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Abstract: This study evaluates and compares the performance of four machine learning 

classifiers—support vector machine (SVM), normal Bayes (NB), classification and 

regression tree (CART) and K nearest neighbor (KNN)—to classify very high resolution 

images, using an object-based classification procedure. In particular, we investigated how 

tuning parameters affect the classification accuracy with different training sample sizes. We 

found that: (1) SVM and NB were superior to CART and KNN, and both could achieve high 

classification accuracy (>90%); (2) the setting of tuning parameters greatly affected 

classification accuracy, particularly for the most commonly-used SVM classifier; the 

optimal values of tuning parameters might vary slightly with the size of training samples;  

(3) the size of training sample also greatly affected the classification accuracy, when the size 

of training sample was less than 125. Increasing the size of training samples generally led to 

the increase of classification accuracies for all four classifiers. In addition, NB and KNN 

were more sensitive to the sample sizes. This research provides insights into the selection of 

classifiers and the size of training samples. It also highlights the importance of the 

appropriate setting of tuning parameters for different machine learning classifiers and 

provides useful information for optimizing these parameters. 

Keywords: object-based classification; machine learning classifiers; very high resolution 

image; urban area; tuning parameters 
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1. Introduction 

Urban landscapes are extremely complex and heterogeneous. To adequately quantify the heterogeneity 

of urban land cover, high spatial resolution images are needed. A considerable amount of research has 

shown that object-based approaches are superior to traditional pixel-based methods in the classification 

of high spatial resolution data [1–4]. Consequently, object-based approaches have been increasingly used 

for urban land cover classification [5–7]. 

With object-based classification approaches, objects generated from image segmentation can be 

typically classified using a rule-based procedure (a set of rules) [8] or using machine learning algorithms 

(MLA) based on training samples [1]. While rule-based procedures, which use expert knowledge,  

have been increasingly used for classification, the majority of the studies have used supervised 

classifications [5,9,10]. Many different kinds of MLA have been applied for supervised classifications. 

These algorithms are commonly categorized as parametric and non-parametric classifiers. The two 

widely-used types of parametric algorithms are the maximum likelihood classifier (MLC) and Bayes 

classifiers, and the frequently-used non-parametric classifiers include K nearest neighbor (KNN), 

decision tree (DT) and support vector machine (SVM). 

Previous studies have shown that the use of different classifiers may lead to different classification 

results. Therefore, many studies have been conducted to investigate the effectiveness and efficiency of 

different classifiers [11–14]. However, these studies have been mostly conducted using pixel-based 

approaches. With the wide use of object-based approaches, there has been an increasing interest in 

comparing different machine learning classifiers using object-based methods [5,9,15–17]. When using 

these machine learning classifiers, we should consider at least four key factors that can dramatically 

affect the classification accuracy and efficiency. Specifically, these are image segmentation, training 

sample selection, feature selection and tuning parameter setting [1,5]. While the first three factors have 

been investigated in many previous studies [16,18,19], few studies have investigated the effects of the 

setting of tuning parameters [5]. However, setting tuning parameters is the very first step, as well as one 

of the most important steps to appropriately use these machine learning classifiers. In addition, previous 

comparison studies of machine learning classifiers have been mostly focused on non-urban areas, such 

as grasslands, farmlands and coal mine area [5,9,20]. 

The overall objective of this study is to evaluate the four most frequently used MLAs for urban land 

cover classification, with an object-based approach, using very high spatial resolution imagery.  

In particular, we aim to investigate how tuning parameters affect the classification results, especially 

with different training sample sizes. The four classifiers are: (1) normal Bayes (NB), a parametric 

algorithm; (2) SVM, a statistical learning algorithm; (3) KNN, an instance-based learning algorithm; and 

(4) the classification and regression tree (CART) classifier, a commonly-used DT algorithm. The results 

from this study can provide insights into classifier selection and parameter setting for high resolution 

urban land cover classification. 

2. Study Area and Data 

2.1. Study Site 

The study site is an urban area located in the Haidian District of Beijing, China, between latitudes 
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39°58′30″ and 40°0′47″ and longitudes 116°17′55″ and 116°20′12″. The study area is a complex urban 

area with many land use types, including parks, universities, construction sites and residential areas. 

Land cover types are mainly impervious surface, vegetation cover, bare soil and water, which are typical 

in urban areas. The dominant land cover in parks is vegetation and water, while in the universities and 

the residential areas, the primary land cover is impervious surfaces, mixed with dispersed small patches 

of greenspace. Bare soil is the dominant land cover type in construction sites (Figure 1). 

 

Figure 1. The study area, an urban area located in the Haidian District of Beijing, China. 

Table 1. WorldView-2 specifications. 

Sensor Bands Spectral Range Spatial Resolution 

Panchromatic 450–800 nm 0.46 m 
Coastal 400–450 nm 1.85 m 

Blue 450–510 nm 1.85 m 
Green 510–580 nm 1.85 m 

Yellow 585–625 nm 1.85 m 
Red 630–690 nm 1.85 m 

Red Edge 705–745 nm 1.85 m 
Near-IR1 770–895 nm 1.85 m 
Near-IR2 860–1040 nm 1.85 m 

2.2. Data 

We used WorldView-2 satellite imagery, acquired on 14 September 2012, for land cover 

classification. WorldView-2, launched in October 2009, is the first high resolution 8-band multispectral 

commercial satellite (Table 1). The dynamic range is 11 bits. To take advantage of both the high spatial 

resolution and multispectral features of WorldView-2, a principal component merging algorithm was 

used to merge the multispectral bands and panchromatic band into a new multispectral image with  
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0.5-m spatial resolution using ERDASTM 10. Four land cover types were identified for the study area:  

(1) impervious surfaces; (2) vegetation; (3) water; and (4) bare soil. Impervious surfaces were mainly 

roads and building roofs. Vegetation included trees and grass. Water mostly occurred in parks and bare 

soil in construction sites. Shadows from buildings and trees are common in very high resolution images 

of urban areas. Therefore, we included the shadow class and separated shadows from unshaded land 

cover types [21]. 

3. Methods 

The object-based classification procedure includes image segmentation, training sample selection, 

classification feature selection, tuning parameter setting and, finally, algorithm execution. We first 

segmented the image into land cover segments and then chose a certain amount of segments of different 

land cover types as training samples. After comparing the training sample characteristics of different 

land cover types, we selected certain object features for classification. Finally, we adjusted the tuning 

parameters of different classifiers to generate high classification accuracy. For all four classifiers, we 

used the same procedure for image segmentation and the selection of training samples and classification 

features. The optimal setting of tuning parameters, however, were determined separately for each 

classifier. Following the classifications, object-based accuracy assessment was applied to evaluate 

different classifiers. 

3.1. Image Segmentation 

Many approaches to image segmentation have been applied to land cover classification [8]. Here, we 

used the multi-resolution segmentation approach embedded in Trimble eCognition. The multi-resolution 

segmentation algorithm is a bottom-up approach that consecutively merges pixels or existing image 

objects into larger ones, based on the criteria of relative homogeneity. Scale, shape and compactness 

parameters can be customized to define the size and shape of segmented objects. The scale parameter 

defines the maximum standard deviation of the homogeneity criteria in regard to the weighted image 

layers for generating image objects [22]. In general, the greater the scale value, the larger the size of 

objects and the higher the heterogeneity. In this study, we selected the scale parameters using an iterative 

“trial and error” approach [8]. Two object levels were created with the scale value setting at 30 and 100 

(afterwards referred to as Level 1 and Level 2), respectively. The relatively small value of 30 was set to 

create homogeneous segments and, thus, to avoid the influence of mixed land cover objects. The coarser 

value of 100 was set to generate larger segments that depict a larger land cover of interest (Figure 2). 

Through the trial-and-error approach and experience from previous studies [1,10], we assigned both 

object levels with the color weight of 0.9 and the shape weight as 0.1 to generate meaningful objects. 

The two parameters for compactness and smoothness were set equally as 0.5, based on visual inspection 

of the segmentation results. Equal weight was set for each of the 8 original image layers for segmentation. 

The number of segmented objects for Level 1 and Level 2 were 409,024 and 55,502, respectively. 
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Figure 2. (a) Segmented image objects in Level 1; (b) segmented image objects in Level 2. 

3.2. Selection of Training, Testing Samples and Classification Features 

There are some basic principles for the selection of training samples for pixel-based classification [18,19]. 

The number of object-based training samples, however, is usually determined based on the researcher’s 

experience. Using Google Earth, we randomly chose 1500 object samples, 300 for each class, for the 

classifications and accuracy assessment. These samples were chosen at Level 1 to ensure “pure” objects 

that contained only one land cover type. We then randomly divided the 1500 object samples into two 

sets: 1000 as training samples and 500 as testing samples. To investigate the sensitivities of classifiers to 

the size of training samples, 8 training sample subsets were generated by randomly sampling from the 

total training sample set. The sizes of the training samples of those subsets were 125, 250, 375, 500, 625, 

750, 875 and 1000, respectively. Within a training subset, the numbers of samples for each of the five 

classes were equal, and thus, the sample numbers of each class within the 8 training sample subsets were 

25, 50, 75, 100, 125, 150, 175 and 200, respectively. Likewise, in the testing sample set, there were  

100 samples per class. 

Following the selection of the training and testing samples, spectral and spatial features of the training 

samples were selected for land cover classifications. There are more than one hundred object features 

that could be potentially incorporated into classifications [5,9]. Therefore, the selection of optimal object 

features was determined based on an approach that integrates expert knowledge and quantitative analysis. 

First, we chose a large number of object features that were frequently used in previous studies [1,5]. We 

then used the feature space optimization tools available in Trimble eCognition, combined with 

comparisons of the histograms of each feature among five land cover types to determine the selection of 

optimal object features. Consequently, we selected out 36 object features. These 36 features included  

32 features calculated based on the 8 multispectral bands, that is mean value, standard deviation, mean 

difference to the super-object and standard deviation difference to the super-object of the 8 multispectral 

bands. In addition, we chose Brightness, Max. diff. (max intensity difference), NDVI (Normalized Difference 

Vegetation Index) and NDWI (Normalized Difference Water Index) for classifications (Table 2). 
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Table 2. Object features used for classification. 

Object Features Description 

Mean value a Mean value of a specific band of an image object 

Standard deviation a Standard deviation of an image object 

Mean difference to super-object a 
The difference between the mean input layer value of an image object 
and the mean input layer value of its super-object. Distance of 1. 

SD difference to super-object a 
The difference of the SD input layer value of an image object and the 
SD input layer value of its super-object. Distance of 1. 

Brightness Mean value of the 8 multispectral bands 

Max. diff. Max intensity difference of the 8 multispectral bands 

NDVI (NIR1 − Red)/(NIR1 + Red) 

NDWI (Green − NIR1)/(Green + NIR1) 
a Object features were calculated for each of the 8 multispectral bands. 

3.3. Classifiers and Primary Tuning Parameters 

When using CART, KNN and SVM, one of the key steps is to set the tuning parameters, which are 

different for different classifiers. For each classifier, we tested a series of values for its tuning parameters 

to determine the optimal parameters, that is by which the classifier generates the highest overall 

classification accuracy. When comparing different classifiers, we used the classification results under 

the optimal parameters. In addition, the sensitivity of each classifier was examined using the 8 training 

sample subsets. The algorithms of the 4 classifiers were based on OpenCV [23]. 

DT, first developed by Breiman et al. (1984) [24], is a typical non-parametric model used in data 

mining. We used the classification and regression tree (CART) algorithm, one of the most  

commonly-used DT in this study. With CART, a tree can be developed in a binary recursive partitioning 

procedure by splitting the training sample set into subsets based on an attribute value test and then 

repeating this process on each derived subset. The tree-growing process stops when no further splits are 

possible for subsets. The maximum depth of the tree is the key tuning parameter in CART, which 

determines the complexity of the model. In general, a larger depth can build a relatively more complex 

tree with potentially higher overall classification accuracy. However, too many nodes may also lead to 

over-fitting of the model. In this study, we tested the value of “maximum depth” from 1 to 20 for all 8 

training sample subsets, setting other parameters at the default value (e.g., cross-validation folds and min 

sample count both set to the default value of 10). 

SVM is also a non-parametric algorithm that was first proposed by Vapnik and Chervonenkis  

(1971) [25]. With the SVM algorithm, a hyperplane is first built based on the maximum gap of the given 

training sample sets, and then, it classifies the segmented objects into one of the identified land cover 

classes (in this study, four classes). To map non-linear decision boundaries into linear ones in a higher 

dimension, the four most frequently used types of kernel functions in SVM algorithms are linear, 

polynomial, radial basis function (RBF) and sigmoid kernels [26]. In this study, we chose the most 

frequently used RBF kernel, which has been proven superior to other kernels in previous studies [5,14]. 

The RBF kernel has two important tuning parameters—“cost” (C) and gamma—which can affect the 

overall classification accuracy [27]. A large C value may create an over-fitted model, while adjusting 

the gamma will influence the shape of the separating hyperplane. The optimal value of parameters C and 
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gamma are often estimated with the exhaustive search method [28], which uses a large range of values 

to identify the optimal value. To examine how these two key parameters affect the performance of SVM 

within the object-based approach, we systematically tested 10 values for both C and gamma. Specifically, 

we tested the 10 values of C—10−1, 100,101, 102, 103,104, 105, 106, 107 and 108—and 10 values of 

gamma—10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103 and 104. Consequently, we ran  

100 experiments with different combinations of C and gamma for each of the 8 training sample subsets. 

The non-parameter algorithm KNN uses an instance-based learning approach, or “lazy learning”. 

With this algorithm, an object is classified based on the class attributes of its K nearest neighbors. 

Therefore, K is the key tuning parameter in this classifier, which largely determines the performance of 

the KNN classifier. In this study, we examined K values from 1 to 20 to identify the optimal K value for 

all training sample sets. 

Normal Bayes (NB) is a probabilistic classifier based on Bayes’ theorem (from Bayesian statistics). 

The NB classifier assumes that feature vectors from each land cover type are normally distributed, but 

not necessarily independently distributed, different from the other commonly-used classification model, 

naive Bayes [23,29]. With the NB classifier, the data distribution function is assumed to be a Gaussian 

mixture, one component per class [23]. Using the training samples, the algorithm first estimates the mean 

vectors and covariance matrices of the selected features for each class and then uses them for 

classification. Compared with the other three classifiers, one of the advantages of the NB classifier is 

that there is no need to set any tuning parameter (s), which could be subjective and time-consuming. 

3.4. Accuracy Assessment 

Object-based accuracy assessment was used to evaluate the land cover classifications [30]. We 

conducted accuracy assessment for overall accuracies, resulting from different classifiers, those from the 

same classifier, but with a different size of training samples, and those from the same classifier and same 

size of training samples, but different tuning parameters. Consequently, there were 1128 classification 

maps in total, with 800 generated from SVM, 160 from DT, 160 from KNN and 8 from NB, respectively. 

For each of the 4 classifiers, we chose one thematic map with the highest overall classification accuracy 

for each of the 8 training sample subsets and then compared these 32 thematic maps based on overall 

accuracy, the kappa coefficient and the user’s and producer’s accuracy. In addition, we repeated the 

random selection of training and testing samples within the 1500 samples 10 times and then compared 

average overall accuracy for all classifiers with the optimal parameter values. 

Based on an error matrix of those thematic maps, we further calculated the Z-statistics to evaluate 

whether the classification results were significantly different between two classifiers [13]. Two results 

are significantly different at the 95% confidence level when the absolute value of the Z-statistics is 

greater than 1.96. Z-statistics were used to compare both the classifications from different classifiers, 

and those from the same classifier, but using different numbers of training samples. 

4. Results and Discussion 

4.1. The Comparisons of the Four Classifiers on Land Cover Classifications 

The results showed that SVM generally had the best performance among the four classifiers (Table 3). 
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With the optimal parameter setting, the minimum overall accuracy and kappa coefficient of SVM was 

92.6% and 0.9075, which was higher than the maximum overall accuracy and kappa coefficient of DT 

(88.4% and 0.855) and KNN (86.8% and 0.835). Figure 3 shows the classification results with the highest 

overall accuracy for each classifier. Using the Z-statistics, we found that the overall accuracies of SVM 

were significantly greater than those of DT and KNN, regardless of the size of training samples. In 

addition, SVM had significantly higher overall accuracy than NB, when the size of training samples was 

relatively small. However, when training samples were greater than or equal to 100 per class, the 

classification accuracies of NB and SVM were similar and significantly higher than the accuracies of 

the other two classifiers. 

Table 3. The highest overall accuracy for the four classifiers using eight training sample sets 

and the corresponding parameter values. NB, normal Bayes; DT, decision tree. 

Sample Size C Gamma Accuracies Kappa Sample Size Max Depth Accuracies Kappa 

SVM     DT    

25 10,000 0.001 0.926 0.9075 25 3 0.838 0.7975 

50 1,000,000 0.00001 0.94 0.925 50 5 0.866 0.8325 

75 1,000,000 0.00001 0.958 0.9475 75 12 0.884 0.855 

100 1,000,000 0.00001 0.944 0.93 100 6 0.884 0.855 

125 10,000 0.0001 0.962 0.9525 125 8 0.874 0.8425 

150 10,000 0.0001 0.964 0.955 150 5 0.876 0.845 

175 1,000,000 0.00001 0.976 0.97 175 5 0.876 0.845 

200 1,000,000 0.00001 0.964 0.955 200 6 0.872 0.84 

NB     KNN    

25   0.794 0.7425 25 1 0.77 0.7125 

50   0.836 0.795 50 1 0.796 0.745 

75   0.912 0.89 75 3 0.81 0.7625 

100   0.936 0.92 100 3 0.828 0.785 

125   0.964 0.955 125 1 0.852 0.815 

150   0.95 0.9375 150 1 0.852 0.815 

175   0.958 0.9475 175 3 0.856 0.82 

200   0.964 0.955 200 3 0.868 0.835 

In general, when the size of samples per class was less than 125, the accuracies of the four classifiers 

increased with increasing size of the training samples, and NB and KNN were more sensitive to sample 

sizes than SVM and DT. When the size of training samples increased from 25 to 125 per class, the 

classification accuracies of NB and KNN increased by 17% and 8.2%, while SVM and DT increased by 

3.6% and 4.6%, respectively (Table 3; Figure 4). NB was the most sensitive to sample size. This may be 

because this parametric classifier used training samples to estimate parameter values for the data 

distribution, and thus, more training samples can lead to more accurate parameter estimation. In contrast, 

SVM is the least sensitive to sample sizes, because SVM only uses the support vectors instead of all 

training samples to build the separating hyperplane. Thus, adding more training samples may not 

significantly affect the classification accuracy. However, when the size of the samples is more than  

125 per class, all four classifiers become insensitive to the increase of sample sizes. The classification 

accuracies of NB, KNN, SVM and DT fluctuated from 95% to 96.4%, 85.2% to 86.8%, 96.2% to 97.6% 
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and 87.2% to 87.6%, respectively, with the sample size increasing from 125 to 200 per class. This result 

indicated that the training sample size of 125 per class might be a turning point, beyond which the 

increase of sample size does not necessarily lead to a significant increase in classification accuracies. 

These results have important implications for determining the appropriate sample size. 

 

Figure 3. The classification results with the highest overall accuracy for each classifier. 

 

Figure 4. Overall accuracies of the four classifiers with increasing size of training samples. 

These findings also have important implications for the selection of appropriate classifiers. In general, 

SVM is the best candidate classifier for urban land classifications. Using SVM could achieve the best 

overall classification accuracy, even with a relatively small amount of training samples. However, SVM 

is sensitive to its tuning parameter setting, which could be subjective and time-consuming. NB can be a 

practical choice when the training samples are sufficient. NB could achieve similarly high accuracy to 

that of SVM, but with no need to set any tuning parameter. One of the advantages of using DT is the 

generation of the “decision tree”, which includes the information of features that are used in 
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classification and the classification rules. This information can be helpful for better understanding the 

classification process. In addition, in case we want to build a ruleset to conduct a classification, “decision 

tree” can be a good reference. 

4.2. The Effects of Tuning Parameters on Classification Accuracies 

The tuning parameters of the classifier have a great impact on the classification accuracy. We found 

that SVM was the most sensitive to the setting of tuning parameters, followed by DT. However, KNN 

was relatively insensitive to the tuning parameter, that is the K. Using the largest training sample set, the 

classification accuracies of SVM, DT and KNN varied from 21% to 96.4%, 39.4% to 87.2% and 79.4% 

to 86.8%, respectively, when the settings of tuning parameters were different. 

 

Figure 5. Matrixes of SVM’s overall accuracies with different values of parameters C  

and gamma, when using different sizes of training samples. The darker the blue, the higher 

the accuracy. 
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For SVM, the optimal settings of tuning parameters varied with the sample size. With the training 

sample sizes of 25, 125 and 150 per class, the optimal values of C and gamma were 10,000 and 0.001, 

respectively. With the other sample sizes, the optimal values of C and gamma were 1,000,000 and 

0.00001, respectively (Table 3). The matrixes of the classification accuracy (Figure 5) further provide 

some insights into how different values of C and gamma, or their combination, affect the classification 

accuracies of the SVM classifier: (1) when the value of gamma was greater than 0.1, the classification 

accuracies were relatively low, ranging from 20% to 74%, no matter what value the parameter C was; 

this result indicated that the value of gamma should not be greater than 0.1; (2) there were ranges of 

values of C and gamma, at which relatively high accuracies (up to or greater than 90%) could be 

achieved; in general, these values of C were between 1,000,000 and 100,000,000, and gamma between 

0.00001 and 0.001; (3) the sizes of training samples seem not to influence the optimal setting of C and 

gamma. Very similar patterns were found when using different sizes of training samples. This clearly 

shows that the effects of tuning parameters on classification accuracy were much greater than that of the 

size of the training samples. 

Similarly, for DT, the optimal maximum depth varied greatly with different sizes of training samples 

(Figure 6). Generally, the optimal maximum depth mostly fell between five and eight, and the overall 

classification accuracy became relatively stable when the maximum depth was greater than or equal to 

five. For KNN, with the increasing of the parameter K, the classification accuracy showed a decreasing 

fluctuation, regardless of the training sample size (Figure 7). The highest accuracy was often achieved 

when parameter K was either one or three, suggesting that the performance of KNN is very similar to 

the nearest neighbor classifier. 

 

Figure 6. The overall accuracies of DT with the increase of the max depth value. 
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Figure 7. The overall accuracy of KNN with the increase of the K value. 

 

Figure 8. The average overall accuracies and standard deviation of the four classifiers with 

optimal parameter settings. 

Figure 8 shows the average overall accuracies and the variations of the four classifiers with optimal 

parameter settings, that is K was three for KNN, the maximum depth was five for DT and C and gamma 

were 1,000,000 and 0.00001, respectively, for SVM. The changes in average overall accuracies with the 
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sample sizes from the 10-times random sampling were similar to those using the one-time samples 

(Figure 4), suggesting that the classifiers were relatively insensitive to the selection of samples. This is 

particularly true for SVM when the training sample size was greater than 125 per class. 

5. Conclusions 

In this study, we evaluated and compared the performance of four machine learning classifiers, 

namely SVM, NB, CART and KNN, in classifying very high resolution images, using an object-based 

classification procedure. In particular, we investigated how the tuning parameters of each of the 

classifiers (except for NB) affected the classification accuracy, when using different sizes of training 

samples. The results showed that SVM and NB were superior to CART and KNN in urban land 

classification. Both SVM and NB could achieve very high classification accuracy, with appropriate 

setting of the tuning parameters and/or enough training samples. However, each of the two classifiers 

has its advantages and disadvantages, and thus, the choice of the appropriate one may be case dependent. 

SVM could achieve relatively high accuracy with a relatively small amount of training samples, but the 

setting of tuning parameters could be subjective and time-consuming. In contrast, NB does not need the 

setting of any tuning parameter, but generally requires a large amount of training samples to achieve 

relatively high accuracy. 

Both the size of training samples and the setting of tuning parameters have great impacts on the 

performance of classifiers. When the size of training samples is less than 125 per class, increasing the 

size of training samples generally leads to the increase of classification accuracies for all four classifiers, 

but NB and KNN were more sensitive to the sample size. Increasing the size of training samples does 

not seem to significantly improve the classification once the size of training samples reaches 125 per 

class. The tuning parameters of the classifier had a great impact on the classification accuracy. SVM was 

the most sensitive to the setting of tuning parameters, followed by DT, but KNN was relatively 

insensitive to the tuning parameter. While the optimal settings of tuning parameters varied with the size 

of training samples, some general patterns occurred. For SVM, setting C between 1,000,000 and 

100,000,000, and gamma between 0.00001 and 0.001 usually achieved the best overall accuracy. With 

DT, the best classification accuracy was generally achieved when the max depth of classification tree 

was between five and eight. For KNN, the optimal K value was either one or three. These findings 

provide insights into the selection of classifiers and the size of training samples when implementing an 

object-based approach for urban land classification using high resolution images. This research also 

highlights the importance of the appropriate setting of tuning parameters for different machine learning 

classifiers and provides useful information for optimizing those parameters. 
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