. Confusion matrix of the proposed FDPResNet on NWPU-RESISC45 dataset.
4. Conclusions

This paper proposes a novel fast deep perception network (FDPResNet) to utilize the expertise
of DCNN and BLS. The FDPResNet uses a model pre-trained by ImageNet on the ResNet101
to extract both shallow features and deep features from an image, and then inputs these
two kinds of features into the proposed DPModel to obtain a set of depth-dense vectors
that can represent semantic information of the image. Consequently, BLS can utilize this set of deep
dense vectors and outputs satisfactory scene classification results. The comparison experiments
on the challenging dataset NWPU-RESISC45 [21] demonstrates that the FPDResNet can achieve
optimal performance. Future work will focus on improving the FDPResNet’s classification accuracy
for scenes that are ambiguous.
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