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Abstract: In many areas of the world, population growth and land development have increased
demand for land and other natural resources. Coastal areas are particularly susceptible since they
are conducive for marine transportation, energy production, aquaculture, marine tourism and other
activities. Anthropogenic activities in the coastal areas have triggered unprecedented land use
change, depletion of coastal wetlands, loss of biodiversity, and degradation of other vital ecosystem
services. The changes can be particularly drastic for small coastal islands with rich biodiversity. In this
study, the influence of human modification on land surface temperature (LST) for the coastal island
Hainan in Southern China was investigated. We hypothesize that for this island, footprints of human
activities are linked to the variation of land surface temperature, which could indicate environmental
degradation. To test this hypothesis, we estimated LST changes between 2000 and 2016 and computed
the spatio-temporal correlation between LST and human modification. Specifically, we classified
temperature data for the four years 2000, 2006, 2012 and 2016 into 5 temperature zones based on
their respective mean and standard deviation values. We then assessed the correlation between each
temperature zone and a human modification index computed for the year 2016. Apart from this,
we estimated mean, maximum and the standard deviation of annual temperature for each pixel in
the 17 years to assess the links with human modification. The results showed that: (1) The mean
LST temperature in Hainan Island increased with fluctuations from 2000 to 2016. (2) The moderate
temperature zones were dominant in the island during the four years included in this study. (3) A
strong positive correlation of 0.72 between human modification index and mean and maximum LST
temperature indicated a potential link between human modification and mean and maximum LST
temperatures over the 17 years of analysis. (4) The mean value of human modification index in the
temperature zones in 2016 showed a progressive rise with 0.24 in the low temperature zone, 0.33
in the secondary moderate, 0.45 in the moderate, 0.54 in the secondary high and 0.61 in the high
temperature zones. This work highlighted the potential value of using large and multi-temporal earth
observation datasets from cloud platforms to assess the influence of human activities in sensitive
ecosystems. The results could contribute to the development of sustainable management and coastal
ecosystems conservation plans.
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1. Introduction

Humans are consistently modifying land surfaces through expansion of settlements, intensification
of agriculture, and construction of infrastructure for transport, energy development, and exploration of
natural resources. Anthropogenic modifications contribute to ecosystem changes, including vegetation
loss, degradation of biodiversity, change of land surface and atmospheric temperatures, and pollution
among other losses of ecosystem services. Coastal areas, particularly small offshore islands are among
the vulnerable ecosystems [1–4] and can thus be easily decimated by uncontrolled human activities.
It is therefore necessary to analyze, quantify and to mitigate the influence of human modification on
the integrity of critical coastal ecosystems. Studies on land surface temperature have mainly focused
on understanding urban heat island (UHI), a phenomenon first illustrated in 1818, reinforcing the
knowledge that urban areas are characterized by higher air and surface temperature when compared
with the temperatures in rural areas [1,5–10]. The UHI phenomenon affects not only the health of
urban dwellers, the livability of urban areas, but also the climatic and ecological processes [11–13].
Anthropogenic heat release, surface cover, climatic conditions, air pollution and other factors are
considered to be numerous causes of UHI [12,14]. Surface UHI is characterized as the relative difference
between the land surface temperature (LST) in urban areas and the temperature of surrounding areas
and is influenced by urban development [12,15–18]. UHI is generally linked to urban development and
land cover transformations associated with urban land uses [19]. Land cover transformation in urban
areas include the conversion of natural vegetation and agriculture lands to impervious surfaces [19].
While studying the link between land surface temperature and vegetation, the Normalized Difference
Index (NDVI), has commonly been used as a proxy for vegetation abundance [20]. Understanding the
contribution of human modification on changes of land surface temperature and on UHI remains an
open research question [21].

Land surface temperatures (LST) vary strongly across the globe. Unusual changes in LST—for
instance within one or two decades—can usually be credited to heightened degree human activities.
Studies on the influence of human activities on LST have focused on the contribution of land use/land
cover, human settlement, urbanization, and social economic factors. Sahana et al. investigated
the temperature response to land use/land cover using Landsat 5 TM and Landsat 8 OLI data and
observed that increase in non-evaporating surfaces and decrease in vegetation had increased the surface
temperature in Sundarban Biosphere Reserve, India [22]. Moreover, artificial urban surfaces have been
found to have a positive exponential relationship with LST [23]. Quantitative evidence of the effects of
land use change on the LST has also been documented [24]. Xiao and Weng studied the impact of land
use and land cover changes on land surface temperature for the Karst area in China and concluded that
LST changes were mainly associated with changes in construction materials [25]. There are also other
studies that focus on the impacts of human-induced land cover changes on the dynamics of surface
parameters, such as impacts on surface roughness and fractional vegetation coverage in East Asia [26].
Fu and Weng investigated the influence of urbanization induced land use/land cover change on LST in
the Atlanta metropolitan area in the US [27]. Additional studies have analyzed the mutual relationships
and linkages between land surface temperature, UHI, land cover characteristics, social-ecological and
social-economic variables in different cities [28,29]. Regional relationships between surface temperature,
vegetation and human settlement was also assessed in the Phoenix, USA, which is a very rapidly
urbanizing area [30].

From the ensuing research, it is apparent that it is not possible to conclusively understand the
complexity of the influence of human activities on landscapes from limited variables, such as from
the extent of the natural and converted land. It is important to account for the cumulative impacts
from multiple human activities both at the local level and at the global scale. However, information
on cumulative effects of human modifications are usually sparse. This is particularly true when
studying the influence of human activities in coastal islands. Technological advances in the fields
of earth observation and computation, coupled with the availability of other rich archives of data,
provide an enviable resource for assessing and evaluating the extent of human modification and
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the potential influence of this modification on the environmental and climatic characteristics of our
planet. In this study, archived data on human modification and land surface temperatures were
adopted to evaluate the spatial and temporal link between human activities and changes in land
surface temperatures. The Global Human Modification (GHM) dataset provides the cumulative human
modification of terrestrial lands and their estimated impacts using global datasets for the median year
of 2016 [31]. For the medium-term changes in land surface temperatures, we adopted MODIS 8-day
Land Surface Temperature data. Both data sets are archived in Google Earth Engine (GEE). As GEE is a
cloud-based platform for geospatial analysis which consists of multi-source data catalog with massive
computational capabilities to bear on a variety of societal and environmental issues, it was adopted as
the tool of data exporting and analyzing [32]. To pursue the objectives of this study, Hainan Island in
China was selected as the study site. Being the most popular tourism and in-migration destination
from other province and the Special Economic Zone in China [33,34], the development of Hainan
Island has attracted a variety of human activities in the past decades. With the large influx of residents
and tourists and the high-speed of urbanization, the anthropogenic activities have been linked to
the thermal environment causing elevated temperature, loss of the valuable, temperature-sensitive
onshore habitats (coral reefs, mangroves), and ecosystem vulnerability [33,35–37]. Making Hainan
Island, a candidate site for investigating the spatio-temporal links between human activities and LST
in Hainan.

2. Study Area and Data

2.1. Study Area

Hainan is the second largest Chinese island in the South China Sea and is approximately 24 km
away from the Chinese mainland, separated by the Qiongzhou Strait (Figure 1). The island is located
the southernmost province of China within latitudes 18◦10′–20◦10′ and longitudes 108◦37′–111◦03′E.
The spatial extent of the island covers an area of approximately 35,354 km2 and is home to a population
of approximately 9.34 million people in 2018 from the Hainan Statistics Yearbook [38]. The island
is characterized by tropical climate throughout the whole year. Hainan, being an important tourist
destination and having been designated as China’s largest Special Economic Zone since 1988 [33],
underwent rapid economic growth that was mainly triggered by tourism. The developments in
the island have come with high-speed urbanization, rapid land-use changes and a large influx of
residents from the mainland China [33]. The number of tourists from China and other countries visiting
one single city, Sanya, was increasing from 2.4 million in 2001 to 5.38 million in 2007 [34] and the
total tourists on the whole island reached 76.27 million in 2018 from Hainan Statistics Yearbook [38].
Consequently, natural resources in the island have been explored and exploited extensively to support
the vibrant tourism and other sectors. This has particularly been encouraged by the fact that Hainan
and its surrounding coastal ecosystem traditionally encompass a high diversity of natural habitat,
including coral reef, mangroves, and various types of shores for tourism [35]. Hainan hosts one
third of the total mangrove forest areas of China [36], hence, is an important inter-tidal estuarine
ecosystem that is currently very vulnerable to human influence. The rapid increase of economic
activities in the area has already led to the farmland loss, conversion of forests to orchard, conversion
of farmlands to artificial surfaces, pollution, and degradation onshore habitats [37]. The reduction
of plants and psammolittoral organisms (coral reefs, mangroves, and seaweed) will further cause
ecosystem vulnerability and exposure to further degradation, hindering sustainable local natural
resource management and development. Assessing and documenting the impact of human activities
on environmental and climate sustainability is therefore vital for sustainable development policy for
the local ecosystem.
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Figure 1. Map of the study area Hainan.

2.2. Data Source

The main data sets in this work included MODIS Land Surface Temperature (LST) products and
the Global Human Modification layer, both of which are available in Google Earth Engine (GEE).
In addition, we used administration data for referencing. The main datasets are outlined in Table 1.

Table 1. Overview of the main datasets.

Theme Data Type Resolution/Scale Time Source

MOD11A2.006
Terra Land Surface
Temperature and
Emissivity 8-Day

Global 1 km

Raster/Satellite
imagery 1000 m 2000–present

U.S. Geological
Survey (USGS) and

hosted in GEE
archive

Global Human
Modification

Raster/Satellite
Imagery 1000 m 2016

Figshare and
hosted in GEE

archive

Towns and Cities
(version 3.6) Vector/Point 1:1,000,000 2018

Database of Global
Administrative

Areas (version 3.6)

National boundary Vector/Polygon 1:1,000,000 2018
Database of Global

Administrative
Areas (version 3.6)
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The MODIS 8-day temperature products in GEE were used to assess the temperature change
between 2000 and 2016. This time scale was selected to coincide with the GHM data, which was
produced from the year 2016. For the human modification, we used the Human Modification index
(HM) as a proxy for human footprints from the GHM dataset provided by GEE. The GHM dataset
is developed by the scientists at the Nature Conservancy and Conservation Science Partners and is
available on GEE platform. HM provides a cumulative measure of global human modification of
terrestrial lands at 1 km spatial resolution. In this dataset, the global intensity of modification is based
on modeling the physical extents of 13 anthropogenic stressors and their estimated impacts using
spatially explicit global datasets for the year 2016. The HM values range from 0 to 1 according to
the degree of land modification, with 0 representing the no evidence of human modification and 1
representing the highest degree of modification. HM is a composite index that is computed from five
major categories of thirteen environmental stressors. The five categories of stressors are: (a) human
settlement (population density, built-up areas), (b) agriculture (cropland, livestock), (c) transportation
(major roads, minor roads, two tracks, railroads), (d) mining and energy production (mining, oil wells,
wind turbines), and (e) electrical infrastructure (powerlines, nighttime lights) [33].

3. Methodology

3.1. Retrieval of Images from GEE

Data for GHM and land surface temperature (LST) were retrieved from GEE. The main
methodological steps in this study are outlined in Figure 2. The data pre-processing step involved
using the outlines of the area of study to filter out the MODIS LST data for the area of study from 2000
to 2016, calculation of annual LST statistics from the series of 8-Day data, estimating changes in LST
and extracting HM data for the area of study. Specifically, a region of interest (ROI) was built from
the shapefiles of the boundaries of the Hainan Island. The region of interest was used to filter and to
clip the datasets from GEE. As GHM data was only available for only one year (2016), the data was
clipped to the ROI and exported for further analysis and visualization. The LST data that used in this
study was derived from the MODIS Terra land surface temperature and emissivity 8-day global dataset
in GEE. This data is available from 2000 and contains an average of 8-day land surface temperature
in a 1200*1200 km grid at 1 km resolution. We used the LST_Day_1km band with 1 km resolution
for the daytime LST analysis. Each pixel value is a simple average of all the corresponding pixels
collected within that 8 days period. We aggregated the images for a single year to create a single raster
representing the annual mean temperature for that particular year. We also calculated mean, maximum
and standard deviation statistics from the 17 annual LST datasets. The 17 annual datasets represented
individual raster for each year from 2000 to 2016. The annual images for the entire time scale were
used for the comparison with the global human modification.

As the temperature units for the MODIS LST data is provided in Kelvin, we developed a function
using the mathematical operations provided in GEE to retrieve annual mean LST images in degrees
centigrade. The output from GEE was then exported to a GIS platform for further analysis. In order to
estimate the temperature changes, we subtracted the mean temperature for the baseline year (2000)
from the temperature of the year 2016. The annual temperature images were used to calculate and plot
the mean annual LST changes and for the classification of the temperature zones.
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Figure 2. Flow diagram of the main steps of analysis. The steps in blue outline the retrieval LST
dynamics and human modification index within GEE archives. The steps highlighted in green outline
the analysis of correlation between LST and human modification and land use/cover in a standard
desktop GIS platform.

3.2. Land Surface Temperature Pattern Classifications

Values of HM from the global human modification data ranged from 0 to 1 according to the
proportion of landscape modification which is a fundamental indicator of ecological function [31,39,40].
In generating the HM data, the human modification model [41] was used to derive the potential
magnitude of impact on terrestrial lands based on the 13 human stressors with 5 categories from
the most recent datasets. The 13 stressors were categorized into 5 categories including: (a) human
settlement (population density, built-up areas), (b) agriculture (cropland, livestock), (c) transportation
(major roads, minor roads, two tracks, railroads), (d) mining and energy production (mining, oil
wells, wind turbines), and (e) electrical infrastructure (powerlines and nighttime lights). Specifically,
the 2015 UN-adjusted, Gridded Population of the World dataset [42] and the Global Human Settlements
Layer [43] were used for the human settlement category acquisition; the Unified Cropland Layer [44]
was used to estimate cropland, while livestock densities were identified from the Gridded Livestock of
the World v2 database [45]. OpenStreetMap (OSM) was the source of the transportation and mining
categories [46]. For electrical infrastructure, OSM was used to derive the above-ground powerlines and
nighttime lights was from the recent version of Defense Meteorological Satellite nighttime lights [47].
Based on the above most recent datasets, the physical extent of 13 human stressors was mapped.
Then the spatial extents were weighted by their respective intensity levels to maintain different land
use activities. The result of HM is considered to be a comprehensive and continuously scaled spatial
assessment ranging from 0 to 1 and represents the proportion of landscape modified by human
activities. On the basis of the multiple advantages of HM, providing an update of extent where human
activities have modified, using the most recent global datasets and more anthropogenic drivers for
data sources, having a high impact on biodiversity [48], the dataset was used in this research as a proxy
for human modification. For human modification classification, HM data was clipped by the ROI layer
and categorized into four classes. Based on the global, non-normal, distribution of HM [31] and the
manner consistent with literatures [31,49,50], the HM was binned into four classes: low (0 ≤HM ≤ 0.1),
moderate (0.1 < HM ≤ 0.4), high (0.4 < HM ≤ 0.7), and very high (0.7 < HM ≤ 0.91). In this area, the no
presence of stressor (value equal to 0) was merged into the low class.

In order to analyze the spatial patterns of the thermal environment from 2000 to 2016, we quantified
the temperature variations during the research period by reclassifying the LST in the four years of 2000,
2006, 2012, and 2016. For this reclassification, we adopted the mean-standard deviation method which
was used for thermal environmental research for the urban expansion [51], or land cover response
to the LST in the Nanjing metropolitan region [52]. The mean-standard deviation method and the
variables for reclassification are outlined in Table 2 to show how we classify the LST images into five
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LST zones. There are two variables needed for the calculation in the mean-standard deviation method:
the mean LST of the study area (µ) and the standard deviation of the LST (std). The mean-standard
deviation method can reflect the spatial and temporal variation for the land surface temperature in
detail through reclassifying the LST into five temperature zones based on the LST range of each zone:
extreme low-temperature zone, low-temperature zone, moderate-temperature zone, high-temperature
zone, extreme high-temperature zone (Table 2). We applied the mean-standard deviation method into
the mean LST images for the years 2000, 2006, 2012, and 2016 (Table 3), respectively, and reclassified
the LST images into the five temperature zones to quantify the temporal and spatial variations for
the thermal environment. For the year 2000, the mean-standard deviation method yielded mean LST
of 28.35 ◦C and standard deviation of 2.01 ◦C. While for the year 2016, the mean-standard deviation
method yielded mean LST of 28.73 ◦C and standard deviation of 1.85 ◦C. The classifications of five
surface temperature zones for the LST in the four years were shown in Table 3. The LST in 2000 was
subtracted from the LST in 2016 to calculate the LST changes and was classified afterwards. We used
zero, the maximum temperature change, the minimum temperature change, and approximately 0.5
times of the maximum, respectively, to classify the temperature changes and to show the temperature
change ranges over the past 17 years.

Table 2. Classification criteria of surface temperature.

LST Zones LST Range Class Description

1 T < µ − 1 std Low-temperature zone
2 µ − 1 std < T < µ − 0.5 std Secondary moderate-temperature zone
3 µ − 0.5 std < T < µ + 0.5 std Moderate-temperature zone
4 µ + 0.5 std < T < µ + 1 std Secondary high-temperature zone
5 T > µ + 1 std High-temperature zone

Table 3. Classification results for surface temperature in 2000, 2006, 2012 and 2016.

LST Zones LST Range in 2000
(◦C)

LST Range in 2006
(◦C)

LST Range in 2012
(◦C)

LST Range in 2016
(◦C)

Low-temperature zone 19.65 < T < 26.34 20.69 < T < 26.98 21.28 < T < 26.71 21.51 < T < 26.88
Secondary moderate-temperature zone 26.34 < T < 27.35 26.98 < T < 28.08 26.71 < T < 27.60 26.88 < T < 27.81

Moderate-temperature zone 27.35 < T <29.36 28.08 < T < 30.27 27.60 < T < 29.40 27.81 < T < 29.66
Secondary high-temperature zone 29.36 < T < 30.36 30.27 < T < 31.36 29.40 < T < 30.30 29.66 < T < 30.59

High-temperature zone 30.36 < T < 36.47 31.36 < T < 34.86 30.30 < T < 35.01 30.59 < T < 35.10

3.3. Spatio-Temporal Variation of Land Surface Temperature

Apart from assessing the pattern changes in temperature zones at the end points, that is in 2000,
2006, 2012 and in 2016 as has been described in Section 3.2, we estimated the mean, maximum and
standard deviation of annual temperatures in each pixel over the 17 years. Specifically, we computed
cell statistics for the 17 annual temperature raster files using ArcGIS. The results of mean, maximum
and standard deviation of temperature for each pixel was used to compute the correlation between
temperature statistics over the 17 years with the human modification in the study area.

3.4. Correlation of the LST Variations and the Human Modification

In order to analyze the relationship of human modification and LST variations, we exported two
outputs. The first output was the distribution of human modification in each temperature zones in
2016 while the second output was the correlations with human modification and the temperature
statistics (illustrated in Section 3.3) over the 17 years separately.

Random samples of data of human modification values in the five temperature zones as reclassified
from the 2016 temperature data were extracted. From the sampled, we plotted box plots to highlight
the distribution of human modification indices in each temperature zones. To create a representative
sample for the correlation analysis, we randomly generated 1500 points, with approximately 300 points
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for each temperature zones and used the points to extract values from both the temperature and
human modification data. We also used zonal statistics method in ArcGIS to calculate the statistics
of human modification index in each temperature zone as at the year 2016. This provided the basis
for the plots to visually demonstrate the variation of human modification in the various temperature
zones. To furtherly interpret the human modification activities from the perspective of land use, we
also adopted 30m resolution land use/land cover data [53] to assess the mean temperature and human
modification distribution in each type of land use/land cover (Section 4.4) on Hainan Island.

Except for assessing the pattern changes in temperature zones at the four years has been described
in Section 3.2, we estimated the mean, maximum and standard deviation of annual temperatures
in each pixel over the 17 years in the analysis. Specifically, we developed a Python code in ArcGIS
to compute cell statistics for the 17 annual temperature raster files. The results of mean, maximum
and standard deviation of temperature for each pixel was used to compute the correlation between
temperature statistics over the 17 years against the human modification in the study area.

4. Results

4.1. The LST Pattern Changes of the Thermal Environment

From the analysis of temperature data, we analyzed the spatial (Figure 3a) and temporal annual
mean temperature changes in Figure 3b. Figure 3a presents the spatial changes between mean
temperature values between 2000 and 2016, with the areas shaded in green showing the areas that
have had a relative negative change in temperature while the areas shaded in red are those that had
relatively positive changes in mean temperature in 2016 when compared against 2000. We observed
that most areas which had lower temperatures in 2016 in comparison to 2000 were mainly towards
the shorelines while the hinterlands of the island had relatively positive changes in temperatures in
2016 in comparison to the year 2000. Figure 3b is a chart highlighting the mean annual temperatures
between 2000 and 2016. The mean temperature in 2000 was about 28.1 ◦C, while the three hottest years
were in 2006 (28.4 ◦C), 2015 (28.7 ◦C) and 2016 (28.5 ◦C) respectively (see Figure 3b).

According to the above described mean-standard deviation method, we classified the temperatures
for the year 2000, 2006, 2012, and 2016 (Figure 4) separately into five zones. Figure 4 represents the
geographic distribution of the various temperature zones in the study area for the four years 2000,
2006, 2012, and 2016. Table 4 shows the statistics of the five temperature zones changing in the four
years. Visually from Figure 4, the spatial pattern of distribution of the temperature zones in 2006,
2012 and 2012 are similar to the scenario in 2000 although the areas of temperature zones are either
expanding or shrinking and the changing ranges are different. The moderate temperature areas were
distributed widely in the island and the low temperature zones were mainly located in the south-west
and central parts of Hainan. The high temperature zones were in the western and southern parts of the
island, while the secondary high temperature areas were mainly located in the northern island for both
four years. The moderate temperature zone dominated the whole Hainan in the four years, with the
percentage of pixel in this zone being approximately 43.6%. 40.6%, 42.73% and 41.3% (Table 4) in the
four years separately. The secondary high temperature is expanding in the four years and the Low
temperature zone is increasing slightly. The other two zones are with fluctuations.
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Figure 3. The spatial (a) and temporal annual mean (b) temperature changes during 2000 to 2016.

Table 4. Statistics of the pixel in the five temperature zones for the years 2000, 2006, 2012 and 2016.

Temperature
Zones

2000 2006 2012 2016

Area
(Km2)

Percent
(%)

Area
(Km2)

Percent
(%)

Area
(Km2)

Percent
(%)

Area
(Km2)

Percent
(%)

Low 5234.38 14.67 5567.11 15.60 5637.63 15.80 5693.25 15.96

Secondary
moderate 4287.82 12.02 3886.55 10.89 3237.96 9.07 3585.6 10.05

Moderate 15,541.23 43.56 14,487.40 40.60 15,245.24 42.73 14,745.64 41.33

Secondary
high 5983.28 16.77 6603.06 18.51 7007.31 19.64 7310.25 20.49

High 4634.46 12.99 5137.04 14.40 4554.01 12.76 4346.42 12.18
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4.2. The Tempo-Spatial Variations of the Thermal Environment and Human Modification Classification

To visualize the relationship between human modification and land surface temperature,
we mapped human modification against mean, maximum and standard deviation of temperature
as computed from the 17 years of temperature data. Figure 5 presents maps of the statistics of the
17 yearly land surface temperature data and the geographic distribution of human modification index
data in the study. Specifically, Figure 5a is a map of the mean temperature from the 17 years, Figure 5b
is the map of standard deviation while Figure 5c is the map of the maximum temperature per pixel
from the 17-yearly data. When visually compared against the human modification index (Figure 5d),
we observed that for all the temperature statistics data, the northern edges of the island appeared to
have relatively higher mean, maximum and standard deviation in the temperature data. A similar
pattern was evident in the human modification data.

4.3. The Correlation of Human Modification with the LST Variations

To analyze the correlation between human modification and land surface temperature we used
two outputs. Firstly, we extracted random samples of data of human modification values against the
five temperature zones as reclassified from the 2016 temperature data (Figure 3b). From the sampled,
we plotted box plots to highlight the distribution of human modification index in each temperature
zones. In Figure 6, while the mean value of the human modification in the low temperature zone was
0.24, the mean of human modification in the high temperature zone was 0.61. With a progressive rise
of the mean human modification value with 0.24 in the low, 0.33 in the secondary moderate, 0.45 in the
moderate, 0.54 in the secondary high and 0.61 in the high temperature zones, thus Figure 6 shows a
potential link between human modification and temperature zones as at the year 2016.
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Secondly, from the sampled points, the values from the mean, maximum and standard deviation
raster files were extracted and compared with the values of human modification at the same sampled
locations. Specifically, the values at 1800 random sampling points in the study area were used. We then
plotted the mean, maximum and standard deviations of temperature against the human modification
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and computed Pearson’s correlation in each case. Figure 7 presents the scatter plots of mean, maximum
and standard deviation of temperature respectively against the human modification index. There was
a weak positive linear correlation (0.33) between the standard deviation of temperature and the human
modification index. For the mean and maximum temperature, there was a strong positive correlation
of 0.72 with the human modification index, indicating a potential link between human modification
and mean and maximum temperatures over the 17 years of analysis.
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4.4. Relationship between Land Cover Classes, Human Modification and Mean Temperature

Using the land cover characteristics in Hainan Island (Figure 8) as zones, we extracted values from
human modification index and from the mean temperature rasters for each of the land cover zones.
We then plotted the variation of human modification and mean temperatures for each land cover zone.
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When comparing human modification against the land use categories (Figure 9), impervious
surfaces had the highest average human modification at about 0.65 while the forest land cover classes
had the lowest average human modification index at 0.37. Shrubland, water bodies, grassland,
wetlands, bareland and croplands had average human modification values of 0.47, 0.48, 0.5, 0.53,
0.55, and 0.56 respectively, indicating a potential link between land use characteristics and human
modification index with forest cover classes having low human modification indices while impervious
built-up areas having the highest human modification indices. In terms of mean temperature, bare
surfaces had the highest mean temperature values at about 30.3 ◦C followed by impervious surfaces
with mean temperature values of about 29.8 ◦C. The land cover class with the lowest relative mean
temperature value was forest cover class at 27.6 ◦C. Showing the forested areas which were the
least modified by humans were at least 2 ◦C cooler than the highly modified impervious surfaces
and bareland.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 17 

 

 
Figure 9. Variation of human modification index and mean land surface temperatures by land cover 
classes. 

5. Discussion and Conclusions 

The focus of this work was on using archives of satellite-derived products to assess the potential 
link between human modification and land surface temperature variation in Hainan Island in China. 
For the land surface temperature, MODIS Terra Land Surface Temperature from 2000 to 2016 was 
used, while for human modification index from global human modification data as at 2016 was used. 
In analyzing the land surface temperatures, the differences in the per-pixel temperature between the 
baseline data from 2000 and in the follow up data from 2016 was considered. Also, the medium-term 
descriptive statistics, including mean, maximum and standard deviation for the 17 years of analysis 
was considered. Further, the correlation coefficients between human modification indices and the 
various temperature characteristics were calculated. Mean temperature and human modification 
were plotted against land cover classes to visualize the relation between temperature, human 
modification and land cover characteristics. 

This analysis showed that there was a strong positive correlation of about 0.72 between mean 
temperature (from the 17-yearly temperature) and human modification index. Similarly, there was a 
strong positive correlation (0.72) between maximum temperature and the human modification. The 
results from this work are consistent with other studies which have found positive correlation 
between human-induced land cover changes and land surface temperature [54]. Similarly, it has been 
recorded that there is a very high likelihood that human influences can explain some of the incidences 
of heatwaves [55]. For the comparison of mean temperature, human modification and land cover 
characteristics, highest values of human modification were observed in the areas with impervious 
surfaces. Similarly, the two land cover classes with the highest mean temperature values were 
barelands and areas of impervious surfaces (Figure 9), reaffirming studies that have linked 
urbanization to increased land surface temperature and urban heat island. 

One limitation of this work was the inadequate temporal coverage of the human modification 
data which was only available for the year 2016. This limited the evaluation of annual link of human 
modification against temperature changes. Having access to human modification data with longer 
coverage and higher temporal resolution may yield better results and may help in pinpointing 

Figure 9. Variation of human modification index and mean land surface temperatures by land
cover classes.

5. Discussion and Conclusions

The focus of this work was on using archives of satellite-derived products to assess the potential
link between human modification and land surface temperature variation in Hainan Island in China.
For the land surface temperature, MODIS Terra Land Surface Temperature from 2000 to 2016 was
used, while for human modification index from global human modification data as at 2016 was used.
In analyzing the land surface temperatures, the differences in the per-pixel temperature between the
baseline data from 2000 and in the follow up data from 2016 was considered. Also, the medium-term
descriptive statistics, including mean, maximum and standard deviation for the 17 years of analysis
was considered. Further, the correlation coefficients between human modification indices and the
various temperature characteristics were calculated. Mean temperature and human modification were
plotted against land cover classes to visualize the relation between temperature, human modification
and land cover characteristics.

This analysis showed that there was a strong positive correlation of about 0.72 between mean
temperature (from the 17-yearly temperature) and human modification index. Similarly, there was
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a strong positive correlation (0.72) between maximum temperature and the human modification.
The results from this work are consistent with other studies which have found positive correlation
between human-induced land cover changes and land surface temperature [54]. Similarly, it has
been recorded that there is a very high likelihood that human influences can explain some of the
incidences of heatwaves [55]. For the comparison of mean temperature, human modification and
land cover characteristics, highest values of human modification were observed in the areas with
impervious surfaces. Similarly, the two land cover classes with the highest mean temperature values
were barelands and areas of impervious surfaces (Figure 9), reaffirming studies that have linked
urbanization to increased land surface temperature and urban heat island.

One limitation of this work was the inadequate temporal coverage of the human modification
data which was only available for the year 2016. This limited the evaluation of annual link of human
modification against temperature changes. Having access to human modification data with longer
coverage and higher temporal resolution may yield better results and may help in pinpointing particular
human activities that contribute significantly to environmental change. Since the human modification
index is an accumulative assessment, we used the mean, maximum, standard deviation of annual
temperature in 17 years to assess the links between LST variations and human modification index,
mitigating the influence of the lack of annual human modification data. In future, annual human
modification should be considered for assess the annual link.

In recent years, earth observation datasets as well as derived information covering large spatial
scales has become more easily accessible and usable through the creation of cloud platforms like
GEE. This study demonstrates the potential contribution of multi-source earth observation datasets
from cloud platforms to the development of sustainable management plans and policy for the
management and conservation of coastal ecosystems. Therefore, future studies could focus on
including other variables in analyzing the influence of human modification on coastal ecosystems.
For instance, additional data may include annual changes in vegetation characteristics, land cover
patterns, and the various policy and management characteristics and regulations for the sites under
investigation. Secondly, the methods could be up-scaled and applied in detecting the correlation
between human modification and temperature changes, thus highlighting hotspots of anthropogenic
influence. Furthermore, the methods could be extended to provide evidence-based support for
conservation and protection of sensitive ecosystems and habitats from human disturbance.
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