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Abstract: Accurate information about the amount of standing biomass is important in pasture
management for monitoring forage growth patterns, minimizing the risk of overgrazing, and ensuring
the necessary feed requirements of livestock. The morphological features of plants, like crop height
and density, have been proven to be prominent predictors of crop yield. The objective of this
study was to evaluate the effectiveness of stereovision-based crop height and vegetation coverage
measurements in predicting the aboveground biomass yield of bermudagrass (Cynodon dactylon) in
a pasture. Data were collected from 136 experimental plots within a 0.81 ha bermudagrass pasture
using an RGB-depth camera mounted on a ground rover. The crop height was determined based on
the disparity between images captured by two stereo cameras of the depth camera. The vegetation
coverage was extracted from the RGB images using a machine learning algorithm by segmenting
vegetative and non-vegetative pixels. After camera measurements, the plots were harvested and sub-
sampled to measure the wet and dry biomass yields for each plot. The wet biomass yield prediction
function based on crop height and vegetation coverage was generated using a linear regression
analysis. The results indicated that the combination of crop height and vegetation coverage showed a
promising correlation with aboveground wet biomass yield. However, the prediction function based
only on the crop height showed less residuals at the extremes compared to the combined prediction
function (crop height and vegetation coverage) and was thus declared the recommended approach
(R2 = 0.91; SeY= 1824 kg-wet/ha). The crop height-based prediction function was used to estimate
the dry biomass yield using the mean dry matter fraction.

Keywords: stereovision; vegetation coverage; crop height; aboveground biomass; forages; pastures

1. Introduction

Grasslands cover 70% of the agricultural lands and 26% of the world’s total land
surface as of 2010 [1]. The majority of these grasslands are spread by human interventions
to satisfy the need for increasing human and livestock populations. Bermudagrass is a warm
season grass native to southeast Africa and is widely grown in the southeastern USA [2].
Hansen et al. [2] recommend beginning the grazing of bermudagrass when it becomes
15–20 cm tall, and until it reaches 8–10 cm of grazed height. If it grows more than 20 cm, it
is suggested to be harvested as hay up to a uniform height of 8–10 cm. Depending on the
growing season, plant growth is higher in the May to June period than the July to August
period because of a greater amount of moisture availability [2]. These recommendations,
however, change with the location and environmental conditions. Therefore, it becomes
necessary to properly manage such grasslands and forages for optimal growth.

Visual estimation was traditionally practiced by growers and farmers to assess forage
availability in grasslands [3]. These estimates accounted for factors like stage of maturity,
color, leafiness, foreign material, and overall condition of the pasture. A well-experienced
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observer can make an acceptable prediction of the forage availability, but predictions might
vary drastically among observers. Hence, some standardized methods for estimating forage
availability were needed to eliminate the variability in biomass estimations. One such
method is sampling and interpolation. In this method, a small area of 0.1 m2 or a few
such quadrants are harvested in the field and weighed to estimate the average biomass per
unit harvested area. This average yield is then interpolated for the whole pasture. It is an
effective way of measuring the available biomass, but is labor and time intensive, as well
as a destructive method [4].

Several approaches have been used to predict aboveground biomass through indirect
or non-destructive methods. Table 1 provides a summary of the coefficient of determina-
tions (R2) of the biomass prediction functions developed for large scale and farm scale
grasslands with space-borne, aerial-borne, and ground-borne systems and techniques.

Table 1. Biomass estimation techniques/systems and their applicability in forage fields and grasslands.

Technique/System Platform Site Scale
Coefficient of Determination
(R2) of Biomass
Prediction Function

Spectral reflectance Satellite (Landsat-8,
Sentinal-2)

Large scale and farm scale 0.20–0.92 [5–9]

Unmanned aerial vehicle
(Hyperspectral camera)

Farm scale 0.42–0.92 [10,11]

LiDAR Unmanned aerial vehicle and
Unmanned ground vehicle

Farm scale and large scale 0.61–0.74 [12–16]

Structure from motion Unmanned aerial vehicle Farm scale 0.59–0.88 [17–19]
Ultrasound sensor Unmanned ground vehicle Farm scale 0.73–0.80 [20,21]
Meter stick, rising plate meter Manual measurements Farm scale 0.11–0.86 [22,23]

Large-scale applications focus on the regional surveying and temporal analysis of crop
features like yield, nitrogen content, and land cover change over the years on thousands
of acres. On the other hand, farm scale applications facilitate the end users with the yield
assessment for frequent management decisions. The results from Table 1 suggest that the
coefficient of determination was better for the aerial and ground-based systems at their
lower ranges of the R2 values. However, some of the best coefficients of determination
were also seen in the satellite-based systems as well (Table 1).

The long-term goal of this study was to develop forage yield prediction systems that
are easy to use and are of practical utility for satisfying the farm scale needs of cattle and
forage producers. For farm scale pasture management, the decisions related to the forage
availability and stocking rate are made daily. The producer needs an update on which
sections of the pasture can be used for cattle grazing and for how many days, before moving
to the next section. Additionally, the decisions related to the harvesting of the forage for
hay and silage are also scheduled based on the real-time conditions of the field produce.
Any delay or unfavorable weather conditions might result in a significant decrement or
loss of forage produce. Thus, it becomes critical to obtain the information about the forage
availability on a daily basis.

In farm scale pasture productions, the management of the forage is taken care of by the
producer and is sometimes supported by consultants for equipment or service requirements.
The dependency on the consultancies for these resources might sometimes involve lesser
flexibility and independence. The unavailability of the technician and the equipment in
critical times might result in delayed management. So, systems that are fast and easy to use
for the farmer can be a possible solution for utilization without requiring much technical
knowledge for operating and post-processing the costly equipment or devices.

Based on the above-mentioned constraints, satellite-based systems cannot fit in as
a preferred choice for farm scale applications as they might not provide the daily yield
estimates over a small area, and they involve complex data processing for a farmer to deal



Remote Sens. 2024, 16, 2646 3 of 17

with. Aerial based systems require a trained technician for flight management and rigorous
data analysis. Moreover, the UAV-based data analysis, as in the case of spectral cameras
and structure-from-motion methods, take hours to process, depending on the field size and
the processor’s capabilities. Thus, they may not be suitable for real-time assessments by the
farmer. Techniques like ground-based LiDARs and ultrasound sensors might be relevant
for such applications as they are easy to manage compared to UAV and satellite-based data
collection and processing techniques.

However, LiDARs might involve challenging post-processing efforts of converting the
raw lidar data to the end user product (yield). Ultrasound sensors provide point-based
distance values which might not facilitate optimal data to represent the variation in the
crop yield. Koc et al. [21] also used a combination of ultrasound sensors and a compression
ski for predicting aboveground biomass in forage crops. The distance from the center of the
compression ski was measured using the ultrasound sensor while the ski reciprocated over
the crop surface. The results were satisfactory, but the sideward tilts of the ski with the
crop canopy did not respond to the point-based distance measurement of the ultrasound
sensor. Thus, it was not able to explain the spatial variation in the crop height under the
ski. Manual techniques like grazing sticks and pasture plate meters are the simplest to
use but are inefficient [24] and the accuracy of measurements is significantly impacted by
fatigue. Additionally, a limited number of samples can be collected manually which does
not represent the crop traits in the whole field [24].

In addition to the morphological features (crop height), the crop density across the field
may be a helpful input in improving biomass predictions. The crop density or vegetation
coverage (VC) is defined as how much of the region of interest (ROI) is covered with
green vegetation [25]. Flombaum and Sala [26] explained the correlation of the VC with
biomass in their research. Their study was conducted on multiple shrubs and grasses
(shrubs: Mulinum spinosum, Senecio filaginoides, and Adesmia campestris; grasses: Poa ligularis,
Stipa speciosa, and Stipa humilis) and linear relations were used to derive the predictions
of the biomass. Their results showed a significant (p < 0.01) correlation of the VC with
the biomass and coefficient of determinations (R2) from 0.53 to 0.85 among various crops.
Schirrmann et al. [27] also studied the relationship between crop height and plant coverage
in predicting wet and dry biomass. Therefore, the use of crop height along with the VC
might improve biomass predictions.

The overall goal of this research was to evaluate the effectiveness of the RGB-depth
camera-based integrated system in predicting the aboveground biomass yield in the
bermudagrass for farm scale applications. The RGB-depth camera was used to mea-
sure the changing distance from the crop surface contour using stereovision with two
monochromatic cameras. The changing distances from the crop surface were averaged
to represent an index of the height of the crop canopy above the ground (called the crop
height) in a region of interest (ROI). The RGB-depth camera also captured the crop surface
images, which were used to extract the vegetation coverage in the ROI. The crop height and
vegetation coverage measurements were correlated with the aboveground wet biomass
yield measurements from these regions of interest. The specific objectives to achieve the
above-mentioned goal are as follows:

1. To investigate the effectiveness of RGB-depth cameras in measuring the height of the
crop above the ground using stereovision and to quantify vegetation coverage from
RGB images using pixel segmentation.

2. To develop aboveground biomass prediction function with crop height and vegetation
coverage as the potential independent variables.

2. Materials and Methods
2.1. Study Site and Experimental Design

The study was conducted on a 10.1 ha bermudagrass field (34◦39′26′′N 82◦43′45′′W),
out of which two sections of 0.4 ha were used for the data collection on 16 August 2023
(Section 1) and 1 September 2023 (Section 2), respectively (Figure 1). The data was collected
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at solar noon to ensure optimal light conditions and minimum shadow effects during data
capturing. Initially, the plots were marked in the section with survey flags. They were
arranged in six rows with thirteen plots (4.6 m × 1.5 m) for Section 1, except for one row
with just eleven plots due to an ungrown patch in the section. For Section 2, 6 rows of
10 plots (3.0 m × 1.5 m) were flagged, resulting in a total of 136 plots for both sections. The
plot dimensions were adjusted for Section 2 to accommodate the reduced capacity of the
mower’s collection bag (HRN216PKA, Honda Power Equipment Mfg., Swepsonville, NC,
USA). This adjustment was necessitated by the unavailability of the plot harvester (Carter
Manufacturing Co., Brookston, IN, USA) used in Section 1 for harvesting the marked plots.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 18 
 

 

2. Materials and Methods 
2.1. Study Site and Experimental Design 

The study was conducted on a 10.1 ha bermudagrass field (34°39′26″N 82°43′45″W), 
out of which two sections of 0.4 ha were used for the data collection on 16 August 2023 
(Section 1) and 1 September 2023 (Section 2), respectively (Figure 1). The data was col-
lected at solar noon to ensure optimal light conditions and minimum shadow effects dur-
ing data capturing. Initially, the plots were marked in the section with survey flags. They 
were arranged in six rows with thirteen plots (4.6 m × 1.5 m) for Section 1, except for one 
row with just eleven plots due to an ungrown patch in the section. For Section 2, 6 rows 
of 10 plots (3.0 m × 1.5 m) were flagged, resulting in a total of 136 plots for both sections. 
The plot dimensions were adjusted for Section 2 to accommodate the reduced capacity of 
the mower’s collection bag (HRN216PKA, Honda Power Equipment Mfg., Swepsonville, 
NC, USA). This adjustment was necessitated by the unavailability of the plot harvester 
(Carter Manufacturing Co., Brookston, IN, USA) used in Section 1 for harvesting the 
marked plots. 

After marking the plots, 10 ground control points (GCPs) were established in the 
field. These GCPs were used to georeference the UAV images in post-processing. The ge-
olocations of GCPs were recorded using the real time kinematic global positioning system 
(RTK-GPS) devices by Emlid (Emlid, Hong Kong, China). The Emlid Reach RS2 was used 
as the base station and the Reach RS+ was used as the rover. The base station was set up 
at a fixed location in the field and was allowed to average its static location for 0.5 h. This 
was performed to establish its fixed coordinates in the field. The geolocations of GCPs 
recorded with RTK helped align the UAV images with the real-world coordinates. This 
RTK helped in attaining a sub-centimeter level accuracy in the fix mode. It was followed 
by recording the geolocation of the center of all the marked plots for locating the plots in 
the sections during post-processing. 

 
Figure 1. Sections 1 (left) and 2 (right) (red) and plots (black) in the bermudagrass field. 

2.2. OAK-D Stereovision Depth Camera and Its Installation 
The crop height was measured using the depth camera (Luxonis OAK-D, CO, USA) 

baseboard with three cameras for stereo and RGB vision. The detailed specifications of the 
camera [28] are shown in Table 2. 

Table 2. The color and stereovision camera specifications. 

Camera Specifications Color Camera * Stereo Pair ** 
Sensor IMX378 (PY011 AF) OV9282 (PY010 FF) 
DFOV/HFOV/VFOV 81°/69°/55° 81°/72°/49° 
Resolution 12 MP (4056 × 3040) 1 MP (1280 × 800) 
Focus AF: 8 cm–∞ or FF: 50 cm–∞ FF: 19.6 cm–∞ 
Max framerate 60 FPS 120 FPS 

Figure 1. Sections 1 (left) and 2 (right) (red) and plots (black) in the bermudagrass field.

After marking the plots, 10 ground control points (GCPs) were established in the
field. These GCPs were used to georeference the UAV images in post-processing. The
geolocations of GCPs were recorded using the real time kinematic global positioning system
(RTK-GPS) devices by Emlid (Emlid, Hong Kong, China). The Emlid Reach RS2 was used
as the base station and the Reach RS+ was used as the rover. The base station was set up at
a fixed location in the field and was allowed to average its static location for 0.5 h. This was
performed to establish its fixed coordinates in the field. The geolocations of GCPs recorded
with RTK helped align the UAV images with the real-world coordinates. This RTK helped
in attaining a sub-centimeter level accuracy in the fix mode. It was followed by recording
the geolocation of the center of all the marked plots for locating the plots in the sections
during post-processing.

2.2. OAK-D Stereovision Depth Camera and Its Installation

The crop height was measured using the depth camera (Luxonis OAK-D, Latitude,
CO, USA) baseboard with three cameras for stereo and RGB vision. The detailed specifica-
tions of the camera [28] are shown in Table 2.

The depth camera was equipped with an RGB camera in the middle along with two
monochromatic cameras on the sides for stereovision (Figure 2). The camera was installed
on the front of the UGV at a height of 1.5 m above the ground surface using an aluminum
frame, as shown in Figure 3. This installation height was selected based on the minimum
depth measurement range of 0.7 m for the depth camera. The camera’s effective area of
coverage (AOC) for stereovision as per the horizontal and vertical field of view (FOV)
of 72◦ and 49◦ are 2.1 m and 1.3 m. It was calculated using the FOV calculator by the
manufacturer [29], and thus, the camera covered an area of 2.7 m2.
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Table 2. The color and stereovision camera specifications.

Camera Specifications Color Camera * Stereo Pair **

Sensor IMX378 (PY011 AF) OV9282 (PY010 FF)

DFOV/HFOV/VFOV 81◦/69◦/55◦ 81◦/72◦/49◦

Resolution 12 MP (4056 × 3040) 1 MP (1280 × 800)

Focus AF: 8 cm–∞ or FF: 50 cm–∞ FF: 19.6 cm–∞

Max framerate 60 FPS 120 FPS

F-number 1.8 ± 5% 2.0 ± 5%

Lens size 1/2.3 inch (11 mm) 1/4 inch (6.4 mm)

Effective focal length 4.81 mm 2.35 mm

Pixel size 1.55 µm × 1.55 µm 3 µm × 3 µm
* RGB images; ** Distance measurement.
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However, this FOV covered some non-plant regions like UGV tires and frames, so the
effective FOV used for the study was cropped during the data-capturing stage. The depth
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camera was powered using the co-axial power connectors, connected to the 12 V battery
installed on the UGV.

2.3. Data Collection Procedures
2.3.1. Measurement of Crop Height and Vegetation Coverage

The two monochromatic cameras were used to measure crop height. These cameras
worked on the principle of stereovision. They measured the distance from the crop canopy
based on the disparity in the image views between the two stereo cameras. This camera
had the potential to measure the distance for every pixel in its field of view and hence
provided the crop height at all these pixels in the effective FOV. The central region of the
effective FOV was used for data acquisition to eliminate any possible edge-effect errors.

The UGV equipped with the depth camera was driven over the marked plots to
measure the distance of the camera from the crop canopy every second. The UGV was
operated at a speed of 0.6 m/s, which allowed it to capture 8 data points in a 4.57 m
long plot. The UGV was also mounted with Emlid Reach RS+ as the rover station which
recorded the real-time corrected geolocation. An ASUS TUF A15 Gaming Laptop (ASUSTeK
Computer Inc., Beitou District, Taipei, Taiwan) with Ryzen 7 4800H mobile processor, 16 GB
RAM and 512 GB storage was used to extract the data from the depth camera and RS+ via
USB 3.2 Gen-1 Type-A ports.

The distance measurements from the depth camera were merged with their geolo-
cations using a Python script. For measuring the vegetation coverage, the RGB camera
(Figure 2) was used to capture the images of the crop canopy. The RGB image and crop
height data were captured at the same geolocation and instant to eliminate any error caused
by temporal delay.

2.3.2. Postharvest Field View with UAV

The DJI Mavic Pro (SZ DJI Technology Co. Ltd., Nanshan, Shenzhen, China) was
used with a Survey 3W RGB camera (Mapir Inc., San Diego, CA, USA) to capture the
aerial images of the field. This was performed with a pre-planned flight mission using
the Drone Deploy website (https://www.dronedeploy.com; accessed: 16 May 2024) over
the experimental site. The flight parameters are shown in Table 3. Other settings were
either preset or were kept by default. These UAV images were used for generating the
orthomosaics of the harvested field for serving the following purposes:

1. To identify the region of interest (harvested areas) for post-processing and eliminating
the non-relevant data.

2. To geolocate the plots in the field based on the coordinates measured with RTK-GPS.
3. To measure the exact harvested area of the plots excluding the non-harvested regions

of marked plots.

Table 3. UAV flight parameters.

Parameter Details

Flight altitude (m) 18.29
Front overlap (%) 75
Side overlap (%) 75
Flight speed (m/s) 1.8 (Auto Set)
Perimeter 3D ON
Crosshatch 3D ON

2.4. Challenges in Data Collection and Solutions

While testing the depth camera in the field, it was observed that the sunlight exposure
on the AOC was causing an error in the height measurements. To solve this issue, the UGV
was mounted with two aluminum side shades on the left and right sides of the AOC. A
cloth cover was also attached on the top extending from the camera mount to the aluminum

https://www.dronedeploy.com
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side shades. The aluminum was selected to make the shades rigid enough to prevent them
from becoming damaged in the field while colliding with the crop canopy.

The cloth cover was used to allow an optimal amount of diffused light inside the
covered region to capture the RGB images. The aluminum and cloth shade installed on
the UGV are shown in Figure 4. Additionally, some plots (n = 5) in the field missed the
data capturing since the laptop that was recording the data was accidentally switched off.
Hence, the total number of plots with available data was reduced to 131.
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2.5. Harvesting and Weighing of Plots for Wet Biomass Yield Calculations

After capturing the height data and RGB images, the marked plots were harvested
using the employed harvesters. The weight measurements of the harvested forage were
simultaneously recorded in the field using the onboard weighing scale of the plot harvester.
For lawn mower harvesting, a battery-operated weighing scale (Measuretek Enterprise
Ltd., Richmondhill, CA, USA) was used. These weight measurements resulted in providing
the wet biomass yield (WBY) (kg-wet/ha) in every plot. The plots were harvested at an
average height of 5.08 cm. However, due to field’s topography and presence of anthills, the
harvesting height was increased to 6.35 cm to avoid the inclusion of soil or anthills in the
harvested forage during the harvesting and collection in the case of the plot harvester. For
the lawn mower, these issues were not encountered; therefore, a constant cutting height of
5.08 cm was maintained.

2.6. Plot Subsampling for Dry Matter Calculations

To obtain the dry matter fraction (DMF), the sub-samples from each plot (131 harvests)
were collected after harvesting and stored in Ziplock bags. These collected samples were
taken to the laboratory and dried at 55 ◦C (forced air oven) for 48 h to determine the DMF
for every harvested plot sample. The DMF values were used to derive the dry biomass
yield (DBY) predictions. The 3D model view of the harvested plots is shown in Figure 5.
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Figure 5. 3D view of harvested plots generated with SfM. The flags represent the locations of the
GCPs as visible in the 3D model from SfM.

2.7. Post-Processing of Recorded Data and Development of Prediction Function

The post-processing of the raw data captured in the form of aerial RGB images,
coordinates, crop heights, and images for vegetation coverage were conducted in various
software programs. The detailed post-processing steps for each raw data category and
software are explained below.

2.7.1. Generating Orthomosaics from UAV RGB Images

The images captured with the UAV-mounted Survey 3W camera were imported
to Agisoft Metashape Pro 1.8.3 (Agisoft LLC, St. Petersburg, Russia) photogrammetry
software for generating the orthomosaics. Initially, the images were aligned according to
the manually georeferenced GCPs, in Metashape, followed by the creation of a dense cloud,
mesh, DEM, and orthomosaic. Every image imported to the software was geotagged with
reference to these GCPs to align the generated orthomosaic with the real-world coordinates.
The preset parameters for each of these steps were kept at default selections and all models
were generated at a high quality and with moderate filtering settings.

After the completion of the photogrammetry process, the orthomosaics were exported
as a TIFF file. These orthomosaics were later imported to ArcGIS Pro 3.2.2 (ESRI, Redlands,
CA, USA), where a polygon layer was created around the boundaries of each harvested plot
manually, ensuring that it outlined only the harvested regions of the plot. This layer was
used to calculate the actual harvested area for each plot, excluding the unharvested/missed
region in the plots, which do not contribute to biomass. This harvested area was used in
the aboveground wet biomass (kg-wet/ha) calculations by dividing the measured mass of
the harvested forage (kg) with the harvested area of each plot (ha). The geolocation of the
center of the plots that were recorded with RTK-GPS helped ensure the location of every
plot in the real world. This polygon layer was also used as the spatial boundary of the ROI
for calculating the crop height and vegetation coverage for every plot.

2.7.2. Extraction of Crop Height from Raw Data

The raw data collected in the field contained the coordinates (Latitude, Longitude),
date, time, and the canopy distance values measured using the depth camera. These were
imported into ArcGIS Pro 3.2.2 as a point layer, and the plot boundary layer described in
Section 2.7.1 was used as a mask for this point layer. All the data points falling into the
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boundary of the plots were considered as the relevant data for the statistical calculations.
The mean values of canopy distances were used to represent that plot. The mean canopy
distance was subtracted from the ground distance to obtain the total crop height (TCH) as
shown in Figure 6. Next, the height at which the crop was harvested, i.e., the cut canopy
height (CCH), was subtracted from the TCH to obtain the height of the actual harvested
crop in the field; this is defined as the change in crop height (∆H).
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2.7.3. Vegetation Coverage from RGB Images

The RGB images captured with the depth camera were processed through a pre-trained
Neural Network-based pixel segmentation machine learning (ML) model called SegVeg,
developed and trained by Serouart et al. [30]. This program utilized the U-Net model for
segmenting vegetation from the background (generally soil) and later used support vector
machines (SVM) for segmenting green and senescent vegetation. For this study, only the
vegetation versus background segmentation was performed. The segmentation results
were later converted to obtain the percent of green vegetation in each image, which is called
the VC. These data, along with the coordinates of every RGB image, were imported into
ArcGIS Pro 3.2.2, and in a similar manner to the TCH, the VC values were also statistically
summarized to obtain a mean VC for each plot. The segmented image illustration is shown
in Figure 7. It was observed that some of the darker vegetative regions in the captured
images were identified as the background by the system. These darker regions were the
results of the non-uniform illumination of the area of coverage and thus might impact
the aboveground yield predictions. The prediction results from the vegetation coverage
were compared with the existing studies to evaluate the impact of these issues on the
predictions and to investigate the ability of the VC as an independent variable to predict
the aboveground biomass yield.
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2.7.4. Development of the Prediction Function

The exporting of the data files, described in Sections 2.7.1 and 2.7.2 for the ∆H and
VC, respectively, were merged; these included the date, plot number, TCH, CCH, ∆H, VC,
DMF, WBY, and DBY from both the harvested sections. The WBY prediction functions
were developed from the ∆H, VC, and the combined ∆H and VC as potential independent
variables using linear regression analysis. The general equation of the developed prediction
function is shown in Equation (1):

βw = b1 × ∆H + b2 × VC + c. (1)

where,
βw = wet biomass yield (kg-wet/ha);
b1 = coefficient of change in crop height;
∆H = change in crop height (mm);
b2 = coefficient of vegetation coverage;
VC = vegetation coverage (%);
c = y-intercept (kg-wet/ha).
The crop height accounts for the vertical growth of the forage above the ground and,

hence, contributes significantly to the biomass. Similarly, vegetation coverage explains the
crop spread across the field. The higher crop height and vegetation coverage values show
high biomass availability in the field. But, if the crop height or vegetation coverage is zero,
it conveys that no crop is available in the field for harvesting. So, the biomass amount with
respect to that should also be zero. Therefore, the prediction function generated for biomass
quantification must pass through the origin, justifying zero biomass at zero vegetation
coverage and crop height. Thus, the βw(∆H), βw(VC), and βw(∆H, VC) were generated
with both approaches, i.e., with the y-intercept (c ̸= 0) and the intercept set through the
origin (c = 0). The results from these prediction functions were statistically evaluated to
conclude the best approach. Next, the βw was multiplied by the mean DMF from all the
plots to obtain the dry biomass yield predictions, as shown in Equation (2).

βd = DMFm × βw. (2)

where,
βd = dry biomass yield (kg-DM/ha);
DMFm = mean dry matter fraction;
βw = wet biomass yield (kg-wet/ha).
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3. Results and Discussion
3.1. Correlation Analysis

The results for the βw (c ̸= 0) indicated a positive correlation of the independent
variables with the WBY. Highly significant correlation coefficients (p < 0.001) of 0.62 for
the βw(∆H), 0.43 for the βw(VC), and 0.65 for the βw(∆H,VC) were observed. However,
despite the significant correlation, the coefficient of determination was too low to be of
practical use, given none of these relationships described even half (0.50) of the variability
in βw (Table 4).

Table 4. Results from correlation and regression analyses for βw(∆H), βw(VC), and βw(∆H, VC).

βw(∆H) βw(VC) βw (∆H, VC)

Average WBY
(kg-wet/ha) 5585 5585 5585

n 131 131 131
R2 (c ̸= 0) 0.38 0.18 0.42 *
R2 (c = 0) 0.91 0.89 0.92 *
p-value of regression
(c = 0) p < 0.001 p < 0.001 p < 0.001

SeY (kg-wet/ha) 1824 2040 1726
CV 33% 37% 31%
b1 38.38 0 25.07
p-value (b1) p < 0.001 NA p < 0.001
95% confidence
interval (b1) ±2.11 NA ±6.85

b2 0 72.76 26.36
p-value (b2) NA p < 0.001 p < 0.001
95% confidence
interval (b2) NA ±4.47 ±12.96

* Adjusted R2, NA: Not Applicable.

However, setting the intercept through the origin (c = 0) showed a drastic improvement
in the R2 value. It increased to a minimum of 0.89 for the βw(VC) and to a maximum of 0.92
for the βw(∆H,VC). All these correlations were highly significant (p < 0.001) and indicated
a stronger positive correlation, compared to the prediction functions with the y-intercept
(c ̸= 0).

This approach with the zero-intercept was also adopted by Flombaum and Sala [26] in
their research, who supported its justifications for similar applications. The zero-intercept
compensates for the unknown information about the other unmeasured crop properties that
influence the biomass quantity. Thus, the further regression analysis for all the independent
variables was based on a similar approach (c = 0).

3.2. Regression Analysis
3.2.1. ∆H as the Independent Variable (βw(∆H))

The regression results for the βw(∆H) indicated the standard error of the βw estimates
(SeY) was 1824 kg-wet/ha, with a coefficient of variation (CV) equal to 33%. The coefficient,
b1, of the independent variable (∆H) was 38.38, with a 95% confidence interval of ±2.11.
These findings suggest that the change in crop height can explain 91% of the variability
in the βw (R2 = 0.91) with a highly significant linear relation (p < 0.001). The visual
representation of the regression results for βw(∆H) is shown in Figure 8.
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3.2.2. VC as the Independent Variable (βw(VC))

The prediction function for the VC produced an R2 value of 0.89 (Figure 9). The
SeY was 2040 kg-wet/ha with a 37% CV. A highly significant regression coefficient, b2,
of 71.76 ± 4.47 was observed for the βw(VC) with a 95% confidence interval. The results
indicate that the VC can satisfactorily explain 89% of the variability in the βw.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 8. Observed wet biomass yield vs. change in crop height (∆H). 

3.2.2. VC as the Independent Variable (βw(VC)) 
The prediction function for the VC produced an R2 value of 0.89 (Figure 9). The SeY 

was 2040 kg-wet/ha with a 37% CV. A highly significant regression coefficient, b2, of 71.76 
± 4.47 was observed for the βw(VC) with a 95% confidence interval. The results indicate 
that the VC can satisfactorily explain 89% of the variability in the βw. 

 
Figure 9. Observed wet biomass yield vs. vegetation coverage (VC). 

3.2.3. Compare and Contrast Between the βw(∆H) and βw(VC) 
It can be inferred from Table 4 that the R2 value was higher (0.91) in the case of the 

βw(∆H) compared to the βw(VC), which produced an R2 value of 0.89. The lower SeY of 
1824 kg-wet/ha was observed for the βw(∆H) compared to the βw(VC) with SeY of 2040 kg-
wet/ha. The CV was also lower for the βw(∆H) (33%) compared to the βw(VC) (37%). In 

Figure 9. Observed wet biomass yield vs. vegetation coverage (VC).



Remote Sens. 2024, 16, 2646 13 of 17

3.2.3. Compare and Contrast between the βw(∆H) and βw(VC)

It can be inferred from Table 4 that the R2 value was higher (0.91) in the case of the
βw(∆H) compared to the βw(VC), which produced an R2 value of 0.89. The lower SeY
of 1824 kg-wet/ha was observed for the βw(∆H) compared to the βw(VC) with SeY of
2040 kg-wet/ha. The CV was also lower for the βw(∆H) (33%) compared to the βw(VC)
(37%). In addition to that, as shown in Figure 8, it was observed that the data points were
evenly scattered around the line of best fit over the range of measurement for the βw(∆H).
But in the case of the βw(VC), a skewness in the data point spread was observed around
the extremes (Figure 9). For the VC values less than 75%, the function overpredicts the
βw(VC), and for the VC above that, it tends to underpredict the estimates.

Therefore, to obtain additional insight into what was observed from the graphs, the
mean residual of three observations at the upper and lower extremes for both the prediction
functions were compared. The results indicated that the mean residual for the βw(VC)
was 4585 kg-wet/ha at the upper extreme and 2955 kg-wet/ha at the lower extreme. As
expected, these residuals were higher than the βw(∆H), with a mean residual of 3418 kg-
wet/ha at the upper extreme and 2297 kg-wet/ha at the lower extreme. Notably, the higher
residuals imply a higher deviation of the βw from the observed values, indicated by the
skewness in Figure 9. This could be an impact of the darker regions in the captured images
due to a non-uniform illumination in the area of coverage. This might have resulted in the
error in the VC calculation from the RGB images, whose possible impact is visible as the
skewness in the data point scatter.

Thus, the above results indicate that the βw(∆H) was better than the βw(VC) in all
aspects for WBY predictions. This favors the βw(∆H) as a standalone method for yield
estimation in bermudagrass when using a single independent variable. This result is
also supported by several other researchers who used crop height as an independent
variable for biomass quantification in various crops and achieved satisfactory results of
its correlation [31–33]. As shown in Table 1, compared to the results from various studies
on biomass estimation, the prediction functions developed in this study using the ∆H and
VC showed higher values of the coefficient of determination (R2). This also conveys that
despite the darker regions being identified as the background pixels, the results from the
βw(VC) were satisfactory and better compared to the related studies (Table 1), indicating
the least impact of the observed issue. However, the discussed issue needs to be resolved
for further applications and attaining better results.

3.2.4. Incorporation of ∆H and VC into a Multiple Linear Regression Function (βw(∆H, VC))

The regression analysis between the observed vs predicted biomass values for the
βw(∆H, VC) was conducted, which produced an R2 value of 0.92. The SeY of 1726 kg-wet/ha
and a CV equal to 31% were also observed for the combined prediction function. The
coefficients of the independent variables, b1 and b2, in the multiple linear regression
function were highly significant (p < 0.001), indicating an acceptable performance of the
prediction function for wet biomass estimation. The WBY vs. βw(∆H, VC) scatter, along
with the line of perfect agreement (y = x), is shown in Figure 10.

3.2.5. Impact of Combining VC with ∆H on βw Performance (βw(∆H) vs. βw(∆H, VC))

Since the R2 value was high for both the βw(∆H) and the βw(VC), the next step was
to determine if the βw(∆H, VC) was superior to the βw(∆H). The results showed that the
βw(∆H, VC) achieved the highest R2 value (0.92) and the lowest SeY (1726 kg-wet/ha)
compared to the βw(∆H) (Table 4). The CV (31%) was also less, indicating that the βw(∆H,
VC) performed better than the βw(∆H). However, after evaluating the magnitude of this
improvement, it was seen that the R2 value incremented by just 0.01 and the CV decreased
by 2% only. The SeY became reduced by only 98 kg-wet/ha compared to the βw(∆H).
These improvements were, however, significantly smaller in magnitude, compared to the
average WBY from all the harvests.



Remote Sens. 2024, 16, 2646 14 of 17Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 10. Observed vs. predicted wet biomass yield from the change in crop height and vegetation 
coverage. 

3.2.5. Impact of Combining VC with ∆H on βw Performance (βw(∆H) vs. βw(∆H, VC)) 
Since the R2 value was high for both the βw(∆H) and the βw(VC), the next step was to 

determine if the βw(∆H, VC) was superior to the βw(∆H). The results showed that the 
βw(∆H, VC) achieved the highest R2 value (0.92) and the lowest SeY (1726 kg-wet/ha) com-
pared to the βw(∆H) (Table 4). The CV (31%) was also less, indicating that the βw(∆H, VC) 
performed better than the βw(∆H). However, after evaluating the magnitude of this im-
provement, it was seen that the R2 value incremented by just 0.01 and the CV decreased 
by 2% only. The SeY became reduced by only 98 kg-wet/ha compared to the βw(∆H). These 
improvements were, however, significantly smaller in magnitude, compared to the aver-
age WBY from all the harvests. 

Additionally, an artifact of the skewness in the βw(VC) was observed after combining 
the VC with ∆H in the βw(∆H, VC), which can be seen in Figure 10. This skewness might 
influence the accuracy of the WBY prediction in the combined prediction function. This 
was confirmed by comparing the residuals for the βw(∆H) and βw(∆H, VC) at the upper 
and lower extremes. A higher magnitude of residuals was observed in the βw(∆H, VC) 
(upper = 3713 kg-wet/ha, lower = 2606 kg-wet/ha) as compared to the βw(∆H) prediction 
function. This signifies a higher deviation of the βw(∆H, VC) from the WBY values com-
pared to the βw(∆H). 

Therefore, the above results indicate the preferability of the βw(∆H) over the βw(∆H, 
VC) as a function for WBY estimation. Additionally, dealing with only one independent 
variable (βw(∆H)) helps in the reduction of cost, labor, time, and data processing complex-
ities, over the  βw(∆H, VC), without significantly compromising the prediction results. 
The recommended prediction function, βw(∆H), is defined in Equation (3) and was used 
for deriving the DBY along with the DMF values. 

βw (∆H) = 38.38 × ∆H. (3)

3.3. Dry Matter Fraction 
All the plots were sub-sampled after harvesting, and the DMF values for each plot (n 

= 131) were measured. It was observed that the CV for the DMF across all the harvests was 
23%. The mean DMF was 0.44 with a standard deviation of 0.10. This indicates a large 
variation in the DMF between harvests. Dore [34] observed that the average DMF for ber-
mudagrass is around 0.41 for 42 days of growth with a minimum and maximum of 0.22 

Figure 10. Observed vs. predicted wet biomass yield from the change in crop height and vegeta-
tion coverage.

Additionally, an artifact of the skewness in the βw(VC) was observed after combining
the VC with ∆H in the βw(∆H, VC), which can be seen in Figure 10. This skewness might
influence the accuracy of the WBY prediction in the combined prediction function. This
was confirmed by comparing the residuals for the βw(∆H) and βw(∆H, VC) at the upper
and lower extremes. A higher magnitude of residuals was observed in the βw(∆H, VC)
(upper = 3713 kg-wet/ha, lower = 2606 kg-wet/ha) as compared to the βw(∆H) prediction
function. This signifies a higher deviation of the βw(∆H, VC) from the WBY values
compared to the βw(∆H).

Therefore, the above results indicate the preferability of the βw(∆H) over the βw(∆H,
VC) as a function for WBY estimation. Additionally, dealing with only one independent
variable (βw(∆H)) helps in the reduction of cost, labor, time, and data processing complexi-
ties, over the βw(∆H, VC), without significantly compromising the prediction results. The
recommended prediction function, βw(∆H), is defined in Equation (3) and was used for
deriving the DBY along with the DMF values.

βw (∆H) = 38.38 × ∆H. (3)

3.3. Dry Matter Fraction

All the plots were sub-sampled after harvesting, and the DMF values for each plot
(n = 131) were measured. It was observed that the CV for the DMF across all the harvests
was 23%. The mean DMF was 0.44 with a standard deviation of 0.10. This indicates a
large variation in the DMF between harvests. Dore [34] observed that the average DMF
for bermudagrass is around 0.41 for 42 days of growth with a minimum and maximum of
0.22 and 0.50, respectively. Therefore, the DMF value in this study was within the typical
range. The common practice for calculating the DBY is multiplying the WBY values with
the DMF. The mean DMF (DMFm) from 131 harvests was multiplied with the βw for each
plot to obtain the βd, as indicated in Equation (2). Zhang et al. [32] also used average dry
matter to obtain the dry biomass yield in maize.

3.4. Prediction of Dry Biomass Yield (βd)

The recommended prediction function, βw(∆H) (Equation (3)), was used as a function
to derive the βd(∆H) values using the mean DMF, as per Equation (2). A linear regression
between the βd and DBY values was used to generate the equation for the line of best
fit (y = bx). The line of best fit was compared with the line of perfect agreement (y = x)
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to evaluate the performance of the βd(∆H). The line of perfect agreement would have a
slope of 1. The prediction function equation (line of best fit) and results from the regression
analysis are illustrated in Figure 11.
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It was observed that the line fitting through the observed vs. predicted dry biomass
yield (line of best fit) had a slope of 0.98, which was not significantly different from the
slope of the line of perfect agreement (slope = 1). Moreover, the 95% confidence interval of
the variation in the slope was ± 0.06. This indicates the upper and lower bound of the slope
(b) as 1.04 and 0.91, respectively. Notably, the slope of the line of perfect agreement (b = 1)
falls into this 95% CI range. Therefore, the βd(∆H) illustrated a satisfactory performance,
with the standard error of 939.52 kg-DM/ha for DBY estimates. The regression showed
an R2 value of 0.87. This additional error and decrease in the coefficient of determination
(R2) was endorsed by using the mean DMF of all harvests, for varying DMF values across
the field.

These results justify the applicability of the ∆H as the independent variable to estimate
aboveground WBY (kg-wet/ha) and the suitability of the wet biomass function, βw(∆H),
to estimate the βd using the DMFm. In the study by Koc et al. [35], the seasonal average
of the DMF for Alfalfa was used to make the DBY predictions for each harvesting season.
However, the approach practiced in this research is also recommended for making the DBY
estimates. Even if the knowledge of the DMF is enhanced, using any suitable method, the
maximum coefficient of determination that can be achieved will be 0.91 if the developed
function of ∆H (βw(∆H)) for the βd estimation is used.

4. Conclusions

This research focused on the implementation of stereovision for crop height mea-
surement in bermudagrass. The influence of the crop height and ML-based vegetation
coverage was studied for biomass estimation. The findings convey the strong ability of
stereovision as a crop height measurement system. The impactful representation of crop
height for explaining the variability in the aboveground biomass supports the method. It
was observed that both the ∆H and VC highly correlate with the WBY. However, the ∆H
provided the best prediction equation if one independent variable was used.

Combining the ∆H and VC provided slightly improved results, but the scatter about
the regression line was not uniform. This improvement was minimal in contrast to the
time, labor, and resources involved in extracting the vegetation coverage. Thus, for the
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development of the ground rover, which can predict the aboveground biomass, stereovision
can be a useful method for measuring crop height.

Recording a greater number of data points is suggested as part of future studies
while using stereovision-based crop height and vegetation coverage as predictors. This
might help to increase the system’s adaptability among variable environments and crop
diversities. A system to measure the real-time dry matter content of the crop canopy can
be helpful in improving dry biomass predictions. For improving the performance of the
VC, it is suggested to use a higher resolution camera for capturing the canopy images. It is
also recommended to develop a personalized ML model for segmenting vegetative and
non-vegetative pixels, specifically for grasses. This will focus on a specific crop architecture
and may produce enhanced results. Additionally, it is suggested to use a built-in light
source for the illumination of the area of coverage. It should be accompanied by an opaque
shading surface to block diffused sunlight and thus eliminate its effects on data recording.
This artificial light source might help in illuminating the darker vegetative regions for
better data capturing and the post-processing of the RGB images.
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