An Improved Approach to Estimate Stocking Rate and Carrying Capacity Based on Remotely Sensed Phenology Timings
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Modelling Theory
3.2. Overall Workflow
3.2.1. AGB Modelling
3.2.2. The Determination of POS
3.2.3. Annual AGB Correction
3.2.4. LCC and ASR Estimation
3.3. Model Application in Seasonal Rotational Grazing Regimes
3.4. Case Study
4. Results
4.1. The Reliability of β
4.2. The Estimation of LCC and ASR
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
AGBA | Annual above ground biomass (grazed grassland) |
AGBP | Peak above ground biomass (grazed grassland) |
AGBAN | Annual above ground biomass (non-grazed grassland) |
AGBPN | Peak above ground biomass (non-grazed grassland) |
AGBC | The plant biomass consumed by livestock in growing season (by the time of POS in summer pasture) |
AGBS | Total produced above ground biomass on summer pasture |
AGBW | Total demanded above ground biomass for livestock on winter pasture |
AGBPS | Peak above ground biomass of summer pasture (the AGB remainder) |
AGBPW | Peak above ground biomass of winter pasture (the AGB remainder) |
Rs | The ratios including biomass use efficiency, availability, and edibility |
L | The daily intake for a standard sheep unit (SU) |
β | The adjustment ratio to convert AGBP to AGBA for the grazed grassland (regardless rotational regimes) |
β0 | The adjustment ratio for calculating AGBC based on AGBW (for rotational grazing regimes) |
k | The standardized fastest AGB growth rate |
Srate | Slaughter rate (at the end of growing season) |
RPT | Remote sensing phenology timings |
LCC | Livestock carrying capacity |
ASR | Actual stocking rate |
ASRS | Actual stocking rate of summer pasture |
ASRW | Actual stocking rate of winter pasture |
LCC1 | Livestock carrying capacity for period A |
LCC2 | Livestock carrying capacity for period B |
LCCS | Livestock carrying capacity of summer pasture |
LCCW | Livestock carrying capacity of winter pasture |
EXD | The day of AGB growth rate F(x)ʹ exceed AGB removal rate R(x)ʹ |
POS | The peak of the growing season (remote sensing phonology) |
EOS | The end of the growing season (remote sensing phonology) |
SOS | The start of the growing season (remote sensing phonology) |
FOS | The day having the fastest growth rate |
x0 | The day of EXD in the grazed grassland |
x1 | The day of POS in the grazed grassland |
x2 | The day of POS in the non-grazed grassland (POS and EOS are the same day) |
X | The day having the fastest growth rate (FOS) in the grazed grassland |
Period A | The period from Early spring to POS (biomass accumulating period) |
Period B | The period from POS to the next Early spring (the period after POS until growing resumes) |
F(x) | AGB growth function representing the remaining AGB in the non-grazed grassland |
F(x)′ | AGB growth rate in the non-grazed grassland |
R(x) | AGB removal function representing the consumed AGB |
R(x)′ | AGB removal rate |
f(x) | AGB accumulation representing the remaining AGB in the grazed grassland |
References
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Yuan, Q.; Yuan, Q.; Ren, P. Coupled effect of climate change and human activities on the restoration/degradation of the Qinghai-Tibet Plateau grassland. J. Geogr. Sci. 2021, 31, 1299–1327. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Luo, T.; Li, W.; Zhu, H. Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecol. Appl. 2002, 12, 980–997. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, D.; Chen, H. Full Title: Quantifying the ecological carrying capacity of alpine grasslands on the Qinghai-Tibet Plateau. Ecol. Indic. 2022, 136, 108634. [Google Scholar] [CrossRef]
- Piipponen, J.; Jalava, M.; de Leeuw, J.; Rizayeva, A.; Godde, C.; Cramer, G.; Herrero, M.; Kummu, M. Global trends in grassland carrying capacity and relative stocking density of livestock. Glob. Chang. Biol. 2022, 28, 3902–3919. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Gao, J.; Li, X.; Brierley, G.; Lin, C.; Ma, X. Spatiotemporal Variability of Alpine Meadow Aboveground Biomass and Sustainable Grazing in Light of Climate Warming. Rangel. Ecol. Manag. 2023, 90, 64–77. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Huang, N.; Bi, J.; Ma, X.; Ma, Z.; Shangguan, Z.; Zhao, H.; Feng, Q.; Liang, T.; et al. Satellite-derived NDVI underestimates the advancement of alpine vegetation growth over the past three decades. Ecology 2021, 102, e03518. [Google Scholar] [CrossRef] [PubMed]
- Duparc, A.; Redjadj, C.; Viard-Crétat, F.; Lavorel, S.; Austrheim, G.; Loison, A. Co-variation between plant above-ground biomass and phenology in sub-alpine grasslands. Appl. Veg. Sci. 2013, 16, 305–316. [Google Scholar] [CrossRef]
- Oesterheld, M.; Sala, O.E.; McNaughton, S.J. Effect of animal husbandry on herbivore-carrying capacity at a regional scale. Nature 1992, 356, 234–236. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Liu, W.; Qi, Y.; Wo, X. Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China. J. Geogr. Sci. 2014, 24, 303–312. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, J.; Zhang, X.; Niu, B.; Li, M.; Zhang, Y.; Wang, X.; Wang, Z. Dynamic forage-livestock balance analysis in alpine grasslands on the Northern Tibetan Plateau. J. Environ. Manag. 2019, 238, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Retzer, V.; Reudenbach, C. Modelling the carrying capacity and coexistence of pika and livestock in the mountain steppe of the South Gobi, Mongolia. Ecol. Model. 2005, 189, 89–104. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Liu, X.; Qiao, Q. Research on sustainable development in an alpine pastoral area based on equilibrium analysis between the grassland yield, livestock carrying capacity, and animal husbandry population. Sustainably 2019, 11, 4659. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Wu, J.; He, Y.; Niu, B. Alpine Grassland Aboveground Biomass and Theoretical Livestock Carrying Capacity on the Tibetan Plateau. J. Resour. Ecol. 2022, 13, 129–141. [Google Scholar] [CrossRef]
- Yang, S.X.; Feng, Q.S.; Liang, T.G.; Liu, B.K.; Zhang, W.J.; Xie, H.J. Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, S.; Liu, H. Estimation of alpine grassland above-ground biomass and its response to climate on the Qinghai-Tibet Plateau during 2001 to 2019. Glob. Ecol. Conserv. 2022, 35, e02065. [Google Scholar] [CrossRef]
- Scurlock, J.M.; Johnson, K.; Olson, R.J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Chang. Biol. 2002, 8, 736–753. [Google Scholar] [CrossRef]
- Mo, X.G.; Liu, W.; Meng, C.C.; Hu, S.; Liu, S.X.; Lin, Z.H. Variations of forage yield and forage-livestock balance in grasslands over the Tibetan Plateau, China. Chin. J. Appl. Ecol. 2021, 32, 2415–2425. [Google Scholar] [CrossRef]
- Liu, H.; Mi, Z.; Lin, L.; Wang, Y.; Zhang, Z.; Zhang, F.; Wang, H.; Liu, L.; Zhu, B.; Cao, G.; et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef]
- Qin, P.; Sun, B.; Li, Z.; Gao, Z.; Li, Y.; Yan, Z.; Gao, T. Estimation of grassland carrying capacity by applying high spatiotemporal remote sensing techniques in Zhenglan Banner, Inner Mongolia, China. Sustainability 2021, 13, 3123. [Google Scholar] [CrossRef]
- Ping, W.; Zhiwei, W.; Xuetong, Z.; Qisheng, F.; Cili, J.; Quangong, C. GIS-based classification of seasonal pasture in Qinghai province. Pratacultural Sci. 2010, 27, 119–128. [Google Scholar]
- Wei, D.; Zhao, H.; Zhang, J.; Qi, Y.; Wang, X. Human activities alter response of alpine grasslands on Tibetan Plateau to climate change. J. Environ. Manag. 2020, 262, 110335. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, F.Y.; Tang, K.; Wang, Y.; Suri, G.; Bai, Z.; Baoyin, T. Land use alters relationships of grassland productivity with plant and arthropod diversity in Inner Mongolian grassland. Ecol. Appl. 2020, 30, e02052. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, W.; Xue, K.; Wang, S.; Zhang, L.; Hu, R.; Zeng, H.; Xu, X.; Li, Y.; Jiang, L.; et al. Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 668–683. [Google Scholar] [CrossRef]
- Song, Y.; Munch, S.B.; Zhu, K. Prediction-based approach for quantifying phenological mismatch across landscapes under climate change. Landsc. Ecol. 2023, 38, 821–845. [Google Scholar] [CrossRef]
- Möhl, P.; von Büren, R.S.; Hiltbrunner, E. Growth of alpine grassland will start and stop earlier under climate warming. Nat. Commun. 2022, 13, 7398. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Vico, G.; Manzoni, S.; Cai, Z.; Bassiouni, M.; Tian, F.; Zhang, J.; Ye, K.; Messori, G. Early Growing Season Anomalies in Vegetation Activity Determine the Large-Scale Climate-Vegetation Coupling in Europe. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006167. [Google Scholar] [CrossRef]
- Richardson, W.; Stringham, T.K.; Lieurance, W.; Snyder, K.A. Changes in Meadow Phenology in Response to Grazing Management at Multiple Scales of Measurement. Remote Sens. 2021, 13, 4028. [Google Scholar] [CrossRef]
- Shen, M.; Wang, S.; Jiang, N.; Sun, J.; Cao, R.; Ling, X.; Fang, B.; Zhang, L.; Zhang, L.; Xu, X.; et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H.; Jia, G.; Wylie, B.; Gilmanov, T.; Howard, D.; Ji, L.; Xiao, J.; Li, J.; Yuan, W.; et al. Net ecosystem productivity of temperate grasslands in northern China: An upscaling study. Agric. For. Meteorol. 2014, 184, 71–81. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Li, L.; Ma, W. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China. Ecol. Indic. 2014, 41, 40–48. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.-L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2015, 36, 3. [Google Scholar] [CrossRef]
- Deng, X.-P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Xie, J.; Jonas, T.; Rixen, C.; de Jong, R.; Garonna, I.; Notarnicola, C.; Asam, S.; Schaepman, M.; Kneubühler, M. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 2020, 725, 138380. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, T.; Peng, P. Phenology Response to Climatic Dynamic across China’s Grasslands from 1985 to 2010. ISPRS Int. J. Geo-Inf. 2018, 7, 290. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Cao, G.; Ma, Z.; Li, Y.; Zhang, F.; Zhao, X.; Zhao, X.; Jiang, L.; Sanders, N.J.; et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 2020, 23, 701–710. [Google Scholar] [CrossRef]
- Huang, L.; Koubek, T.; Weiser, M.; Herben, T. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species. J. Ecol. 2018, 106, 1621–1633. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, L.; Liu, W.; Zhou, H.-K. Using Remote Sensing and GIS Technologies to Estimate Grass Yield and Livestock Carrying Capacity of Alpine Grasslands in Golog Prefecture, China. Pedosphere 2010, 20, 342–351. [Google Scholar] [CrossRef]
- He, F.; Chen, D.; Li, Q.; Chen, X.; Huo, L.; Zhao, L.; Zhao, X. Temporal and spatial distribution of herbage nutrition in alpine grassland of Sanjiangyuan. Acta Ecol. Sin. 2020, 40, 6304–6313. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, J.; Zhang, X.; Niu, B.; He, Y. Comparison of Methods for Evaluating the Forage-Livestock Balance of Alpine Grasslands on the Northern Tibetan Plateau. J. Resour. Ecol. 2020, 11, 272–282. [Google Scholar] [CrossRef]
- Cai, Z.; Song, P.; Wang, J.; Jiang, F.; Liang, C.; Zhang, J.; Gao, H.; Zhang, T. Grazing pressure index considering both wildlife and livestock in Three-River Headwaters, Qinghai-Tibetan Plateau. Ecol. Indic. 2022, 143, 109338. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Zu, J.; Wang, Z.; Huang, K.; Cong, N.; Tang, Z. Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau. Ecol. Indic. 2019, 104, 365–377. [Google Scholar] [CrossRef]
- Ding, M.J.; Zhang, Y.L.; Sun, X.M.; Liu, L.S.; Wang, Z.F.; Bai, W.Q. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chin. Sci. Bull. 2013, 58, 396–405. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y.; et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Wang, Z.; Li, J.; Odeh, I. Monitoring Phenology in the Temperate Grasslands of China from 1982 to 2015 and Its Relation to Net Primary Productivity. Sustainability 2020, 12, 12. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Shen, Z.; Shi, P.; Xu, X.; Li, X. Grazing-Exclusion Effects on Aboveground Biomass and Water-Use Efficiency of Alpine Grasslands on the Northern Tibetan Plateau. Rangel. Ecol. Manag. 2013, 66, 454–461. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, F.; Tian, L. Altitudinal pattern of grazing exclusion effects on vegetation characteristics and soil properties in alpine grasslands on the central Tibetan Plateau. J. Soils Sediments 2019, 19, 750–761. [Google Scholar] [CrossRef]
- Hu, G.; Gao, Q.; Ganjurjav, H.; Wang, Z.; Luo, W.; Wu, H.; Li, Y.; Yan, Y.; Gornish, E.S.; Schwartz, M.W.; et al. The divergent impact of phenology change on the productivity of alpine grassland due to different timing of drought on the Tibetan Plateau. Land Degrad. Dev. 2021, 32, 4033–4041. [Google Scholar] [CrossRef]
- Li, W.; Ma, X.; Chen, Q. Research on grassland resources yield and balance between forage resources and livestock numbers in Haidong and Haibei prefecture of Qinghai. Acta Prataculturae Sin. 2009, 18, 270–275. [Google Scholar]
- Jia, W.X.; Liu, M.; Yang, Y.H.; He, H.L.; Zhu, X.D.; Yang, F.; Yin, C.; Xiang, W.N. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecol. Indic. 2016, 60, 1031–1040. [Google Scholar] [CrossRef]
- Gao, X.X.; Dong, S.K.; Li, S.; Xu, Y.D.; Liu, S.L.; Zhao, H.D.; Yeomans, J.; Li, Y.; Shen, H.; Wu, S.N.; et al. Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracy of estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau. Ecol. Indic. 2020, 112, 106114. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Y.; Niu, L.; Chai, Y.; Feng, Q.; Wang, W.; Liang, T. A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau. Ecol. Indic. 2021, 125, 107450. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Pan, Y.; Ji, C. Aboveground biomass in Tibetan grasslands. J. Arid Environ. 2009, 73, 91–95. [Google Scholar] [CrossRef]
- Huang, W.; Bruemmer, B.; Huntsinger, L. Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China. Ecol. Econ. 2016, 122, 1–11. [Google Scholar] [CrossRef]
- Briske, D.D.; Coppock, D.L.; Illius, A.W.; Fuhlendorf, S.D. Strategies for global rangeland stewardship: Assessment through the lens of the equilibrium–non-equilibrium debate. J. Appl. Ecol. 2020, 57, 1056–1067. [Google Scholar] [CrossRef]
- O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy; Crown: New York, NY, USA, 2017. [Google Scholar]
- Zhang, C.; Dong, Q.; Chu, H.; Shi, J.; Li, S.; Wang, Y.; Yang, X. Grassland Community Composition Response to Grazing Intensity Under Different Grazing Regimes. Rangel. Ecol. Manag. 2018, 71, 196–204. [Google Scholar] [CrossRef]
- Li, X.; Perry, G.L.W.; Brierley, G.J. A spatial simulation model to assess controls upon grassland degradation on the Qinghai-Tibet Plateau, China. Appl. Geogr. 2018, 98, 166–176. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Sanaei, A.; Li, M.; Ali, A. Topography, grazing, and soil textures control over rangelands’ vegetation quantity and quality. Sci. Total Environ. 2019, 697, 134153. [Google Scholar] [CrossRef]
- Hua, X.; Ohlemüller, R.; Sirguey, P. Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems. Environ. Adv. 2022, 8, 100234. [Google Scholar] [CrossRef]
- Ma, A.; He, N.; Yu, G.; Wen, D.; Peng, S. Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods. Sci. Rep. 2016, 6, 21378. [Google Scholar] [CrossRef] [PubMed]
- Ni, J. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Clim. Change 2001, 49, 339–358. [Google Scholar] [CrossRef]
- Qu, Y.; Zhao, Y.; Ding, G.; Chi, W.; Gao, G. Spatiotemporal patterns of the forage-livestock balance in the Xilin Gol steppe, China: Implications for sustainably utilizing grassland-ecosystem services. J. Arid. Land 2021, 13, 135–151. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.; Zhu, Y.; Zhang, Z.; Li, X. Study on the Aboveground Biomass of Natural Grassland and Balance between Forage and Livestock in Qilian County. J. Nat. Resour. 2017, 32, 1183–1192. [Google Scholar]
Site | Period | Vegetation | SOS | POS | β | References |
---|---|---|---|---|---|---|
QTP | 2000–2005 | Alpine meadow | 154 | 221 | 1.47 | Zhu, Zhang [43] |
Alpine steppe | 160 | 226 | 1.47 | |||
1999–2009 | All grasslands | 145 | 211 | 1.43 | Ding, Zhang [44] | |
Northwestern China | 1985–2010 | Alpine meadow | 129 | 204 | 1.47 | Wang, Zhou [36] |
Alpine steppe | 129 | 204 | 1.47 | |||
Desert steppe | 121 | 198 | 1.46 | |||
Meadow steppe | 123 | 198 | 1.45 | |||
Temperate meadow | 126 | 197 | 1.42 | |||
Typical steppe | 122 | 198 | 1.46 | |||
2000–2016 | Alpine grassland | 150 | 212 | 1.41 | Yang, Dong [45] | |
Temperate grassland | 152 | 211 | 1.38 | |||
Inner Mongolia | 1982–2015 | Temperate grassland | 110 | 220 | 1.76 | Zhang, Zhang [46] |
Mean | 135.08 | 208.33 | 1.47 | |||
SD | 16.20 | 10.10 | 0.10 |
Study Region | Period | Vegetation/Location | AGB (g m−2) | β | References | |
---|---|---|---|---|---|---|
Non-Grazed (AGBA) | Grazed (AGBP) | |||||
Northern Tibetan Plateau | 2006–2010 | Alpine meadow | 55.6 | 47.2 | 1.27 | Wu, Zhang [47] |
Alpine steppe | 27.9 | 20.7 | 1.34 | |||
Alpine desert steppe | 8.7 | 6.0 | 1.45 | |||
2000–2014 | Alpine grassland | 52.5 | 34.0 | 1.54 | Cao, Wu [12] | |
Central Tibetan Plateau | 2006 | Elevation 4650 | 95.00 | 145.00 | 1.53 | Zhao, Sun [48] |
Elevation 4950 | 180.00 | 280.00 | 1.56 | |||
Elevation 5100 | 145.00 | 210.00 | 1.45 | |||
Mean | 80.67 | 106.13 | 1.45 | |||
SD | 62.71 | 106.87 | 0.11 |
Description | Variable | Value | Period | Reference | |
---|---|---|---|---|---|
Non-grazed | Plot experiment used for monitoring plant growth over growing season | AGBmax (g/m2) | 390 | 2002–2014 | Wang, Liu [8] |
k | 0.062 | ||||
X | 174 | ||||
Peak AGB of winter pasture | AGBPW (g/m2) | 353.7 | 2007 | Li, Ma [50] | |
Grazed | VI time series images used for estimating remote sensing phenology parameters | POS (x1) | 218 | 2000–2005 | Zhu, Zhang [43] |
EOS | 264 | ||||
Forage quality decreasing rate | Q | 0.53 | Cai, Song [42] | ||
Peak AGB of summer pasture | AGBPS (g/m2) | 230.0 | 2001–2005 | Jia, Liu [51] | |
220.0 | 2000–2005 | Gao, Dong [52] | |||
200.0 | 2001–2005 | Yu, Wu [53] | |||
210.5 | 2001–2004 | Yang, Fang [54] | |||
Mean | 215.1 | ||||
SD | 12.8 |
Description | Variable | Results |
---|---|---|
The day of AGB growth rate F(x)′ exceed AGB removal rate R(x)′ | EXD(x0) | 131 |
The adjustment factor for calculating AGBC (by the time of POS in summer pasture) based on AGBW, Equations (25) and (26) | β0 | 0.434 |
AGB removal rate is estimated by the reverse verification process, Equation (18) | R(x)′ (g/m2/day) | 1.152 |
ASRS as calculated by Equation (24) | ASRS (SU/ha) | 2.91 |
LCCS as calculated by Equations (28) and (29), AGBP was adjusted by β0 | LCCS (SU/ha) | 2.61 |
Comparison between ASRS and LCCS according to Figure 4 | Grazing severity | Over-grazed |
Over-stock rate | 11.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Brierley, G.; Perry, G.L.W.; Gao, J.; Li, X.; Prishchepov, A.V.; Li, J.; Han, M. An Improved Approach to Estimate Stocking Rate and Carrying Capacity Based on Remotely Sensed Phenology Timings. Remote Sens. 2024, 16, 1991. https://doi.org/10.3390/rs16111991
Shi Y, Brierley G, Perry GLW, Gao J, Li X, Prishchepov AV, Li J, Han M. An Improved Approach to Estimate Stocking Rate and Carrying Capacity Based on Remotely Sensed Phenology Timings. Remote Sensing. 2024; 16(11):1991. https://doi.org/10.3390/rs16111991
Chicago/Turabian StyleShi, Yan, Gary Brierley, George L. W. Perry, Jay Gao, Xilai Li, Alexander V. Prishchepov, Jiexia Li, and Meiqin Han. 2024. "An Improved Approach to Estimate Stocking Rate and Carrying Capacity Based on Remotely Sensed Phenology Timings" Remote Sensing 16, no. 11: 1991. https://doi.org/10.3390/rs16111991
APA StyleShi, Y., Brierley, G., Perry, G. L. W., Gao, J., Li, X., Prishchepov, A. V., Li, J., & Han, M. (2024). An Improved Approach to Estimate Stocking Rate and Carrying Capacity Based on Remotely Sensed Phenology Timings. Remote Sensing, 16(11), 1991. https://doi.org/10.3390/rs16111991