remote sensing

Article

Unsupervised Building Extraction from Multimodal Aerial
Data Based on Accurate Vegetation Removal and Image Feature
Consistency Constraint

Yan Meng "1, Shanxiong Chen 2%

check for
updates

Citation: Meng, Y.; Chen, S; Liu, Y.;
Li, L.; Zhang, Z.; Ke, T.; Hu, X.
Unsupervised Building Extraction
from Multimodal Aerial Data Based
on Accurate Vegetation Removal and
Image Feature Consistency
Constraint. Remote Sens. 2022, 14,
1912. https://doi.org/
10.3390/rs14081912

Academic Editors: Qi Chen and
Min Chen

Received: 1 March 2022
Accepted: 11 April 2022
Published: 15 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

@, Yuxuan Liu @, Li Li 200, Zemin Zhang 5 Tao Ke %* and Xiangyun Hu 2

School of Computer Science, Wuhan University, Wuhan 430072, China; mengyan@whu.edu.cn

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;

shanxiongchen@whu.edu.cn (S.C.); lili@whu.edu.cn (L.L.); huxy@whu.edu.cn (X.H.)

Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong, China

Institute of Photogrammetry and Remote Sensing, Chinese Academy of Surveying and Mapping (CASM),

Beijing 100036, China; yxliu@casm.ac.cn

5 Beijing Institute of Space Mechanics and Electricity (BISME), Beijing 100094, China;
zhangzemin08142@163.com

*  Correspondence: ketao@whu.edu.cn

1t These authors contributed equally to this work.

Abstract: Accurate building extraction from remotely sensed data is difficult to perform automatically
because of the complex environments and the complex shapes, colours and textures of buildings.
Supervised deep-learning-based methods offer a possible solution to solve this problem. However,
these methods generally require many high-quality, manually labelled samples to obtain satisfactory
test results, and their production is time and labour intensive. For multimodal data with sufficient
information, extracting buildings accurately in as unsupervised a manner as possible. Combining
remote sensing images and LiDAR point clouds for unsupervised building extraction is not a new
idea, but existing methods often experience two problems: (1) the accuracy of vegetation detection
is often not high, which leads to limited building extraction accuracy, and (2) they lack a proper
mechanism to further refine the building masks. We propose two methods to address these problems,
combining aerial images and aerial LiDAR point clouds. First, we improve two recently developed
vegetation detection methods to generate accurate initial building masks. We then refine the building
masks based on the image feature consistency constraint, which can replace inaccurate LiDAR-
derived boundaries with accurate image-based boundaries, remove the remaining vegetation points
and recover some missing building points. Our methods do not require manual parameter tuning
or manual data labelling, but still exhibit a competitive performance compared to 29 methods:
our methods exhibit accuracies higher than or comparable to 19 state-of-the-art methods (including
8 deep-learning-based methods and 11 unsupervised methods, and 9 of them combine remote sensing
images and 3D data), and outperform the top 10 methods (4 of them combine remote sensing images
and LiDAR data) evaluated using all three test areas of the Vaihingen dataset on the official website
of the ISPRS Test Project on Urban Classification and 3D Building Reconstruction in average area
quality. These comparative results verify that our unsupervised methods combining multisource
data are very effective.

Keywords: vegetation detection; LIDAR point clouds; remote sensing images; image segmentation;
automatic building extraction

1. Introduction

Building rooftop extraction plays a significant role in assessing the deployment space of
photovoltaic facilities [1], estimating building energy consumption and emissions [2], urban
management [3], disaster management [4-7], population estimation [8], three-dimensional
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reconstruction [9-12] and many other applications. However, to date, achieving automatic
and accurate building extraction from remotely sensed data remains an unsolved problem
in computer vision and remote sensing. In general, the number of buildings to be extracted
is large; therefore, if they can be automatically and accurately extracted from remotely
sensed data, a significant amount of labour can be saved. Otherwise, many human interven-
tions, i.e., burdensome parameter tuning or manual annotation, are required. Theoretically,
the efficiency of automatic methods can be significantly improved if the machines running
them have been greatly upgraded, and the machines are indeed greatly upgraded periodi-
cally. However, the efficiency of semi-automatic methods cannot be improved in the same
way because the reaction speed and the work intensity that human beings can bear are both
very limited, and the situation will always be the same unless human bodies are greatly
strengthened by some means. Furthermore, the cost of manual labour will increase with
the development of society. Therefore, reducing the manual labour in building extraction is
necessary, which, of course, also applies to other data-processing tasks.

Supervised deep-learning-based methods are a possible solution to realise automatic
and accurate building extraction from remotely sensed data. The rapid development of
deep learning, especially convolutional neural networks [13-21] and transformers [22-24],
has made deep-learning-based methods the mainstream for building extraction, and many
impressive results have been achieved. However, deep-learning-based methods still rely
on a large number of labelled samples to obtain satisfactory results, and these samples
are often manually labelled, which is time and labour consuming. Furthermore, if the
test dataset and the training dataset differ greatly, the deep learning models may perform
poorly [25-27], and new samples are often manually labelled to overcome this problem.
Ideally, we would establish a very large dataset to cover as many types of buildings as
possible, like the famous ImageNet dataset [28] for image classification tasks. However,
such a practice is expensive to execute. To alleviate the manual data-labelling problem,
some researchers proposed using semi-supervised methods [29], whereas some researchers
proposed studying unsupervised methods [30]. This paper follows the latter kind because
the automation level of this kind of methods is higher.

If we can extract sufficient information about the buildings from the used data in an
unsupervised manner, it is possible to design an unsupervised method to extract buildings
automatically and accurately, avoiding manual data labelling and manual parameter(s) tun-
ing. According to the data types used, existing building extraction methods can be divided
into three categories: (1) methods based on remote sensing images [20,31-34], (2) methods
based on three-dimensional data (often LiDAR point clouds) [10,35-39], and (3) methods
that combine remote sensing images and three-dimensional data [6,16,30,40-43].

Remote sensing images contain the spectral features and texture features of buildings,
and implicitly contain geometric features. Geometric features are critical for building ex-
traction, but existing unsupervised methods cannot effectively use them, such as building
shapes. Relying only on spectral and texture features cannot establish a general unsu-
pervised building extraction model because these two types of features may vary greatly
by the region, by the image, and even by the building. Furthermore, in high-resolution
remote sensing images, the heterogeneity in the same building may be high, whereas the
heterogeneity between the buildings and some non-building objects may be low [44—46].
Shadows cast by tall trees and tall buildings can also change the spectral properties of
the lower buildings next to them [47-50]. In addition, existing image-based methods are
susceptible to the projection deformation of images [43]. All these interference factors make
unsupervised building extraction from remote sensing images difficult to perform.

LiDAR point clouds provide the necessary height, shape, and texture information
for building extraction. Generally, the first step in extracting buildings from LiDAR point
clouds is obtaining the digital elevation model (DEM) through point-cloud filtering. Sub-
tracting the DEM from the digital surface model (DSM), we can obtain the normalised DSM
(nDSM) [35,41]. Because nDSM is mainly composed of buildings, vegetation (mainly trees),
and relatively few other non-ground objects, the main task of extracting buildings from
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nDSM is to remove the vegetation points from it, that is, vegetation detection. In general,
unsupervised building extraction from LiDAR data is more robust than that from image
data because the heights of buildings are much different from other objects except tall trees,
and often, the trees and buildings differ significantly in their geometric characteristics.
Notably, distinguishing non-ground points (mainly building points and tree points) from
ground points has been a mature study for relatively flat areas [51-54] and is especially
suitable for urban scenes because the terrains of most cities worldwide are relatively flat.

As for the separation of buildings and trees in LiDAR-based building extraction
methods, researchers often utilise the multireturn property of LiDAR [41,55], the planarity
analysis [56-58], and variance of the normals [35]. However, these features of buildings
and vegetation are sometimes similar, making it difficult to accurately distinguish trees and
buildings [41,59,60]. Multireturn LiDAR point clouds may also be unavailable. Therefore,
researchers have proposed combining LiDAR and image data to reduce the difficulty of
unsupervised building extraction, which makes automatic and accurate building extraction
possible. This category of methods have been studied for decades [30,61] and great progress
has been made, but there are still two reasons to pursue improvement:

(1). Vegetation detection accuracy is often limited, which leads to limited accuracy in
building extraction. Some researchers combined LiDAR data and image data but only used
LiDAR data for initial building mask generation [3,62—-64], and the image data were only
used for refinement of the initial building mask. Thus, they still suffer from the problem of
not being able to accurately separate vegetation from buildings. The normalised difference
vegetation index (NDVI) [65] and similar near-infrared band-based vegetation indices,
such as the soil-adjusted vegetation index (SAVI) [66], are robust features for extracting
vegetation from images that have a near-infrared band, but determining their proper
thresholds automatically is difficult. Some researchers manually tuned the threshold [67,68],
which means these methods are essentially semi-automatic, and we are trying to avoid
such practices. Sohn and Dowman [69] assumed that there are prominent peaks in the
histogram of the vegetation index corresponding to the vegetation and buildings but did
not present a specific automatic method to separate them. Researchers have used the Otsu
method [70] to binarise the NDVI feature [30], but it only obtains satisfactory results when
the target pixel number and the background pixel number are approximately equal [71].

(2). The methods in the literature have not provided a proper post-processing mecha-
nism to compensate for the deficiency of the initial building mask. The vegetation detection
result cannot always be perfect; thus, generating the final building mask by simply sub-
tracting the recognised vegetation areas from the nDSM would probably result in some
overdetection and underdetection. Chen et al. [30] proposed a method to refine the initial
building mask, but they incorporated too many LiDAR-based boundaries, which are not
accurate when the density of the used point clouds is not sufficiently large.

To address these two issues, we proposed two building extraction methods combining
aerial remote sensing images and aerial LiDAR point-clouds. We improved two recently de-
veloped vegetation detection methods [71] to better recognise vegetation from remote sens-
ing images and designed a framework based on the image feature consistency constraint to
further refine the initial building mask. To evaluate our methods, we compared them to 29
methods on the Vaihingen aerial dataset [72], and they obtained better results than or com-
parable results to 19 state-of-the-art methods (including 8 deep-learning-based methods
and 11 unsupervised methods, and 9 of the 19 methods combine remote sensing images
and 3D data), and outperformed the top 10 methods (4 of them combine remote sensing
images and LiDAR data) that have been evaluated using all three test areas of the Vaihingen
dataset [72] on the website of the ISPRS Test Project on Urban Classification and 3D Building
Reconstruction (web link: https://www2.isprs.org/commissions/comm?2 /wg4/results,
accessed on 28 February 2022) in terms of area quality. In addition, our methods do not
require manual parameter(s) tuning or manual example labelling. Therefore, the proposed
methods are fully automatic and highly accurate.
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The remainder of this paper is structured as follows. Section 2 presents our two
building extraction methods. Experimental results and related discussions are presented in
Section 3. Section 4 presents the conclusion of this paper.

2. Methodology

In this section, we propose two building extraction methods that combine orthorecti-
fied remote sensing images and the corresponding LiDAR point-clouds. We assume that
the LiDAR data and image data have been precisely co-registered. We focus on how to
combine the height information of the LIDAR data and the vegetation information recog-
nised from the remote sensing images to improve the automation level and accuracy of
building extraction from remotely sensed data, and how to utilise the image features to
refine the initial building mask automatically. In addition, we focus on processing relatively
flat terrains, which apply to most cities worldwide and many rural areas.

The proposed methods comprise two stages: the initial building-mask generation
stage (Section 2.1) and the building-mask refinement stage (Section 2.2). To better illustrate
the workflow of our methods, the first image of the Vaihingen dataset released by the
international society for photogrammetry and remote sensing (ISPRS) [72] is used as the
example image (Figure 1a).

2.1. Initial Building Mask Generation Based on Vegetation Detection

The initial building-mask generation stage is composed of two parts: first, the nor-
malised DSM (nDSM) is extracted from the LiDAR point clouds (Section 2.1.1), and second,
the vegetation points recognised in the remote sensing images are removed from the nDSM
(Section 2.1.2).

2.1.1. Generation of nDSM

We do not attempt to improve existing methods in this step, because extracting non-
ground points from LiDAR point clouds of relatively flat terrains has been a mature area of
study [51-54]. Same to that which was used by Du et al. [35] and Chen et al. [30], the open
source software LAStools (download link: https:/ /rapidlasso.com/lastools/, accessed
on 28 February 2022, or http:/ /www.cs.unc.edu/~isenburg/lastools/, accessed on 28
February 2022) is used to extract non-ground points from the LiDAR data. Next, all LIDAR
points are interpolated to obtain the DSM, and all non-ground points are interpolated
to obtain the DEM. The nDSM is generated by subtracting the DEM from the DSM. To
further remove the remaining ground points and some low non-ground objects, such as
cars and bushes, we refer to the work of [30] and use the moment-preserving method [73]
to binarise the initial nNDSM. Then, the nDSM primarily consists of buildings, vegetation
(mainly trees), and few objects of other types. Note that more sophisticated methods can be
used to generate the DEM, such as the work of [74]. However, for relatively flat terrains,
LAStools is qualified for this task.

2.1.2. Removing Vegetation by Using Subtracted Histogram Methods

Accurately removing vegetation from the nDSM can yield satisfactory building extrac-
tion results. However, relying solely on LiDAR point clouds cannot guarantee accurate
unsupervised vegetation detection. Therefore, we introduce the spectral information in the
corresponding orthorectified remote sensing images with the near-infrared and red bands,
from which we can compute the NDVI [65]. Before the two forms of data are combined,
the nDSM should be resampled to the same spatial resolution as the corresponding remote
sensing image.

In this study, we utilise the recently developed subtracted histogram (SH) methods [71]
to accurately detect vegetation in remote sensing images. SH methods are thresholding
methods for two robust but essentially different features for the same detection task and
can adaptively determine the optimal threshold of each of the two features used based on
the joint distribution of the two features. Two SH methods were developed in the work
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of [71]: the eSH method, realised in an exhaustive manner, and the iSH method, realised in
an iterative manner. The robustness of the NDVI has been verified [75-77]. If we were to
binarise it adaptively, we would realise accurate vegetation detection without parameter
tuning. We could achieve this goal by using the SH methods if another robust feature for
vegetation detection that is essentially different from the NDVI could be found.

The work of [71] has already applied SH methods to vegetation detection from remote
sensing images, which contain two parts: detection in sunlit areas and detection in shad-
owed areas. For the detection in sunlit areas, the feature pair of the NDVI (see Formula (1))
and the normalised difference green-band-based index (NDGI, see Formula (2)) [78], or the
feature pair of SAVI [66] and NDGI can be used. Since NDVI and NDGI are two robust and
essentially different features, which satisfy the requirement of the SH methods [71], the SH
methods can find their optimal thresholds adaptively. The above analysis also applies to
the feature pair of SAVI and NDGI. Finally, the more robust feature, the NDVI or SAV], is
binarised. In this way, adaptive and accurate vegetation detection in sunlit areas is realised.

_ NIR(i,j) — Red(i, )
" NIR(Z,j) + Red(i, })’

_ Green(i, j) — Red(i, )
~ Green(i,]) + Red(i, )’

where NIR, Red, and Green denote the near-infrared, red, and green bands, respectively,
and i and j denote the column and row indices of the images, respectively.

For the detection in shadowed areas, pixels that satisfy the following three conditions
are considered vegetation in the work of [71]:

(1). Vegetation in shadows should have low grayscales because it also forms shadows.
This condition is realised through shadow detection using the feature pair of the brightness
feature (Formula (3)) and the visible bands to near-infrared band ratio feature (Formula (4)).
Only the brightness feature is binarised after the thresholds of the feature pair have been
determined using the iSH method.

NDVI(i, j) 1)

NDGI(i, ) @)

BN ..
Band
_ Zn:l an ”(Z’]), (3)
BN
where BN is the spectral band number of the image, and the dynamic range of each band
has been normalised to [0,1] before input into this formula.

Brightness(i,j) =1

min(Red(i, j), Green(i, j))
NIR(Z, j) !
where v2n denotes visible bands to the near-infrared band.

(2). Vegetation in shadows should have higher NDVI values compared to other objects
in shadows, which is realised through Formula (5):

Ratio¥?"(i, ) = (4)

NDVI(i, j) > Cy, ®)

where C; is set to 0.05 according to the work of [79].
(3). Vegetation in shadows should not have too-low pixel values in the green band
compared to other visible bands, which is realised through Formula (6):

Green(i,j) > C, x max(Red(i, ), Blue(i, )), (6)

where C is set to 0.9.

We refer to the vegetation detection framework in the work of [71] and choose only
the feature pair of the NDVI and NDGI for detection in sunlit areas because the NDVI was
shown to be more robust than the SAVI in the work of [71], and our experiments that are
not presented in this paper. However, unlike the work of [71], we propose using the eSH
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method instead of the iSH method for the first condition of the vegetation detection in
shadowed areas for the following two reasons:

(a). When the feature pair used is not that robust, the eSH method is more robust than
the iSH method. For shadows cast on the vegetation, the visible bands to near-infrared
band ratio feature (Formula (4)) may not be that robust because vegetation has a very high
reflectance in the near-infrared band, which somehow contradicts the assumption of the
visible bands to near-infrared band ratio feature.

(b). Generally, the eSH method is not very slow, although it is not as fast as the
iSH method.

Because both the eSH method and the iSH method are used for the front part and
only the eSH method is used for the latter part, here we have proposed two methods for
vegetation detection: the eSH+eSH method and the iSH+eSH method. All parameters of
the SH methods are set to default values, as suggested in the work of [71], to ensure that
the SH methods work automatically.

The parameters in Formulas (5) and (6) are set to constant values to enable our methods
to work automatically. Although this fixed setting is not optimal, it will not sacrifice much
accuracy for the following two reasons:

(1). The detection part for sunlit areas can also detect some vegetation in shadows,
which can compensate for the underdetection of the detection part for shadowed areas to
some extent;

(2). We adopt the intersection of three binary masks for the detection in shadowed
areas, which can effectively avoid overdetection.

The initial building mask is generated by removing the vegetation detected by the
eSH+eSH method or the iSH+eSH method from nDSM, as shown in Figure 1. Thus, we call
our two initial building-mask-generation methods the beSH method and the biSH method
(“b” denotes building).

Figure 1. Illustration of the generation of the initial building mask. (a) The first image of the Vaihingen
dataset; (b) vegetation detection result of the proposed iSH+eSH method; (c) the nDSM processed
by the moment-preserving method [73]; (d) initial building mask (the nDSM where the vegetation
recognised by the iSH+eSH method has been removed). The detected vegetation regions in (b) and
building regions in (d), and the non-ground points of the nDSM in (c) are marked in white.

Because the improved vegetation detection methods have high accuracies, the initial
building mask is already highly accurate. If we use the iSH+eSH method for vegetation
detection (the results when using the eSH+eSH method are very similar), as shown in
Figure 1d, in the initial building mask, most non-building points have been removed,
and most building points have been retained; that is, the initial building mask correctly
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covers the main bodies of real buildings. However, the initial building mask has limitations,
the main two of which are as follows:

(a). Parts of the building boundaries are determined by the nDSM generated from
the LiDAR data, whereas parts are determined by the remote sensing image (because
the vegetation information is extracted from the images). However, most boundaries
determined by nDSM are not accurate because the density of LiDAR point clouds is
generally not sufficiently large.

(b). Although the adopted vegetation detection methods are highly accurate, they are
not perfect: a few vegetated areas may have not been detected, and a few building points
may be misclassified as vegetation. Thus, there may still be some vegetation (in Figure 1d,
some examples are marked by red rectangles) in the initial building mask, and some
building points may have been incorrectly removed (in Figure 1d, some examples are
marked by green rectangles).

After removing vegetation from the nDSM, most non-building points generally be-
come disconnected and fragmentary, which may be easily resolved by morphological
operations and region-size filtering. However, some of the remaining vegetated regions
are large in size and may be connected to real buildings (see the regions marked by red
rectangles in Figure 1d); thus, they are difficult to overcome using simple morphological
operations and region-size filtering. In addition, morphological operations cannot remove
the remaining vegetation points and simultaneously recover the missing building points,
because removing the remaining vegetation points requires the morphological opening (or
similar) operation, but recovering the missing building points requires the morphological
closing (or similar) operation, which are two contradictory operations. Therefore, refining
the initial building mask is not a trivial task.

2.2. Building Mask Refinement Based on Image Feature Consistency Constraints

Although building-mask refinement methods have been developed, they have limi-
tations. Some methods adopt the features of LIDAR point clouds when refining building
masks [30,35]. Thus, they inevitably incorporate inaccurate boundaries derived from the
LiDAR data. Some methods attempt to project the initial building boundaries generated
from LiDAR data onto the corresponding images and then use the boundaries or segments
extracted from images to replace the initial coarse building boundaries [3,62,69]. This idea
works theoretically but is difficult in practice. This idea requires precise matching between
boundaries or between segments, but the correspondence between the boundaries of the
initial building mask and the boundaries extracted from the images may not be good,
making matching difficult. In addition, existing unsupervised boundary detection and
segment detection methods are not sufficiently mature to obtain optimal results automati-
cally, which leads to a dilemma: if strict parameters are used for the boundary detection or
segment detection algorithm, the necessary boundaries or segments may not be retained; if
loose parameters are used, too many boundaries or segments may be detected, which will
increase the difficulty of matching boundaries or segments.

We also adopt the strategy of using image-derived boundaries to replace LiDAR-
derived boundaries, but through region matching instead of boundary matching. Region
matching is much less difficult than boundary matching and hence much more stable; thus,
accurate results may be obtained automatically. Furthermore, it is easy to combine multiple
matching results to further improve the refinement result if the strategy of region matching
is adopted.

Specifically, the fundamental underpinning our method can be described as follows:
the image features (including the spectral features and the texture features) of one building
or one building part should be internally consistent, and through image segmentation
we can obtain these regions with consistent image features. Because these segmentation
regions have high overlap (matching degree) with the initial building regions, by computing
the union of these segmentation regions with high matching degrees, we can replace the
LiDAR-derived boundaries with the image-derived boundaries; that is, obtain the building



Remote Sens. 2022, 14, 1912

8 of 31

mask with accurate boundaries. If the threshold for the matching degree is not very
high, our method can also recover incorrectly removed building points. Because the
adopted vegetation detection methods are highly accurate, each of the connected vegetated
regions remaining in the initial building mask is only a small portion of the real connected
vegetation region; thus, our method can also remove the remaining vegetation regions with
large size, regardless of whether they are close to the real buildings.

The workflow of our building-mask refinement method is shown in Figure 2. To better
recover the missing building points (in Figure 3a, some examples are marked by green
rectangles), before region matching, the morphological closing operation is performed on
the initial building mask. However, this operation may also recover some non-building
points (mostly vegetation points; in Figure 3b, some examples are marked by red rectangles).
To counteract this side effect, the morphological opening operation is also performed, which
can also remove the small-area non-building regions remaining in the initial building mask
(Figure 3c is much clearer than Figure 3a,b). The first-closing-then-opening operation can
mainly recover the missing building points as expected, as shown in Figure 3. However,
the above preprocessing steps may introduce some unwanted points (see the region marked
by the second red rectangle in Figure 3b,c), and some large non-building regions are still
not removed (see the regions marked by the first and third red rectangles in Figure 3c).

initial building mask

!

morphological closing

v

morphological

opening
|
RN N
Seg 1l Seg 2 Seg3  eeee- Seg N-2 Seg N-1 Seg N
lRM lRl\/I lRM lRM lRM lRM lRM
Res 1 Res 2 Hesi3 N [ =c==== Res N-2 Res N-1 Res N

I I I | | I |

morphological
opening

v

morphological closing

!

refined building mask

Figure 2. Workflow of our building-mask refinement method based on the image feature consistency
constraint. Seg denotes the image segmentation obtained by a non-semantic image segmentation
algorithm, such as the GS [80], SLIC [81] and ERS [82] algorithms used by us; Res denotes a region
matching result; and RM stands for region matching.

Next, for region matching, three superpixel segmentation methods are adopted: the
graph-based image segmentation (GS) algorithm [80], the simple linear iterative clustering
(SLIC) algorithm [81], and the entropy rate superpixel segmentation (ERS) algorithm [82].
The GS algorithm [80] is an adaptive graph-based region growing method, which can lower
the threshold for merging pixels in low-contrast regions and raise it in high-contrast regions.
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The SLIC algorithm [81] is essentially a K-means method that searches for pixels belonging
to a cluster in a local space to reduce the computational cost. The ERS algorithm [82] is also
a graph-based method, trying to maximise an objective function composed of two parts:
the entropy rate of a random walk that encourages the superpixels to have compact shapes,
and a balancing term that encourages the superpixels to have equal size. The input to the
three segmentation algorithms is only the remote sensing image. All three segmentation
algorithms have certain parameters to be set. However, we only need over-segmentations of
the image, not the optimal segmentations. Therefore, the parameters are easy to set, and we
can consider the three segmentation algorithms to be automatic methods. Notably, the SLIC
and ERS algorithms both have the parameter of the number of superpixels, which may
vary greatly for images with different resolutions or sizes. To make these two algorithms
work automatically, we set this parameter to the superpixel number of the GS algorithm.

(b) (o)

@)

Figure 3. Illustration of preprocessing before the region matching of our building-mask refinement

method. (a): An enlarged initial building mask, which is part of Figure 1d. (b): (a) after being
processed by the first morphological closing operation. (c): (a) after being processed by both the first
morphological closing and the first morphological opening operations.

It should be pointed out that there are two segmentation types in this paper: semantic
segmentation and non-semantic segmentation. Semantic segmentation methods assign
a semantic label to each pixel/point in the image/LiDAR data. The building extraction,
vegetation detection, shadow detection, and DEM extraction involved in this paper can all
be regarded as semantic segmentation tasks. However, the GS, SLIC and ERS algorithms
used for region matching are non-semantic segmentation methods. They are used to
generate disjointed homogeneous regions (superpixels), each corresponding to an object or
a part of it, but we do not know the semantic label of each superpixel. Generally, the non-
semantic segmentation methods do not need to be trained, i.e., they are unsupervised
methods. In contrast, most state-of-the-art semantic segmentation methods are supervised
deep learning methods.

The thresholds of the matching degrees for the GS and ERS algorithms are both set
to 0.85; thus, a segmentation region (superpixel) is considered a building or building
part only when the portion of initial building pixels in it exceeds 85%. The threshold of
the matching degrees for the SLIC algorithm is set to 0.90, because the maximum colour
distance in the SLIC algorithm may vary significantly from image to image, but the authors
of SLIC simply fixed it to a constant value; we conceive that such a setting will make the
SLIC algorithm unable to adhere well to the boundaries for some images and that raising
the region-matching threshold can help prevent the less accurate segmentation regions
generated by the SLIC algorithm from appearing in the final building mask.

The workflow of the region-matching part of our method is presented in Figure 4 to
explain the fundamental clearly. In the input building mask (see the first row of Figure 4),
the buildings are marked by the colour white, while the background is marked by a light
blue colour. N non-semantic segmentation algorithms are used for the region matching,



Remote Sens. 2022, 14, 1912

10 of 31

where the boundaries of the segmentation regions are marked by a purple colour (see the
second row of Figure 4) and each four-connected region enclosed by purple boundaries is a
segmentation region. Then, each of the non-semantic segmentation results is superimposed
on the input building mask, respectively, to compute the matching degrees (see the third row
of Figure 4). Segmentation regions with high matching degrees are marked by a yellow color,
while segmentation regions with not-high matching degrees are still marked by the original
light blue colour. For example, for the first non-semantic segmentation algorithm (see the
third row and the first column of Figure 4), the segmentation regions corresponding to the
first, third, fourth, and sixth to ninth buildings have high matching degrees and are marked
with a yellow colour, while the segmentation regions corresponding to the the second
and the fifth buildings have low matching degrees and are marked by a light blue colour.
Segmentation regions with high matching degrees are regarded as buildings (see the fourth
row of Figure 4). However, none of the existing non-semantic segmentation algorithms are
perfect and some of the segmentation regions will not match the corresponding buildings
in the input building mask well (see the segmentation regions corresponding to the grey
buildings in the third row of Figure 4). Therefore, each single region-matching result will
probably miss some buildings or building parts (see the fourth row of Figure 4). So, we
compute the union of the all the region matching results to get a complete building mask
(see the last row of Figure 4).

To retain the real buildings, the segmentation regions corresponding to them should
be optimally segmented or oversegmented. For example, in the third row and the first
column of Figure 4, segmentation regions corresponding to the third, sixth, seventh, and
ninth buildings are optimally segmented, with each segmentation region matching a real
building well; while the segmentation regions corresponding to the first, fourth, and eighth
buildings are oversegmented, with each segmentation region matching only a building
part. In both cases, the real buildings can be retained. However, if one segmentation region
is undersegmented, i.e., it corresponds to a building (or a building part) plus many other
object pixels (see the segmentation regions corresponding to the grey buildings in the
third row of Figure 4), the corresponding building will be missing in the region-matching
result. In fact, optimal segmentation result is very challenging to generate automatically,
but oversegmentation results are very easy to obtain and their generation can be regarded
as an automatic process. Therefore, to obtain a satisfactory region matching result, we use
oversegmentation instead of the optimal segmentation. Note that we use segmentation
regions instead of superpixels when depicting the workflow of the region matching because,
generally, superpixels mean oversegmented regions [83], but we are not assuming regions
are oversegmented before we reach the above conclusion.

The number N in Figures 2 and 4 does not have to be set to three, which means that
we do not have to use three non-semantic segmentation algorithms. More segmentation
algorithms can be used to obtain better refinement results, which, however, means a
higher computational cost is required. We utilise only three segmentation algorithms to
guarantee the accuracy of the refinement and simultaneously guarantee the processing
efficiency. The segmentation algorithms also do not have to be the three algorithms that we
adopt. However, we should note that the segmentation results can influence the refinement
accuracy. The segmentation algorithms used should be sensitive to the details in the images
to differentiate the building parts and non-building parts in shadowed areas or other areas
with low contrast. Both the GS and ERS algorithms fulfil the requirement. The SLIC
algorithm may fail in some cases, and we use a higher matching threshold to address these
adverse situations.
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Figure 4. Detailed workflow for the region matching of our method.
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If a segmentation algorithm can generate the optimal segmentation result, then we can
use only this algorithm instead of three or more algorithms to perform region matching,
and the refinement method becomes the popular object-based method [84,85]. However,
none of the existing non-semantic segmentation algorithms are perfect so far. Hence,
the segmentation regions of one algorithm cannot correspond to all the real building
regions well. Thus, the region-matching result will miss some building parts when the
threshold for the matching degree is high. Lowering the threshold can overcome the
problem of missing detection (underdetection), but this will probably introduce some
unrelated points to the building mask and thus cannot realise the goal of refinement. The
thresholds for the matching degree of our method are high, and thus it can effectively
avoid incorporating unrelated points, and computing the union of the matching results of
multiple segmentation algorithms can also overcome the problem of missing detection.

Notably, although we only need each non-semantic segmentation of the remote sensing
image to be an oversegmentation, the segmentation regions of this oversegmentation
cannot be too small, otherwise the refinement functionality of the region matching would
be weakened. In extreme cases, assuming that each segmentation region contains only one
pixel, the refined mask will be just the initial building mask regardless of the tuning of the
threshold for the region matching (still in the range of (0, 1]).

The morphological closing operation performed before the region matching may have
caused the final building mask to incorporate some unrelated points near the boundaries.
The imperfect non-semantic segmentation algorithm we used may also lead to some small-
area elongated false building regions (some examples are marked by the red rectangles in
Figure 5a), and some underdetection (some examples are marked by the green rectangles
in Figure 5a). To eliminate these non-building points, morphological opening operation is
performed after the region matching. However, this opening operation may worsen the
underdetection problem (some examples are marked by the green rectangles in Figure 5b).
To counteract this side effect, a morphological closing operation is performed after it. After
this first-opening-then-closing postprocessing, the building mask looks much better.

@) (b) (©
Figure 5. Illustration of postprocessing after the region matching of our building mask refinement

method. (a): An enlarged building mask after our region matching method, which has the same
spatial range as Figure 3a. (b): (a) after being processed by the second morphological opening
operation. (c): (a) after being processed by both the second morphological opening and the second
closing operation.

After all the aforementioned steps, the remaining non-building points become dis-
connected and fragmentary, which can be easily removed through region size filtering. In
this study, connected regions smaller than 2.5 m? are regarded as non-building points and
thus removed.

Figure 6 presents an illustration of our building-mask refinement method on the first
test area of the Vaihingen dataset, for which the initial building mask is generated using
our biSH method (see Figure 1d). We can see that the matching result of each non-semantic
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segmentation algorithm has accurate boundaries, and most of the remaining vegetated
regions have been successfully removed, but each single matching result misses some real
building parts. However, the union of the three matching results has relatively complete
building regions and accurate boundaries, and most of the vegetated regions remaining in
the initial building mask have also successfully been removed.

(d)

(h)

Figure 6. Illustration of our building mask refinement method on real data. (a,e): Region-matching

result of the GS algorithm. (b,f): Region-matching result of the SLIC algorithm. (c,g): Region-
matching result of the ERS algorithm. (d): Union of the above three region-matching results
that has undergone postprocessing. In (e-h), the region-matching results are overlaid with the
ground truth, with yellow regions denoting correct detection, red regions denoting false detection
(overdetection), and green regions denoting missing detection (underdetection).

We call our building-mask refinement method the IFCC method, in which IFCC
denotes the image feature consistency constraint, and we call our building extraction
methods (including the initial building mask generation stage and the building-mask
refinement stage) the beSH+IFCC method and the biSH+IFCC method. The premise of our
IFCC method is that the initial building mask has high accuracy. Therefore, in addition to
the proposed beSH and biSH methods, it can be combined with other accurate building
extraction methods.

3. Experimental Results and Discussion

To validate the effectiveness of the proposed building extraction methods, we com-
pared them with 29 methods in this section. The comparison has two parts: (1) a qualitative
and quantitative comparison with three state-of-the-art methods (Section 3.3) and (2) a
quantitative comparison with publicly available evaluation results (Section 3.4). The test
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data and evaluation metrics are introduced in Section 3.1, the experimental setup is detailed
in Section 3.2, and the related discussions are presented in Section 3.5.

For the first comparison, our methods were compared with three state-of-the-art
methods both qualitatively and quantitatively: DeepLabv3+ [86], U-Net [87] and the
hierarchical overlay analysis (HOA) method [30]. We chose DeepLabv3+ and U-Net
because they are two of the most popular state-of-the-art deep-learning architectures for
semantic segmentation. The HOA method was chosen because it is a recently developed
unsupervised method that also attempts to generate initial building masks by removing
vegetation points from nDSM and then refine the initial building masks.

For the second comparison, our methods were qualitatively compared with 26 existing
methods: 10 of them are the top-10 methods in area quality that have evaluation results
for all three test areas of the Vaihingen dataset on the official website of the ISPRS Test
Project on Urban Classification and 3D Building Reconstruction (website link: https:
/ /www2.isprs.org/commissions/comm?2/wg4/results, accessed on 28 February 2022),
and the other 16 of them are state-of-the-art methods published in the last five years (2017-
2021). Notably, there are another six deep-learning methods among the 16 state-of-the-art
methods; thus, there are eight deep-learning methods compared with our methods in
this paper.

3.1. Test Data and Evaluation Metrics

We adopted the Vaihingen dataset of the ISPRS [72] to evaluate all the compared
methods, which comprises 33 orthorectified remote sensing images and the corresponding
LiDAR point clouds. The images have three bands: the green, red, and near-infrared bands,
from which we can compute the NDVI and NDGI. The ISPRS has offered groundtruth for
the vegetation and the buildings, and has designated three test areas from the 33 images: the
first test area (Figure 7a) mainly contains historic buildings with complex shapes, the second
test area (Figure 8a) mainly contains high-rise residential buildings surrounded by trees,
and the third test area (Figure 9a) mainly contains small detached buildings. Except that all
test areas contain some vegetation (the vegetation all appears red in a false colour format),
the buildings in the three test areas differ significantly in their shapes, colours, sizes, and
backgrounds. Even for vegetation, which is part of the background, the three test areas also
show different characteristics: the first test area has relatively less vegetation compared to
the other two test areas, the second test area has many trees, and the third has many bushes
and lawns. Thus, the three test areas are challenging for unsupervised building extraction
methods if a high accuracy is required.

To evaluate the building extraction results quantitatively, we adopted the evaluation
metrics suggested by the ISPRS [88]. Therefore, we adopted 12 metrics for building ex-
traction: the area completeness, area correctness, and area quality (abbreviated as Comy,,
Cor,r and Qar, respectively); the object completeness, object correctness, and object quality
when only considering buildings larger than 10 m? (abbreviated as Com;, Corjg and Qy,
respectively); the object completeness, object correctness, and object quality when only con-
sidering buildings larger than 50 m? (abbreviated as Comsg, Corsp and Qsg, respectively);
and the object completeness, object correctness, and object quality when considering build-
ings of larger than 2.5 m? (abbreviated as Com,pj, Corgpj and Qqp;, respectively). According
to the convention [30,89], we ranked all the compared methods by their area quality Q.

Completeness measures the proportion of correctly extracted buildings over real
buildings, which is also called recall [71,90], and is defined as Formula (7). Correctness
measures the proportion of the correctly extracted buildings over the extracted buildings,
also called precision [71,90], and is defined as Formula (8). Quality is the overall evaluation
metric, also called intersection over union (IoU) [34], and is defined as Formula (9).

TP
Completeness = TP+ EN/ (7)
TP
Correctness = 8)

TP + FP’
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where TP (true positive) denotes the correctly extracted building pixels or building objects
(for the object-level evaluation); FN (false negative) denotes the missing building pixels or
building objects, that is, building pixels or building objects that are buildings but not ex-
tracted; and FP (false positive) denotes the incorrectly extracted building pixels or building
objects, that is, the pixels or objects that are not buildings but extracted as buildings.

Figure 7. Building extraction results on the first test area. (a) Orthorectified image; (b) ground
truth (white regions denote the buildings); (¢) nDSM; (d-h): result of DeepLabv3+, U-Net, the HOA
method, the beSH+IFCC method, and the biSH+IFCC method.

To compare the vegetation detection methods, we also used the overall accuracy (OA,
defined as Formula (10)) and F; score (defined as Formula (11)). Of course, we can also use
quality to assess the vegetation detection results. In this study, we used different metrics
for the two tasks to maintain accordance with the literature on the two tasks.

TP + TN

OA = P T INTFP I EN (10)

_ Completeness x Correctness
~ Completeness + Correctness’

1 (11)
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Figure 8. The building extraction results on the second test area. (a) Orthorectified image; (b) ground
truth (white regions denote the buildings); (¢) nDSM; (d-h): result of DeepLabv3+, U-Net, the HOA
method, the beSH+IFCC method and the biSH+IFCC method.

3.2. Experimental Setup

This section presents the experimental setup details in this paper. For our methods
and the HOA method, the DEM is extracted using the lasground module of the publically
available LAStools software. The other functions of the HOA method are deployed by
using its Matlab source code used in the reference of [30], and the parameters are set to
the default values as suggested by its authors. The vegetation detection in our methods is
implemented by modifying the Matlab source code used in the reference of [71]. The GS,
SLIC, and ERS segmentation algorithms used in our methods were deployed by using the
source code released by their authors, and the download links are as follows: http:/ /cs.bro
wn.edu/people/pfelzens/segment/ (accessed on 28 February 2022) for the GS algorithm;
https:/ /www.epfl.ch/labs/ivrl/research/slic-superpixels/ (accessed on 28 February 2022)
for the SLIC algorithm; and https://github.com/mingyuliutw /EntropyRateSuperpixel
(accessed on 28 February 2022) for the ERS algorithm.

As for the two compared deep-learning methods, we split the whole Vaihingen dataset
into tiles sized 512 x 512 pixels and manually selected the patches covering the three test
areas of the Vaihingen dataset as the test data. Random rotation and random crop were
applied to augment the training dataset. Finally, there were 2720 training tiles and 12 test
tiles. We implemented DeepLabv3+ [86] and U-Net [87] based on the PyTorch library.
Experiments were conducted on a desktop computer with a 24 GB NVIDIA GeForce RTX
3090 graphics card. The binary cross entropy loss function and the Adam optimiser were
selected to optimise the two deep-learning models. The batch size of DeepLabv3+ is
16 and 8 for U-Net. We concatenated the high-resolution optical remote sensing image
and the nDSM as model input and trained the two deep-learning models from scratch.
DeepLabv3+ achieved the best performance after 14,450 iterations, while U-Net converged
after 11,900 iterations.


http://cs.brown.edu/people/pfelzens/segment/
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Figure 9. The building extraction results on the third test area. (a) Orthorectified image; (b) ground
truth (white regions denote the buildings); (¢) nDSM; (d-h): result of DeepLabv3+, U-Net, the HOA
method, the beSH+IFCC method and the biSH+IFCC method.

3.3. Qualitative and Quantitative Comparison with the State-of-the-Art Methods

For the first comparison, all three test areas of the Vaihingen dataset were used as
example images. When we compared our two methods with the HOA method, in addition
to the three test areas, a large orthorectified image stitched by all 33 single images was used
to maintain accordance with the work of [30], which we call the entire dataset. We used the
area quality of the three methods on the entire dataset as the final evaluation criterion to
rank them. Note that the entire dataset contains the test areas. Therefore, the comparison
on the entire dataset is more reasonable and complete than that on just the three test areas.
However, we used a large portion of the entire dataset to train DeepLabv3+ and U-Net;
therefore, comparing them with our methods on the entire dataset is not fair and we only
used the three test areas to compare with them.

The comparison results on the first test area are presented in Figure 7, where the range
of the test area is marked by the yellow polyline on the orthorectified image (Figure 7a). The
nDSM that has been binarised by the moment-preserving method [73] is also presented to
better analyse the comparison, temporarily supposing it is a building extraction result. For
the results of all methods, correct detection, false detection (over-detection), and missing
detection (under-detection) are marked by yellow, red and green colours, respectively. The
above operations also suit the comparison on the other two test areas (Figures 8 and 9).

As shown in Figure 7, all the compared methods (except the nDSM) obtained good
results but had some overdetected regions and missing regions. Deciding which result is
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better is difficult if we only compare them roughly, because they all obtain better results
in some regions but perform worse in other regions. So in Figure 10a—c, for the results of
DeepLabv3+, U-Net, and the HOA method, we marked the ultra overdetected regions with
magenta rectangles compared with the proposed biSH+IFCC method, the ultra missing
regions with white rectangles compared with the proposed biSH+IFCC method, and the
regions where they performed better than the proposed biSH+IFCC method with blue
rectangles. In Figure 10d—f, for the result of our biSH+IFCC method, we marked the
ultra overdetected regions with magenta rectangles, the ultra missing regions with white
rectangles compared with DeepLabv3+ (in Figure 10d), U-Net (in Figure 10e), and the
HOA method (in Figure 10f), respectively. The rectangles in Figure 10d (or Figure 10e or
Figure 10f) correspond to the blue rectangles in Figure 10a (or Figure 10b or Figure 10c). To
clarify the comparison, we marked only the main differences. The same operations were
applied to the other two test areas (Figures 11 and 12).

Figure 10. Rectangle-marked comparison of the biSH+IFCC method with DeepLabv3+ (a,d), U-Net
(b,e) and the HOA method (c,f) on the first test area. In (a—c), the rectangles are drawn on the results
of the compared methods, while in (d—f), the rectangles are drawn on the result of the biSH+IFCC
method.
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(e) ®
Figure 11. Rectangle-marked comparison of the biSH+IFCC method with DeepLabv3+ (a,d); U-Net
(b,e); and the HOA method (¢ f) on the second test area. In (a—c), the rectangles are drawn on
the results of the compared methods, while in (d—f), the rectangles are drawn on the result of the
biSH+IFCC method.

As shown in Figure 10a, for the overdetection problem, compared with the biSH+IFCC
method, DeepLabv3+ extra misclassifies a large vegetated region (see the red region marked
by the first magenta rectangle) and a car (see the red region marked by the second magenta
rectangle) as buildings, and the other ultra overdetection mainly occurs at the building
boundaries. For the underdetection problem, compared with the biSH+IFCC method,
it mainly misses another two large building parts (see the green regions marked by the
first two white rectangles) and another three relatively small building parts (see the green
regions marked by the third, fourth, and fifth white rectangles). It also performs better
than the biSH+IFCC method in some regions, the main part of which is marked by the
blue rectangle in Figure 10a. The comparison of U-Net and the HOA method with our
biSH+IFCC method is similar to that of the DeepLabv3+, except that the ultra overdetection
of U-Net and the HOA method mainly occurs at the building boundaries, which, however,
is much worse than that of DeepLabv3+. Because the areas where the two deep learning
methods and the HOA method make errors are larger than our methods, we consider that
our methods perform a little better. As for the comparison of the proposed beSH+IFCC and
biSH+IFCC methods, we consider that their results are very similar. Therefore, the compar-
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ison of DeepLabv3+, U-Net and the HOA method with the beSH+IFCC method should be
very similar to that with the biSH+IFCC method. For this reason, we only presented the
rectangle-marked comparison results with the biSH+IFCC method, which also suits the
comparison on the other two test areas.

1]

Tll..".i

(e) ®
Figure 12. Rectangle-marked comparison of the biSH+IFCC method with DeepLabv3+ (a,d); U-Net
(b,e); and the HOA method (c,f) on the third test area. In (a—c), the rectangles are drawn on the results
of the compared methods, while in (d—f), the rectangles are drawn on the result of the biSH+IFCC
method.

The quantitative evaluation results in Table 1 also validate our visual comparison,
and the ranking of area quality is as follows: the proposed biSH+IFCC method, DeepLabv3+,
the proposed beSH+IFCC method, the HOA method and U-Net. Notably, in Table 1, the best
results were marked in boldface, and the second-best results were marked by underlining,
which also applies to the following tables in this section.

A visual inspection of the corresponding nDSM demonstrates that some building
parts were already missing in the nDSM generation stage, which is why the HOA method
and our two methods also miss these building parts, because the first step for all of them
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is to obtain the nDSM using LAStools. However, the completeness of the nDSM reaches
96.03%; thus, the nDSM generated by LAStools is highly complete for the subsequent
building extraction.

Table 1. Quantitative evaluation results of different methods on the first test area.

Method

Comy,,

Coryy

Qar

Comm

C01‘10

Q1o

C0m50

C01'50

Qs

DeepLabv3+
U-Net
HOA
nDSM

beSH+IFCC

biSH+IFCC

95.07%
94.29%
93.08%
96.03%
93.34%
93.90%

94.23%
93.65%
95.00%
71.41%
95.95%
95.74%

89.84%
88.63%
88.73%
69.36%
89.81%
90.13%

100.00%
96.88%
93.75%
100.00%
96.88%
96.88%

95.00%

95.00%

100.00%
100.00%
46.67%
100.00%
100.00%

96.88%
93.75%
46.67%
96.88%
96.88%

100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

100.00%

100.00%

100.00%
63.64%

100.00%

100.00%

100.00%
63.64%

100.00%
100.00%

100.00%
100.00%

The comparison on the second test area is simpler than that on the first test area because
there were fewer buildings. The comparison results are presented in Figure 8, from which
we can see that all compared methods (nDSM not included) obtained satisfactory extraction
of the main bodies of the buildings, except that they all missed a large building part (see
the green regions in the bottom-right corner in Figure 8d-h). The three unsupervised
methods failed on this building part because this part was already missing in the nDSM
(see the green regions marked by the white rectangle in Figure 8c). This results from
the following: this part is of low height, which makes its extraction from LiDAR data
difficult. In addition, the roof of this building part is full of vegetation, which also makes its
spectral feature abnormal from common buildings, which is why both the two compared
deep-learning methods also fail on this building part. Besides, the HOA method incorrectly
detects a shadowed vegetation region of large size as buildings (see the red regions marked
by the magenta rectangle in Figure 8f) because its vegetation detection method cannot
well recognise vegetation in shadows. Our methods can detect shadows and recognise
vegetation in shadows, and thus are not limited by such problems in this test area.

As shown in Figure 11, in terms of the boundaries, the DeepLabv3+ method performs
best among all three methods compared with ours, with fewer overdetected pixels and
fewer missing pixels. However, U-Net and the HOA method have more overdetected
pixels near the boundaries. The quantitative evaluation results in Table 2 are in accordance
with the aforementioned visual comparison, with the ranking by area quality as follows:
DeepLabv3+, the biSH+IFCC method, the beSH+IFCC method, the HOA method (area
quality corrected to four decimal places: 89.7726%), and U-Net (area quality corrected to
four decimal places: 89.7678%). Notably, our method also obtains higher object quality
values when only considering objects larger than 10 m? than the HOA method because it
incorrectly treats a vegetated region larger than 10 m? as a building.

Table 2. Quantitative evaluation results of different methods on the second test area.

Method

Comy,,

Coryy

Qar

Comm

C01‘10

Q1o

C0m50

C01'50

Qs

DeepLabv3+
U-Net
HOA
nDSM

beSH+IECC

biSH+IFCC

97.20%
97.43%
96.37%
97.69%
96.47%
96.46%

93.59%
91.95%
92.91%
44.06%
94.01%
94.18%

91.13%
89.77%
89.77%
43.60%
90.89%
91.03%

100.00%
100.00%
91.67%
100.00%
100.00%
100.00%

100.00%
100.00%
100.00%

21.43%
100.00%
100.00%

100.00%
100.00%
91.67%
21.43%
100.00%
100.00%

100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

100.00%

100.00%

100.00%
29.41%

100.00%

100.00%

100.00%
29.41%

100.00%
100.00%

100.00%
100.00%

The comparison results on the third test area are presented in Figure 9, from which
we can see that again, all the compared methods (nDSM not included) obtain acceptable
detection results, and we cannot determine which one is better if we do not visually
compare them carefully. As shown in Figure 9 and the rectangle-marked comparison in
Figure 12, DeepLabv3+ obtains more better-performing areas (see the regions marked by
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blue rectangles in Figure 12a) than less effective areas (see the regions marked by white and
magenta rectangles in Figure 12a); thus, it obtains better results than our methods. U-Net
obtains an approximately equal amount of better-performing areas (see the regions marked
by blue rectangles in Figure 12b) to the less effective areas (see the regions marked by the
white and magenta rectangles in Figure 12b), which means it obtains comparable results to
our methods. Compared with the biSH+IFCC method, except for missing another four big
buildings or building parts (see the green regions marked by the first four white rectangles
in Figure 12¢) and misclassifying one large vegetation region as a building (see the red
region marked by the first magenta rectangle in Figure 12c), the HOA method performs well
on the main bodies of the buildings. However, it has too many coarse building boundaries,
most of which are overdetection. The HOA method mainly shows advantages over our
methods on the two buildings marked by the first four blue rectangles in Figure 12¢, but our
methods show obvious advantages over the HOA method on more buildings. Therefore,
we conceive our methods outperform the HOA method on this test area.

The quantitative evaluation results in Table 3 are in accordance with the aforemen-
tioned visual comparison, with the ranking of area quality as follows: DeepLabv3+,
the beSH+IFCC method, the biSH+IFCC method, U-Net and the HOA method. Notably,
our methods also obtain higher object quality when only considering objects larger than
10 m? than the HOA method because it misses more buildings larger than 10 m?.

Table 3. Quantitative evaluation results of different methods on the third test area.

Method Comyg, Cor,y Q.r Comqg Coryg Q1o Coms Corsg Qs
DeepLabv3+ 95.06% 95.22% 90.72% 89.58% 100.00% 89.58% 100.00% 100.00% 100.00%
U-Net 95.53% 93.55% 89.63% 95.00% 100.00% 95.00% 100.00% 100.00% 100.00%
HOA 93.53% 93.61% 87.91% 83.33% 100.00% 83.33% 100.00% 100.00% 100.00%
nDSM 97.03% 64.73% 63.47% 95.83% 60.00% 58.47% 100.00% 80.00% 80.00%
beSH+IFCC  93.34% 95.94% 1 89.79% 91.67% 100.00% 91.67% 100.00% 100.00% 100.00%
biSH+IFCC  93.17% 95.94% 89.64% 91.67% 100.00% 91.67% 100.00% 100.00% 100.00%

1 The Cor,, values corrected to 3 decimal places for our beSH+IFCC and biSH+IFCC methods are 95.937% and
95.942%, respectively.

The average quantitative evaluation results on all three test areas are presented in
Table 4, from which we can see that the ranking by the area quality is DeepLabv3+, the pro-
posed biSH+IFCC method, the proposed beSH+IFCC method, U-Net and the HOA method.
In the comparison with the two deep learning methods, DeepLabv3+ slightly outperforms
our methods, whereas our methods slightly outperform U-Net in area quality. Considering
the two deep learning methods were trained with a large portion of the entire dataset that is
similar to the three test areas, our unsupervised methods obtain very satisfactory extraction
results. Note that both the image data and LiDAR data were used for the training of the
two deep-learning methods; thus, the comparison is fair in terms of data.

As for the comparison with the HOA method, our methods obviously outperform
it, with improvements of 1.36% (the beSH+IFCC method) and 1.47% (the biSH+IFCC
method) in the area quality averaged over the three test areas. Besides, our methods show
improvements of 5.53% (for both the beSH+IFCC method and the biSH+IFCC method)
in the average Qo metric over the HOA method. On the entire dataset (see Table 5),
the beSH+IFCC method slightly outperforms the HOA method, with an improvement of
0.89% in average area quality, but the biSH+IFCC method obviously outperforms it, with an
improvement of 1.56%. Improvements in the Q;p metric are also achieved on the entire
dataset. Considering all the qualitative and quantitative comparisons in this section, we
can conclude that our methods outperform the HOA method. Notably, because the HOA
method also combines image data and LiDAR data, the comparison is fair in terms of data.
Note that groundtruths used for the evaluation on the three test areas distinguish individual
buildings even when they are spatially connected, while the groundtruth for the entire
dataset treats connected buildings as one object, which tends to reduce the object-based



Remote Sens. 2022, 14, 1912

23 of 31

metrics because generally the number of true positives is reduced. Such an experimental
setup was adopted because the ISPRS does not offer the instance segmentation groundtruth
for the entire dataset.

Table 4. Average quantitative evaluation results of different methods on the three test areas.

Method Comy, Corye Q.r Comyqg Coryg Q1o Coms Corsg Qs
DeepLabv3+ 95.77% 94.35% 90.57% 97.22% 98.33% 95.56% 100.00% 100.00% 100.00%
U-Net 95.75% 93.05% 89.34% 95.49% 100.00% 95.49% 100.00% 100.00% 100.00%
HOA 94.33% 93.84% 88.80% 89.58% 100.00% 89.58% 100.00% 100.00% 100.00%
nDSM 96.92% 60.06% 58.81% 98.61% 42.70% 42.19% 100.00% 57.68% 57.68%
beSH+IFCC  94.39% 95.30% 90.16% 96.18% 100.00% 96.18% 100.00% 100.00% 100.00%
biSH+IFCC  94.51% 95.29% 90.27% 96.18% 100.00% 96.18% 100.00% 100.00% 100.00%

Table 5. Quantitative evaluation results of different methods on the entire dataset.

Method Comy, Coryye Q.r Comqg Coryg Q1o Coms Corsg Qs
HOA 94.10% 90.34% 85.50% 93.42% 87.97% 82.84% 96.35% 96.90% 93.47%
beSH+IFCC  91.74% 93.68% 86.39% 91.22% 91.70% 84.26% 96.06% 97.49% 93.74%
biSH+IFCC  92.96% 93.21% 87.06% 93.00% 90.80% 84.99% 96.85% 97.47% 94.48%

3.4. Quantitative Comparison with Publicly Available Results

For the second comparison, we mainly used the average area quality on the three test
areas of the Vaihingen dataset to evaluate the compared methods, regardless of whether
they are supervised or unsupervised. Twenty-six publicly available results from different
methods were compared with our methods, which are divided into two groups.

The first group are the top-10 methods in area quality that have been evaluated using
all three test areas of the Vaihingen dataset on the official website of the ISPRS Test Project
on Urban Classification and 3D Building Reconstruction. There are 41 methods evaluated
using all three test areas of the Vaihingen dataset on this website in total, but we selected
only the top ten in area quality for comparison for clarity. Comparison results are presented
in Table 6, where the best results of the 10 methods compared to ours are marked in
boldface, the second-best results are marked by underlining, and the results of our two
methods are in the last two rows, which also applies to the following table in this section.
The acronyms for the ten compared methods are kept the same as on the ISPRS benchmark
website (https://www2.isprs.org/commissions/comm2/wg4/results, accessed on 28
February 2022). As shown in Table 6, the highest average area quality for all 10 methods
(89.79%) is lower than the average area quality of our beSH+IFCC (90.16%) and biSH+IFCC
(90.27%) methods. Among the top 10 methods, four directly combine images and LiDAR
data, and another one combines images and DSM generated from stereo matching. Thus,
the competitive performance of our methods not only results from combining multimodal
data but also from the proposed improvements. Notably, the methods with the top two
highest average area quality scores among the top 10 methods both combine images with
LiDAR data or DSM generated from stereo matching: the DLR method (see the fourth row
of Table 6) and the ZJU method (see the third-to-last row of Table 6). This also indicates
that combining remote sensing images with 3D data is beneficial for building extraction.

The second group are 16 state-of-the-art methods in 13 papers published in the last
five years (2017-2021): Du et al.’s method [35], the Jarzabek-Rychard and Maas (JM)
method [3], Huang et al.’s method [91], Mousa et al.’s method [92], Cai et al.’s method [93],
Maltezos et al.’s method [94], Nguyen et al.’s method [6], Zhang et al.’s method [95],
Liu et al.’s method [60], Dey et al.’s method [96], Zhang et al.’s method [89], Hui et al.’s
method [97], the Anchor Graph method, the squared-loss mutual information regularisation
(SMIR) method, the safe semi-supervised regression (SAFER) method, and the weighted
average (WeiAve) method. The last four methods were proposed in the same literature [29].
The 16 methods were also quantitatively compared with our methods. The comparison
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results are presented in Table 7, from which we can see that our methods obtained higher
average area qualities than all 16 compared methods. Note that 6 of the 16 compared
methods also combine images with LiIDAR data or DSM, and 6 of the 16 compared methods
are deep-learning-based methods. Therefore, in this paper, 8 (2 + 6) deep-learning-based
methods and 13 (3 + 4 + 6) methods that directly combine images and 3D data were
compared with our methods.

Table 6. Comparisons with the publicly available evaluation results on the ISPRS benchmark website.

Method Comy, Corar Q.r Com,p; Corgp; Qobj Comysg Corsg Qs
CAL2 89.20% 97.20% 86.96% 78.23% 100.00% 78.23% 100.00% 100.00% 100.00%
CSu 94.03% 94.87% 89.48% 83.30% 100.00% 83.30% 100.00% 100.00% 100.00%
DLR 93.30% 95.97% 89.79% 80.33% 98.97% 79.60% 100.00% 100.00% 100.00%
HANC3 91.27% 95.87% 87.82% 85.37% 82.17% 71.73% 100.00% 98.87% 98.87%
HKP 91.40% 97.83% 89.59% 79.73% 96.50% 77.56% 99.13% 100.00% 99.13%
Ljul 94.23% 94.60% 89.43% 82.97% 100.00% 82.97% 100.00% 100.00% 100.00%
Lju2 94.77% 94.33% 89.66% 87.17% 100.00% 87.17% 100.00% 100.00% 100.00%
WHU_YD 89.77% 98.57% 88.60% 87.77% 99.33% 87.28% 99.13% 100.00% 99.13%
WHU_ZZ 90.27% 96.57% 87.54% 81.50% 98.53% 80.67% 99.13% 100.00% 99.13%
ZJu 92.83% 96.40% 89.74% 76.43% 96.97% 74.85% 99.13% 100.00% 99.13%
beSH+IFCC  94.39% 95.30% 90.16% 83.77% 100.00% 83.77% 100.00% 100.00% 100.00%
biSH+IFCC ~ 94.51% 95.29% 90.27% 83.77% 100.00% 83.77% 100.00% 100.00% 100.00%
Table 7. Comparisons with state-of-the-art results in existing literatures.
Method Publish Year Method Type Data Type Q.r

Du et al.’s method 2017 Unsupervised Images+LiDAR 89.50%

JM method 2017 Unsupervised Images+LiDAR 86.83%

Huang et al.’s method 2018 Unsupervised LIDAR (as point cloud) 88.60%

Mousa et al.’s method 2019 Unsupervised Images+DSM 88.43%

Cai et al.’s method 2019 Unsupervised LIDAR (as point cloud) 89.60%

Maltezos et al.’s method 2019 Deep learning based Images+LiDAR 80.80%

Nguyen et al.’s method 2020 Unsupervised Images+LiDAR 86.57%

Zhang et al.’s method 2020 Deep learning based Images+LiDAR 87.32%

Liu et al.’s method 2020 Unsupervised LiDAR 87.70%

Dey et al.’s method 2020 Unsupervised LiDAR 84.00%

Zhang et al.’s method 2021 Unsupervised Images 89.30%

Hui et al.’s method 2021 Unsupervised LiDAR 88.49%

Anchor Graph method 2021 Deep learning based Images 82.67%

SMIR method 2021 Deep learning based Images 82.60%

SAFER method 2021 Deep learning based Images 82.87%

WeiAve method 2021 Deep learning based Images 83.93%

beSH+IFCC method this paper Unsupervised Images+LiDAR 90.16%

biSH+IFCC method this paper Unsupervised Images+LiDAR 90.27%

3.5. Related Discussions

Since the HOA method and our methods all rely on vegetation detection from image
data, we compared its vegetation detection method, the Otsu method [70], with ours, using
the Vaihingen dataset in this section. The vegetation detection methods proposed in the
work of [71] were also compared, and we refer to them as the eSH+iSH method and the
iSH+iSH method because they use the eSH and iSH methods for vegetation detection
in sunlit areas and use the iSH method for shadow detection to recognise vegetation in
shadows. NDVlI is the feature binarised by all compared methods in this section. As shown
in Table 8, the four SH methods obtained obviously better results than the Otsu method.
This partly explains why our two methods obtained better building extraction results than
the HOA method.
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Additionally, we can see from Table 8 that our eSH+eSH method outperforms the
eSH+iSH method of [71], and our iSH+eSH method outperforms the iSH+iSH method
of [71], which directly validates our choice of using the eSH method for the vegetation
detection in shadowed areas. Note that all 33 images of the Vaihingen dataset were used for
quantitative evaluation in this study, whereas only 16 of them were used for quantitative
evaluation in the work of [71].

Table 8. Quantitative evaluation results of different vegetation detection methods.

Method Comy, Corye Q.r OA F1 Score
Otsu 74.23% 96.59% 72.34% 87.74% 83.87%
eSH+eSH 86.75% 91.20% 80.05% 90.98% 88.78%
eSH+iSH 83.34% 92.83% 78.30 % 90.10% 87.60%
iSH-+eSH 88.07% 90.68% 80.75% 91.33% 89.20%
iSH+iSH 87.12% 91.00% 80.21% 91.03% 88.81%

We also computed the average area quality for all five vegetation detection methods.
Comparing the quality values of the vegetation detection methods in Table 8 with the
area quality values of our building extraction methods (see the quantitative results in
Tables 4 and 5), we can see that our building extraction methods have much higher area
quality values than our vegetation methods. This is because of the following two facts:

(a). Our vegetation methods rely only on image information, but our building extrac-
tion methods combine images and the corresponding LiDAR data.

(b). The ability of our vegetation detection methods to recognise vegetation in shadows
is limited, tending to make some errors in shadowed regions. However, our building
extraction methods use the IFCC method to further remove the unrecognised vegetation
in the shadows remaining in the building masks, which can also recover some missing
building parts.

The HOA method can also deal with vegetation in shadows. However, it mainly relies
on the region matching between the segmentation results of the LIDAR data and the initial
building mask to indirectly remove the vegetated regions remaining in the initial building
mask. If there are too large connected vegetated regions remaining in the initial building
mask, the region matching method may fail to exclude them. Our methods attempt to
directly recognise vegetation accurately to obtain an accurate initial building mask and
then further refine the building mask based on the image feature consistency constraint;
thus, they can better manage the aforementioned problem.

In addition to the vegetation detection problem, the HOA method is also limited by
coarse building boundaries. The qualitative comparison in Section 3.3 demonstrates that the
HOA method generates coarse building boundaries on all three test areas, especially on the
third test area, whereas the building boundaries of our methods are relatively accurate on
all three test areas, which indicates that the LIDAR-derived boundaries are not as accurate
as the image-derived boundaries.

Because our methods performed worst on the third test area than on the other two
test areas, we analysed some unfavourable results of our biSH+IFCC method on this test
area to get some insights into the improvement space of our methods. The analysis of our
beSH+IFCC method should be very similar. The selected enlarged part locates at the right
bottom of the third test area. From Figure 13b, we can see that the nDSM is very complete,
only missing very few building points. The initial building mask (Figure 13c) is acceptable,
with most non-building points removed and most building points retained. However, there
are some non-building points remaining (overdetection) and some building points missing
(underdetection), which is caused by the imperfection of our vegetation detection method.
In the refined mask (Figure 13d), some overdetection and underdetection are overcome by
our IFCC method, but some are not (see the regions marked by the first, third, and fifth
white rectangles, and the second magenta rectangle in Figure 13d), and some are even
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worsened (see the regions marked by the second, fourth, sixth and seventh white rectangles,
and the first magenta rectangle in Figure 13d).

@) (b) () (d)

Figure 13. Illustration of some enlarged unfavourable results of our biSH+IFCC method. (a) Remote

sensing image; (b) nDSM,; (c) initial building mask (the nDSM where the vegetation recognised by
the iSH+eSH method has been removed); (d) the final building mask.

As for the detection error marked by the fifth white rectangle in Figure 13d, the only
solution is to further improve the vegetation detection methods. The other detection errors
can be overcome by using a more accurate vegetation detection method or further improv-
ing the building mask refinement method. The errors marked by the magenta rectangles
occur in shadowed vegetation regions. A roof in the first white rectangle in Figure 13d has
a very similar color to vegetation. Some parts of the buildings in the third, fifth, and sixth
white rectangles are occluded by trees in the images. These situations make it challenging to
accurately separate vegetation from buildings only using image information. The introduc-
tion of LiIDAR features can be beneficial. The errors in the magenta rectangles in Figure 13d
are caused by the fact that the remaining vegetation regions are with big size, and they
tend to have high matching degrees with small superpixels. Using larger superpixels
may overcome the problem in the magenta rectangles and the third white rectangle in
Figure 13d, but may worsen errors similar to that in the fourth white rectangle. We may
use larger superpixels and more non-semantic segmentation algorithms to simultaneously
solve the errors in the magenta rectangles, and the third and fourth white rectangles, but the
computation cost will increase. Note that the results in Figure 13 are selected to analyse the
deficiencies and improvement space of our methods. For most other parts, the building
extraction results of our methods are much better, as we can see in Section 3.3, where our
methods obtain high area quality Q,r, high object quality Q;9, and high object quality Qsp.
Our methods do not obtain high object quality Qqp; (still rank third in the comparison of
Table 6), because there are some small buildings in the test areas, and our methods miss
some of them. However, this problem is not severe, because individuals care mainly about
buildings of large size.

4. Conclusions

In this study, we designed two building extraction methods that combine aerial remote
sensing images and the corresponding LiDAR point clouds. Compared with methods in
the literature, the contributions of our methods are twofold: (1) we improved two recently
developed vegetation detection methods to accurately remove vegetation from nDSM
and thus can obtain an accurate initial building mask, and (2) we proposed a building-
mask refinement method based on the image feature consistency constraint, which can
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replace inaccurate LIDAR-derived boundaries with accurate image-derived boundaries
and simultaneously correct the errors made during vegetation detection.

Twenty-nine methods were compared with our methods: our method achieved accu-
racies higher than or comparable to 19 state-of-the-art methods (including 8 deep-learning-
based methods and 11 unsupervised methods, and 9 of the 19 methods combine remote
sensing images and 3D data), and outperformed the top 10 methods (4 of them combine
remote sensing images and LiDAR data) evaluated using the Vaihingen dataset on the
website of the ISPRS Test Project on Urban Classification and 3D Building Reconstruction
in terms of area quality. These encouraging results indicate that our two building extraction
methods are simple but very effective.

Despite being fully automatic and highly accurate, our methods have limitations.
First, they only apply to relatively flat terrains. However, most cities worldwide and some
rural areas have relatively flat terrains. Second, acquiring remote sensing images with the
near-infrared band and the corresponding LiDAR point clouds is expensive. However, we
believe that the cost of obtaining such data will decrease as the sensor technology advances.
In addition, we conceive that reducing the manual labour in target extraction by obtaining
more unlabelled data is much more cost effective than just manually labelling the massive
samples, especially in the coming future when data acquisition is of lower cost.

Although the HOA method does not obtain accuracies as high as our methods, it does
show that LiDAR data is beneficial for removing vegetation in shadows. The adaptive use
of LiDAR data for vegetation detection without introducing inaccurate LiDAR-derived
boundaries is a research direction we will explore further.

There are four main difficulties for unsupervised building extraction combining remote
sensing images and LiDAR point clouds: (1) the precise coregistration of remote sensing
images and LiDAR point clouds; (2) the accurate extraction of nDSM from the LiDAR point
clouds; (3) the accurate vegetation detection from remote sensing images; and (4) boundary
optimisation for the final building mask. We only solved the last two problems to a certain
extent. Since the image data and the LiDAR data of the test dataset have been precisely
coregistered, we did not study the first problem. However, we believe it is worth studying
this problem in depth to guarantee the success of downstream applications and this is also
a future research direction for us. Accurately extracting nDSM from LiDAR point clouds
of arbitrary scenes is still an unsolved and tough problem. However, we only focused on
processing relatively flat terrains, where accurate nDSM extraction is no longer a difficult
task. Therefore, we also did not study the second problem and just used existing tools.

Author Contributions: Conceptualization, YM., S.C., X.H. and T.K.; methodology, YM., S.C., X.H.
and T.K,; software, YM. and S.C.; validation, YM., S.C., XH., Y.L, L.L., TK. and Z.Z.; formal analysis,
L.L. and Y.L.; resources, YM., S.C. and Z.Z.; writing—original draft preparation, YM., S.C., X.H., Y.L.,
L.L., TK. and Z.Z.; writing—review and editing, YM., S.C.,, X.H., Y.L., L.L., TK. and Z.Z ; supervision,
X.H. and T.K.; project administration, Y.M. and T.K.; funding acquisition, T.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number: 41801390), the National Key Research and Development Program of China (grant numbers:
2018YFD1100405 and 2019YFC1509604), and Beijing Key Laboratory of Urban Spatial Information
Engineering (grant number: 2020101).

Data Availability Statement: The Vaihingen data set used in this paper that is publicly released by
the ISPRS can be downloaded from the link: https://www.isprs.org/education/benchmarks/U
rbanSemLab /default.aspx (accessed on 28 February 2022). Some of the publicly available results
compared with our methods can also be found on the ISPRS website: https:/ /www2.isprs.org/com
missions/comm?2/wg4/results (accessed on 28 February 2022).

Acknowledgments: The Vaihingen data set was provided by the German Society for Photogramme-
try, Remote Sensing and Geoinformation (DGPF) [72]: http:/ /www.ifp.uni-stuttgart.de/dgpf/DKEP
-Allg.html (accessed on 28 February 2022). We would like to thank all the people involved in creating
the ground truth of this dataset (accessed on 28 February 2022).


https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx
https://www2.isprs.org/commissions/comm2/wg4/results
https://www2.isprs.org/commissions/comm2/wg4/results
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html

Remote Sens. 2022, 14,1912 28 of 31

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bédis, K.; Kougias, 1.; Jager-Waldau, A.; Taylor, N.; Szab6, S. A high-resolution geospatial assessment of the rooftop solar
photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [CrossRef]

2. Jiwani, A,; Ganguly, S.; Ding, C.; Zhou, N.; Chan, D. A Semantic Segmentation Network for Urban-Scale Building Footprint
Extraction Using RGB Satellite Imagery. arXiv 2021, arXiv:2104.01263.

3.  Jarzabek-Rychard, M.; Maas, H.G. Geometric Refinement of ALS-Data Derived Building Models Using Monoscopic Aerial
Images. Remote Sens. 2017, 9, 282. [CrossRef]

4. Yu, M, Yang, C.; Li, Y. Big Data in Natural Disaster Management: A Review. Geosciences 2018, 8, 165. [CrossRef]

5. Chen, Q.; Wang, L.; Waslander, S.L.; Liu, X. An end-to-end shape modeling framework for vectorized building outline generation
from aerial images. ISPRS |. Photogramm. Remote Sens. 2020, 170, 114-126. [CrossRef]

6. Nguyen, T.H.; Daniel, S.; Guériot, D.; Sintes, C.; Le Caillec, ]. M. Super-Resolution-Based Snake Model—An Unsupervised Method
for Large-Scale Building Extraction Using Airborne LiDAR Data and Optical Image. Remote Sens. 2020, 12, 1702. [CrossRef]

7. Oludare, V,; Kezebou, L.; Panetta, K.; Agaian, S. Semi-supervised learning for improved post-disaster damage assessment from
satellite imagery. In Multimodal Image Exploitation and Learning 2021; Agaian, S.S., Asari, VK., DelMarco, S.P, Jassim, S.A., Eds.;
International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11734, pp. 172-182. [CrossRef]

8. Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite
Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574-586. [CrossRef]

9. Li, L.; Yao, J.; Tu, J.; Liu, X;; Li, Y.; Guo, L. Roof Plane Segmentation from Airborne LiDAR Data Using Hierarchical Clustering
and Boundary Relabeling. Remote Sens. 2020, 12, 1363. [CrossRef]

10. Liu, M,; Shao, Y,; Li, R.; Wang, Y.; Sun, X.; Wang, J.; You, Y. Method for extraction of airborne LiDAR point cloud buildings based
on segmentation. PLoS ONE 2020, 15, e0232778. [CrossRef]

11.  Albano, R. Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds. Appl. Sci. 2019,
9, 4674. [CrossRef]

12.  Yan,],;Jiang, W.; Shan, J. A Global solution to topological reconstruction of building roof models from airborne lidar point clouds.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, I1I-3, 379-386. [CrossRef]

13.  Yang, H.; Wu, P; Yao, X.; Wu, Y,; Wang, B.; Xu, Y. Building Extraction in Very High Resolution Imagery by Dense-Attention
Networks. Remote Sens. 2018, 10, 1768. [CrossRef]

14. Yang, H.L.; Yuan, J.; Lunga, D.; Laverdiere, M.; Rose, A.; Bhaduri, B. Building Extraction at Scale Using Convolutional Neural
Network: Mapping of the United States. IEEE ]. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 2600-2614. [CrossRef]

15.  Shrestha, S.; Vanneschi, L. Improved Fully Convolutional Network with Conditional Random Fields for Building Extraction.
Remote Sens. 2018, 10, 1135. [CrossRef]

16. Huang, J.; Zhang, X.; Xin, Q.; Sun, Y.; Zhang, P. Automatic building extraction from high-resolution aerial images and LiDAR
data using gated residual refinement network. ISPRS J. Photogramm. Remote Sens. 2019, 151, 91-105. [CrossRef]

17.  Ojogbane, S.S.; Mansor, S.; Kalantar, B.; Khuzaimah, Z.B.; Shafri, H.Z.M.; Ueda, N. Automated Building Detection from Airborne
LiDAR and Very High-Resolution Aerial Imagery with Deep Neural Network. Remote Sens. 2021, 13, 4803. [CrossRef]

18. Jin, Y,; Xu, W.; Zhang, C.; Luo, X,; Jia, H. Boundary-Aware Refined Network for Automatic Building Extraction in Very
High-Resolution Urban Aerial Images. Remote Sens. 2021, 13, 692. [CrossRef]

19.  Guo, H;; Shi, Q.; Du, B.; Zhang, L.; Wang, D.; Ding, H. Scene-Driven Multitask Parallel Attention Network for Building Extraction
in High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4287-4306. [CrossRef]

20. Chen, S;; Shi, W,; Zhou, M.; Zhang, M.; Xuan, Z. CGSANet: A Contour-Guided and Local Structure-Aware Encoder-Decoder
Network for Accurate Building Extraction From Very High-Resolution Remote Sensing Imagery. IEEE ]. Sel. Top. Appl. Earth
Observ. Remote Sens. 2022, 15, 1526-1542. [CrossRef]

21. Liao,C.;Hu, H,; Li, H; Ge, X,; Chen, M.; Li, C.; Zhu, Q. Joint Learning of Contour and Structure for Boundary-Preserved Building
Extraction. Remote Sens. 2021, 13, 1049. [CrossRef]

22. Chen, K,; Zou, Z.; Shi, Z. Building Extraction from Remote Sensing Images with Sparse Token Transformers. Remote Sens. 2021,
13, 4441. [CrossRef]

23.  Yuan, W.; Xu, W. MSST-Net: A Multi-Scale Adaptive Network for Building Extraction from Remote Sensing Images Based on
Swin Transformer. Remote Sens. 2021, 13, 4743. [CrossRef]

24. Chen, X;; Qiu, C.; Guo, W.; Yu, A.; Tong, X.; Schmitt, M. Multiscale Feature Learning by Transformer for Building Extraction
From Satellite Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1-5. [CrossRef]

25. Yao, X.; Wang, Y,; Wu, Y,; Liang, Z. Weakly-Supervised Domain Adaptation With Adversarial Entropy for Building Segmentation
in Cross-Domain Aerial Imagery. IEEE |. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 8407-8418. [CrossRef]

26. Touzani, S.; Granderson, J. Open Data and Deep Semantic Segmentation for Automated Extraction of Building Footprints. Remote
Sens. 2021, 13, 2578. [CrossRef]

27. Sun, S.; Mu, L.; Wang, L.; Liu, P; Liu, X.; Zhang, Y. Semantic Segmentation for Buildings of Large Intra-Class Variation in Remote

Sensing Images with O-GAN. Remote Sens. 2021, 13, 475. [CrossRef]


http://doi.org/10.1016/j.rser.2019.109309
http://dx.doi.org/10.3390/rs9030282
http://dx.doi.org/10.3390/geosciences8050165
http://dx.doi.org/10.1016/j.isprsjprs.2020.10.008
http://dx.doi.org/10.3390/rs12111702
http://dx.doi.org/10.1117/12.2586232
http://dx.doi.org/10.1109/TGRS.2018.2858817
http://dx.doi.org/10.3390/rs12091363
http://dx.doi.org/10.1371/journal.pone.0232778
http://dx.doi.org/10.3390/app9214674
http://dx.doi.org/10.5194/isprs-annals-III-3-379-2016
http://dx.doi.org/10.3390/rs10111768
http://dx.doi.org/10.1109/JSTARS.2018.2835377
http://dx.doi.org/10.3390/rs10071135
http://dx.doi.org/10.1016/j.isprsjprs.2019.02.019
http://dx.doi.org/10.3390/rs13234803
http://dx.doi.org/10.3390/rs13040692
http://dx.doi.org/10.1109/TGRS.2020.3014312
http://dx.doi.org/10.1109/JSTARS.2021.3139017
http://dx.doi.org/10.3390/rs13061049
http://dx.doi.org/10.3390/rs13214441
http://dx.doi.org/10.3390/rs13234743
http://dx.doi.org/10.1109/LGRS.2022.3142279
http://dx.doi.org/10.1109/JSTARS.2021.3105421
http://dx.doi.org/10.3390/rs13132578
http://dx.doi.org/10.3390/rs13030475

Remote Sens. 2022, 14,1912 29 of 31

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

56.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211-252. [CrossRef]

Protopapadakis, E.; Doulamis, A.; Doulamis, N.; Maltezos, E. Stacked Autoencoders Driven by Semi-Supervised Learning for
Building Extraction from near Infrared Remote Sensing Imagery. Remote Sens. 2021, 13, 371. [CrossRef]

Chen, S.; Shi, W.; Zhou, M.; Zhang, M.; Chen, P. Automatic Building Extraction via Adaptive Iterative Segmentation With
LiDAR Data and High Spatial Resolution Imagery Fusion. IEEE ]. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 2081-2095.
[CrossRef]

Ghanea, M.; Moallem, P.; Momeni, M. Building extraction from high-resolution satellite images in urban areas: Recent methods
and strategies against significant challenges. Int. |. Remote Sens. 2016, 37, 5234-5248. [CrossRef]

Chen, Q.; Zhang, Y.; Li, X; Tao, P. Extracting Rectified Building Footprints from Traditional Orthophotos: A New Workflow.
Sensors 2022, 22, 207. [CrossRef] [PubMed]

Huang, X.; Zhang, L. Morphological Building/Shadow Index for Building Extraction From High-Resolution Imagery Over Urban
Areas. IEEE |. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 161-172. [CrossRef]

Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic
Building Extraction From High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [CrossRef]

Du, S.; Zhang, Y.; Zou, Z.; Xu, S.; He, X,; Chen, S. Automatic building extraction from LiDAR data fusion of point and grid-based
features. ISPRS ]. Photogramm. Remote Sens. 2017, 130, 294-307. [CrossRef]

Mongus, D.; Lukag, N.; Zalik, B. Ground and building extraction from LiDAR data based on differential morphological profiles
and locally fitted surfaces. ISPRS |. Photogramm. Remote Sens. 2014, 93, 145-156. [CrossRef]

Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of lidar data and building object detection in urban areas.
ISPRS ]. Photogramm. Remote Sens. 2014, 87, 152-165. [CrossRef]

Sampath, A.; Shan, . Segmentation and Reconstruction of Polyhedral Building Roofs From Aerial Lidar Point Clouds. IEEE
Trans. Geosci. Remote Sens. 2010, 48, 1554-1567. [CrossRef]

Wang, R.; Hu, Y.; Wu, H.; Wang, J. Automatic extraction of building boundaries using aerial LIDAR data. ]. Appl. Remote Sens.
2016, 10, 1-20. [CrossRef]

Meng, X.; Currit, N.; Wang, L.; Yang, X. Detect Residential Buildings from Lidar and Aerial Photographs through Object-Oriented
Land-Use Classification. Photogramm. Eng. Remote Sens. 2012, 78, 35-44. [CrossRef]

Rottensteiner, F; Trinder, J.; Clode, S.; Kubik, K. Using the Dempster—Shafer method for the fusion of LIDAR data and
multi-spectral images for building detection. Inf. Fusion 2005, 6, 283-300. [CrossRef]

Zarea, A.; Mohammadzadeh, A. A Novel Building and Tree Detection Method From LiDAR Data and Aerial Images. IEEE . Sel.
Top. Appl. Earth Observ. Remote Sens. 2016, 9, 1864-1875. [CrossRef]

Akbulut, Z.; Ozdemir, S.; Acar, H.; Karsli, F. Automatic Building Extraction from Image and LiDAR Data with Active Contour
Segmentation. J. Indian Soc. Remote Sens. 2018, 46, 2057-2068. [CrossRef]

Wang, C.; Shen, Y,; Liu, H.; Zhao, K; Xing, H.; Qiu, X. Building Extraction from High—Resolution Remote Sensing Images by
Adaptive Morphological Attribute Profile under Object Boundary Constraint. Sensors 2019, 19, 3737. [CrossRef] [PubMed]
Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote sensing imagery
with convolutional neural networks. ISPRS |. Photogramm. Remote Sens. 2017, 130, 139-149. [CrossRef]

Li, W,; He, C,; Fang, J.; Zheng, J.; Fu, H,; Yu, L. Semantic Segmentation-Based Building Footprint Extraction Using Very
High-Resolution Satellite Images and Multi-Source GIS Data. Remote Sens. 2019, 11, 403. [CrossRef]

Liu, Y;; Fan, B.; Wang, L.; Bai, J.; Xiang, S.; Pan, C. Semantic labeling in very high resolution images via a self-cascaded
convolutional neural network. ISPRS ]. Photogramm. Remote Sens. 2018, 145, 78-95. [CrossRef]

Gavankar, N.L.; Ghosh, S.K. Automatic building footprint extraction from high-resolution satellite image using mathematical
morphology. Eur. . Remote Sens. 2018, 51, 182-193. [CrossRef]

Awrangjeb, M.; Siddiqui, FU. A new mask for automatic building detection from high density point cloud data and multispectral
imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W4, 89-96. [CrossRef]

Liu, P; Liu, X,; Liu, M.; Shi, Q.; Yang, J.; Xu, X.; Zhang, Y. Building Footprint Extraction from High-Resolution Images via Spatial
Residual Inception Convolutional Neural Network. Remote Sens. 2019, 11, 830. [CrossRef]

Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A progressive morphological filter for removing nonground
measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872-882. [CrossRef]

Shan, J.; Aparajithan, S. Urban DEM generation from raw lidar data: A labeling algorithm and its performance. Photogramm. Eng.
Remote Sens. 2005, 71, 217-226. [CrossRef]

Sithole, G.; Vosselman, G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning
point clouds. ISPRS ]. Photogramm. Remote Sens. 2004, 59, 85-101. [CrossRef]

Chen, Z.; Gao, B.; Devereux, B. State-of-the-Art: DTM Generation Using Airborne LIDAR Data. Sensors 2017, 17, 150. [CrossRef]
Meng, X.; Wang, L. Morphology-based Building Detection from Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2009, 75,
437-442. [CrossRef]

West, K.F; Webb, B.N.; Lersch, ].R.; Pothier, S.; Triscari, ] M.; Iverson, A.E. Context-driven automated target detection in 3D data.
In Automatic Target Recognition XIV; Sadjadi, FA., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA,
USA, 2004, Volume 5426, pp. 133-143. [CrossRef]


http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.3390/rs13030371
http://dx.doi.org/10.1109/JSTARS.2020.2992298
http://dx.doi.org/10.1080/01431161.2016.1230287
http://dx.doi.org/10.3390/s22010207
http://www.ncbi.nlm.nih.gov/pubmed/35009755
http://dx.doi.org/10.1109/JSTARS.2011.2168195
http://dx.doi.org/10.3390/rs12061050
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.005
http://dx.doi.org/10.1016/j.isprsjprs.2013.12.002
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.001
http://dx.doi.org/10.1109/TGRS.2009.2030180
http://dx.doi.org/10.1117/1.JRS.10.016022
http://dx.doi.org/10.14358/PERS.78.1.35
http://dx.doi.org/10.1016/j.inffus.2004.06.004
http://dx.doi.org/10.1109/JSTARS.2015.2470547
http://dx.doi.org/10.1007/s12524-018-0871-2
http://dx.doi.org/10.3390/s19173737
http://www.ncbi.nlm.nih.gov/pubmed/31470563
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.002
http://dx.doi.org/10.3390/rs11040403
http://dx.doi.org/10.1016/j.isprsjprs.2017.12.007
http://dx.doi.org/10.1080/22797254.2017.1416676
http://dx.doi.org/10.5194/isprs-annals-IV-4-W4-89-2017
http://dx.doi.org/10.3390/rs11070830
http://dx.doi.org/10.1109/TGRS.2003.810682
http://dx.doi.org/10.14358/PERS.71.2.217
http://dx.doi.org/10.1016/j.isprsjprs.2004.05.004
http://dx.doi.org/10.3390/s17010150
http://dx.doi.org/10.14358/PERS.75.4.437
http://dx.doi.org/10.1117/12.542536

Remote Sens. 2022, 14,1912 30 of 31

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.
71.

72.

73.
74.

75.

76.
77.

78.

79.

80.
81.

82.

83.

84.

85.

Abdullah, S.M.; Awrangjeb, M.; Lu, G. Automatic segmentation of LIDAR point cloud data at different height levels for 3D
building extraction. In Proceedings of the IEEE International Conference on Multimedia & Expo Workshops, Chengdu, China,
14-18 July 2014; pp. 1-6. [CrossRef]

Sadeq, H. Building Extraction from Lidar Data Using Statistical Methods. Photogramm. Eng. Remote Sens. 2021, 87, 33-42.
[CrossRef]

Maltezos, E.; Protopapadakis, E.; Doulamis, N.; Doulamis, A.; Ioannidis, C. Understanding Historical Cityscapes from Aerial
Imagery Through Machine Learning. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection;
Ioannides, M., Fink, E., Brumana, R., Patias, P., Doulamis, A., Martins, ]., Wallace, M., Eds.; Springer International Publishing;:
Cham, Switzerland, 2018; pp. 200-211.

Liu, K.; Ma, H.; Ma, H; Cai, Z.; Zhang, L. Building Extraction from Airborne LiDAR Data Based on Min-Cut and Improved
Post-Processing. Remote Sens. 2020, 12, 2849. [CrossRef]

Haala, N.; Brenner, C. Extraction of buildings and trees in urban environments. ISPRS ]. Photogramm. Remote Sens. 1999,
54, 130-137. [CrossRef]

Cheng, L.; Gong, ].; Chen, X; Han, P. Building boundary extraction from high resolution imagery and LIDAR data. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 693-698.

Lee, D.; Lee, KM.; Lee, S. Fusion of Lidar and Imagery for Reliable Building Extraction. Photogramm. Eng. Remote Sens. 2008,
74,215-225. [CrossRef]

Yong, L.; Huayi, W.U. Adaptive building edge detection by combining LiDAR data and aerial images. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2008, XXXV1II, 197-202.

Rouse, ].W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings
of the Third ERTS Symposium, Washington, DC, USA, 10-14 December 1973, Volume 1.

Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295-309. [CrossRef]

Rottensteiner, E; Trinder, J.C.; Clode, S.; Kubik, K. Building Detection Using LIDAR Data and Multispectral Images. In
Proceedings of the DICTA, Sydney, Australia, 10-12 December 2003.

Chen, L.; Zhao, S.; Han, W,; Li, Y. Building detection in an urban area using lidar data and QuickBird imagery. Int. J. Remote Sens.
2012, 33, 5135-5148. [CrossRef]

Sohn, G.; Dowman, I. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J.
Photogramm. Remote Sens. 2007, 62, 43—63. [CrossRef]

Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62-66. [CrossRef]
Meng, Y.; Hu, Z.; Chen, X,; Yao, ]. Subtracted Histogram: Utilizing Mutual Relation Between Features for Thresholding. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 7415-7435. [CrossRef]

Cramer, M. The DGPF-Test on Digital Airborne Camera Evaluation Overview and Test Design. Photogramm.-Fernerkund.-Geoinf.
2010, 2010, 73-82. [CrossRef]

Tsai, W.H. Moment-preserving thresolding: A new approach. Comput. Gr. Image Process. 1985, 29, 377-393. [CrossRef]

Yang, B.; Huang, R.; Dong, Z.; Zang, Y.; Li, ]. Two-step adaptive extraction method for ground points and breaklines from lidar
point clouds. ISPRS ]. Photogramm. Remote Sens. 2016, 119, 373-389. [CrossRef]

Zhou, J.; Zhou, Y.; Guo, X; Ren, Z. Vegetation Extraction of Urban District and Brightness Recovery. J. East China Norm. Univ.
(Nat. Sci.) 2011, 6, 002.

Chen, J.; Tian, Q. Vegetation Classification Research on High Resolution Remote Sensing Images. J. Remote Sens. 2007, 11, 221-227.
Su, W.; Li, J.; Chen, Y.; Zhang, J.; Hu, D.; Liu, C. Object-oriented Urban Land Cover Classification based on Multi-scale
Segmentation. J. Remote Sens. 2007, 11, 521-530.

Pérez, A.; Lopez, E; Benlloch, J.; Christensen, S. Colour and shape analysis techniques for weed detection in cereal fields. Comput.
Electron. Agric. 2000, 25, 197-212. [CrossRef]

Zhang, X.; Feng, X.; Ding, X.; Wang, K. Object-oriented Urban Vegetation Extraction Method From IKONOS Images. |. Zhejiang
Univ. Agric. Life Sci. 2007, 33, 568-573.

Felzenszwalb, P.F; Huttenlocher, D.P. Efficient graph-based image segmentation. Int. . Comput. Vis. 2004, 59, 167-181. [CrossRef]
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P; Stisstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel
Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274-2282. [CrossRef]

Liu, M.Y,; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the Conference on
Computer Vision and Pattern Recognition 2011, Colorado Springs, CO, USA, 20-25 June 2011; pp. 2097-2104. [CrossRef]
Jampani, V,; Sun, D.; Liu, M.Y,; Yang, M.H.; Kautz, ]. Superpixel Sampling Networks. In Proceedings of the European Conference
on Computer Vision, Munich, Germany, 8-14 September 2018.

Zanotta, D.C.; Zortea, M.; Ferreira, M.P. A supervised approach for simultaneous segmentation and classification of remote
sensing images. ISPRS |. Photogramm. Remote Sens. 2018, 142, 162-173. [CrossRef]

Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, E,; van der Werff, H.; van
Coillie, E; et al. Geographic Object-Based Image Analysis—-Towards a new paradigm. ISPRS ]. Photogramm. Remote Sens. 2014,
87,180-191. [CrossRef]


http://dx.doi.org/10.1109/ICMEW.2014.6890541
http://dx.doi.org/10.14358/PERS.87.1.33
http://dx.doi.org/10.3390/rs12172849
http://dx.doi.org/10.1016/S0924-2716(99)00010-6
http://dx.doi.org/10.14358/PERS.74.2.215
http://dx.doi.org/10.1016/0034-4257(88)90106-X
http://dx.doi.org/10.1080/01431161.2012.659355
http://dx.doi.org/10.1016/j.isprsjprs.2007.01.001
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TGRS.2018.2851443
http://dx.doi.org/10.1127/1432-8364/2010/0041
http://dx.doi.org/10.1016/0734-189X(85)90133-1
http://dx.doi.org/10.1016/j.isprsjprs.2016.07.002
http://dx.doi.org/10.1016/S0168-1699(99)00068-X
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77
http://dx.doi.org/10.1109/TPAMI.2012.120
http://dx.doi.org/10.1109/CVPR.2011.5995323
http://dx.doi.org/10.1016/j.isprsjprs.2018.05.021
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014

Remote Sens. 2022, 14,1912 31 of 31

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In ECCV; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham,
Switzerland, 2018; pp. 833-851.

Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention-MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; pp. 234-241.

Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, ].D.; Breitkopf, U.; Jung, J. Results of the ISPRS benchmark on urban object
detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256-271. [CrossRef]

Zhang, L.; Wang, G.; Sun, W. Automatic extraction of building geometries based on centroid clustering and contour analysis on
oblique images taken by unmanned aerial vehicles. Int. J. Geogr. Inf. Sci. 2021, 36, 453—475. [CrossRef]

Adeline, K.; Chen, M.; Briottet, X.; Pang, S.; Paparoditis, N. Shadow detection in very high spatial resolution aerial images: A
comparative study. ISPRS ]. Photogramm. Remote Sens. 2013, 80, 21-38. [CrossRef]

Huang, R.; Yang, B.; Liang, F; Dai, W.; Li, ].; Tian, M.; Xu, W. A top-down strategy for buildings extraction from complex urban
scenes using airborne LiDAR point clouds. Infrared Phys. Technol. 2018, 92, 203-218. [CrossRef]

Mousa, Y.A.; Helmholz, P; Belton, D.; Bulatov, D. Building detection and regularisation using DSM and imagery information.
Photogramm. Rec. 2019, 34, 85-107. [CrossRef]

Cai, Z.; Ma, H.; Zhang, L. A Building Detection Method Based on Semi-Suppressed Fuzzy C-Means and Restricted Region
Growing Using Airborne LiDAR. Remote Sens. 2019, 11, 848. [CrossRef]

Maltezos, E.; Doulamis, A.; Doulamis, N.; Ioannidis, C. Building Extraction From LiDAR Data Applying Deep Convolutional
Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 155-159. [CrossRef]

Zhang, P;; Du, P; Lin, C.; Wang, X.; Li, E.; Xue, Z; Bai, X. A Hybrid Attention-Aware Fusion Network (HAFNet) for Building
Extraction from High-Resolution Imagery and LiDAR Data. Remote Sens. 2020, 12, 3764. [CrossRef]

Dey, E.K.; Awrangjeb, M.; Stantic, B. Outlier detection and robust plane fitting for building roof extraction from LiDAR data. Int.
J. Remote Sens. 2020, 41, 6325-6354. [CrossRef]

Hui, Z.; Li, Z.; Cheng, P; Ziggah, Y.Y.; Fan, J. Building Extraction from Airborne LiDAR Data Based on Multi-Constraints Graph
Segmentation. Remote Sens. 2021, 13, 3766. [CrossRef]


http://dx.doi.org/10.1016/j.isprsjprs.2013.10.004
http://dx.doi.org/10.1080/13658816.2021.1937632
http://dx.doi.org/10.1016/j.isprsjprs.2013.02.003
http://dx.doi.org/10.1016/j.infrared.2018.05.021
http://dx.doi.org/10.1111/phor.12275
http://dx.doi.org/10.3390/rs11070848
http://dx.doi.org/10.1109/LGRS.2018.2867736
http://dx.doi.org/10.3390/rs12223764
http://dx.doi.org/10.1080/01431161.2020.1737339
http://dx.doi.org/10.3390/rs13183766

	Introduction
	Methodology
	Initial Building Mask Generation Based on Vegetation Detection
	Generation of nDSM
	Removing Vegetation by Using Subtracted Histogram Methods

	Building Mask Refinement Based on Image Feature Consistency Constraints

	Experimental Results and Discussion
	Test Data and Evaluation Metrics
	Experimental Setup
	Qualitative and Quantitative Comparison with the State-of-the-Art Methods
	Quantitative Comparison with Publicly Available Results
	Related Discussions

	Conclusions
	References

