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Abstract: Mapping of landslides, quickly providing information about the extent of the affected
area and type and grade of damage, is crucial to enable fast crisis response, i.e., to support rescue
and humanitarian operations. Most synthetic aperture radar (SAR) data-based landslide detection
approaches reported in the literature use change detection techniques, requiring very high resolution
(VHR) SAR imagery acquired shortly before the landslide event, which is commonly not available.
Modern VHR SAR missions, e.g., Radarsat-2, TerraSAR-X, or COSMO-SkyMed, do not systematically
cover the entire world, due to limitations in onboard disk space and downlink transmission rates.
Here, we present a fast and transferable procedure for mapping of landslides, based on change
detection between pre-event optical imagery and the polarimetric entropy derived from post-event
VHR polarimetric SAR data. Pre-event information is derived from high resolution optical imagery
of Landsat-8 or Sentinel-2, which are freely available and systematically acquired over the entire
Earth’s landmass. The landslide mapping is refined by slope information from a digital elevation
model generated from bi-static TanDEM-X imagery. The methodology was successfully applied to
two landslide events of different characteristics: A rotational slide near Charleston, West Virginia,
USA and a mining waste earthflow near Bolshaya Talda, Russia.

Keywords: landslide; change detection; SAR polarimetry; PolSAR; object-based image analysis;
OBIA; TanDEM-X

1. Introduction

Large landslides are a global phenomenon, causing damage and casualties [1]. Landslides arouse
emergency situations when urban areas or man-made constructions, such as buildings, bridges,
railroads, and roads, are affected. Rapid mapping of landslides is crucial to detect the extent of
the affected area, including grade and type of damage. Rapid mapping is a key element of fast
crisis response, e.g., to support rescue, humanitarian, and reconstruction operations in the crisis
area [2]. Therefore, Earth Observation (EO) based on satellite remote sensing plays a key role
due to its fast response, wide field of view, and relatively low cost [3]. (Semi)-automatic landslide
mapping based on satellite EO data provides an important information source to support field surveys.
Furthermore, during rapid to very rapid events, i.e., deformation rates in the order of several meters
per hour [4], access to the landslide area may be too difficult, making field surveys too dangerous [5].

The most frequently used EO data for rapid mapping of landslides is very high-resolution (VHR)
optical satellite imagery [6–8]. A common way for landslide detection is the mapping of rapid changes
of the vegetation layer derived from vegetation indices calculated for pre- and post-event optical EO
imagery, e.g., [9–15].
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However, as heavy rain events are one of the most frequent triggers for landslides, i.e., there is a
high probability of cloud coverage right after the event, optical EO data is not always useful for rapid
mapping applications [16,17]. The advantages of SAR compared to optical EO sensors are (I) the day
and night availability of this active sensor, and (II) its almost complete weather independency due
to its longer wavelength. In most cases, SAR EO data of a given crisis area is available earlier than
cloud-free optical imagery. Therefore, faster disaster response is enabled by SAR-based rapid mapping
procedures. However, for both optical and SAR sensors, the revisit time of the satellite has to be taken
into account [18].

In addition to satellite-based methods for landslide mapping, there are also other approaches
using for instance airborne laser altimetry (LiDAR), e.g., [19], or advanced field mapping techniques
such as the combination of a laser rangefinder binocular combined with a GPS receiver [20], are
described in the literature. Despite of their promising results, and contrary to satellite data-based
landslide mapping methodologies, those approaches are not suited for a world-wide use due to their
limited availability.

According to Czuchlewski et al. [21], one post-event single-polarized SAR image is insufficient
for distinguishing and mapping landslides. The investigation of the temporal development of the
interferometric coherence by analyzing a time-series of SAR imagery, including pre- and post-event
imagery in the data stack, enables landslide detection, e.g., [22,23]. While multi-temporal SAR
interferometry enables long-term monitoring of extremely slow and very slow movements, e.g., [24–26],
speckle tracking approaches are able to measure higher deformation rates (up to tens of meters) [27].

Polarimetric SAR (PolSAR) data of at least two polarizations (dual-pol) provides more information
on the ground, which enables a better land cover classification and landslide mapping. Quad-pol data,
containing the full polarimetric backscattering (i.e., all four combinations of horizontal (H) and vertical
(V) polarized waves) allows the most accurate land cover mapping [28] using SAR data.

Based on airborne L- and P-band quad-pol imagery, Rodriguez et al. [29] analyzed changes in the
pedestal height and the Radar Vegetation Index (RVI) over time to detect landslides in Taiwan, which
were triggered by the 1999 Chi-Chi earthquake.

Cui et al. [30] investigated landslides in earthen levees by means of a multi-classifier decision
framework for textural features (grey level co-occurrence matrix) derived from multi-polarized
SAR imagery.

Plank et al. [31] compared object-based landslide detection methods based on PolSAR (dual-pol
TerraSAR-X) and VHR optical imagery for a case study in Taiwan. The PolSAR procedure is based
on a textural analysis with focus on the Normalized Difference Standard Deviation (NDSD) of the
calibrated intensities of both polarimetric channels.

Decomposition procedures based on quad-pol SAR imagery, such as the Freeman-Durden
decomposition [32] and the further enhancement of it, the Yamaguchi decomposition [33,34], allow the
derivation of surface (e.g., bare surfaces), volume (e.g., vegetation) and double-bounce (e.g., man-made
objects and at tree trunks) scattering components. Watanabe et al. [35], Yamaguchi [36], Shibayama
and Yamaguchi [16,37] report landslide detection procedures by detecting changes of the polarimetric
scattering components. Landslides in vegetated areas cause a decrease of volume scattering, i.e.,
a loss of vegetation, and an increase of surface scattering (bare surfaces). Shibayama et al. [38]
found that the local incidence angle has high influence on landslide detection based on polarimetric
scattering analysis.

In addition to the aforementioned Freeman-Durden decomposition, Yonezawa et al. [39]
investigated also the change of the entropy/anisotropy/alpha (H/A/α) decomposition [40] in pre-
and post-event ALOS/PALSAR imagery. H showed lower values for landslide areas than for forested
areas. However, farmlands showed similar low values of H as landslides, making the differentiation of
these classes very difficult.

Except for [30,31], all aforementioned landslide detection procedures are based on change
detection approaches of pre- and post-event VHR SAR imagery, requiring identical imaging geometries
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of both acquisitions. However, VHR archive SAR imagery acquired shortly before a landslide event,
especially at the same image acquisition geometry as the next possible post-event imagery, is in
most cases not available. Modern VHR SAR missions, such as TerraSAR-X, COSMO-SkyMed, or
RADARSAT-2, do not systematically cover the entire world. Each acquisition has to be programmed
manually. Furthermore, due to limited disk space on board the satellites and especially due to limited
downlink transmission rates, these sensors are not able to provide worldwide coverage within a short
time period—i.e., commonly, no archive image recorded shortly before the event is available. Here, we
present a fast and transferable landslide detection methodology based only on post-event VHR PolSAR
imagery supported by freely available and systematically-acquired pre-event high-resolution (HR)
optical data. The post-event VHR PolSAR acquisition can be programmed before the next overpass of
the satellite after the landslide event, independent of any geometrical restrictions by a pre-event SAR
imagery. The proposed landslide mapping procedure is a semi-automatic change detection approach
based on pre-event HR optical imagery of Landsat-8 or Sentinel-2 and post-event VHR PolSAR data
(e.g., TerraSAR-X) acquired shortly after the event.

The methodology was successfully applied to two case studies of different characteristics: first, a
rotational slide, which occurred on 12 March 2015 at the Yeager Airport near Charleston, West Virginia,
USA was investigated. Second, the methodology was tested at a mining waste landslide event, which
occurred on 1 April 2015 near Bolshaya Talda, Kemerovo Oblast, Russia (cf. Section 2).

Section 3 describes the developed landslide mapping methodology. Section 4 describes and
discusses the results of both test sites. Finally, a conclusion and outlook is given in Section 5.

2. Study Sites and Data

Two landslide events are studied. The first one occurred at the Yeager Airport landslide,
Charleston, West Virginia, USA. The second one is a mining waste landslide near Bolshaya Talda,
Kemerovo Oblast, Russia.

On 12 March 2015, a large-scale landslide occurred at an artificial slope at the Yeager Airport.
The airport, completed in 1947, was constructed atop seven semi-connected hilltops. In 2005, due to
new Federal Aviation Administration (FAA) safety regulations, the construction of an Engineered
Material Arrestor System (EMAS) was necessary. Therefore, the Yeager Airport had to be extended,
leading to the construction of a large artificial slope, being the tallest geosynthetic reinforced slope in
North America (horizontal/vertical ratio of 1:1). The construction of the slope was finished in 2007 [41].
The construction of this large artificial slope is described in detail in [42]. The functionality of the
EMAS was successfully put to the test on 19 January 2010: a US Airways flight bound for Charlotte
aborted takeoff. The CRJ 200 aircraft could not stop before the end of the runway. Fortunately, the jet
was stopped approximately 45 m from the edge of the slope by the EMAS. All 34 passengers and crew
survived the incident with only minor injuries reported.

First movements at the slope were noticed in June 2013. In the following time, the deformation
increased. On 12 March 2015, the slope failed. A secondary failure of the slope occurred on 13 April
2015 (Figure 1). The landslide can be described as rotational debris slide [4]. Further details on this
landslide event, as well as a video of the first slope failure, and a drone flight video recorded after the
first slope failure are available at the AGU landslide blog of Dave Petley [43]. These videos are also
attached to this article to guarantee long-term accessibility.

The available SAR data are two post-event TerraSAR-X HighResolution SpotLight (HS) dual-pol
(HH/VV) imagery, acquired on 25 March 2015 (after the first slope failure) and on 16 April 2015 (after
the second slope failure). In addition, one pre-event Landsat-8 imagery acquired on 15 January 2015
was used (cf. Table 1).
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Figure 1. (a) Pre-failure photograph of the Yeager Airport [42]; (b) top of the landslide, showing the 
remains of the EMAS (white) and the geosynthetic reinforcements (Marcus Constantino, Charleston 
Gazette 12 March 2015 [44]); (c) the remains of the Keystone Apostolic Church, which was damaged 
by the landslide (Tyler Bell, Charleston Gazette 13 March 2015 [45]); (d) after the 2nd slope failure  
(F. Brian Ferguson, Charleston Gazette 13 April 2015 [46]); and (e) rolling up of asphalt at the toe of 
the landslide (Rusty Marks, Charleston Gazette 13 April 2015 [46]). 

The second landslide, to which the developed landslide mapping procedure is applied on, is a 
large mining waste landslide, which occurred near a road between Novokuznetsk and Bolshaya 
Talda, Kemerovo Oblast, Russia. This landslide occurred on 1 April 2015 at 1 p.m. local time [47]. It 
can be described as a very rapid earthflow [4]. Unfortunately, no further details about this landslide 
event are available. However, an interesting video of the landslide is available and provided with 

Figure 1. (a) Pre-failure photograph of the Yeager Airport [42]; (b) top of the landslide, showing the
remains of the EMAS (white) and the geosynthetic reinforcements (Marcus Constantino, Charleston
Gazette 12 March 2015 [44]); (c) the remains of the Keystone Apostolic Church, which was damaged by
the landslide (Tyler Bell, Charleston Gazette 13 March 2015 [45]); (d) after the 2nd slope failure (F. Brian
Ferguson, Charleston Gazette 13 April 2015 [46]); and (e) rolling up of asphalt at the toe of the landslide
(Rusty Marks, Charleston Gazette 13 April 2015 [46]).

The second landslide, to which the developed landslide mapping procedure is applied on, is a
large mining waste landslide, which occurred near a road between Novokuznetsk and Bolshaya Talda,
Kemerovo Oblast, Russia. This landslide occurred on 1 April 2015 at 1 p.m. local time [47]. It can be
described as a very rapid earthflow [4]. Unfortunately, no further details about this landslide event are
available. However, an interesting video of the landslide is available and provided with this article
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(Source: [47]). Two post-event TerraSAR-X HS dual-pol (HH/VV) SAR imagery acquired on 26 April
and 14 August 2015, as well as one pre-event optical Landsat-8 image acquired on 14 September 2014,
were available for the analysis (cf. Table 1).

Table 1. Timeline of the landslide events and used satellite imagery.

Study Site Date of Event Acquisition Date Satellite 1 Relative Orbit 2 Polarization

Yeager Airport

- 2 April 2014 TanDEM-X 226/Asc. HH
- 15 January 2015 Landsat-8 18/33 -

1st failure: 12
March 2015 25 March 2015 TerraSAR-X 44/Asc. HH/VV

2nd failure 13
April 2015 16 April 2015 TerraSAR-X 44/Asc. HH/VV

Bolshaya Talda
- 14 September 2014 Landsat-8 146/22 -

1 April 2015 26 April 2015 TerraSAR-X 14/Desc. HH/VV
14 August 2015 TerraSAR-X 14/Desc. HH/VV

1 TanDEM-X data was acquired in bi-static mode used for DEM generation; TerraSAR-X imagery was
acquired in HighResolution SpotLight (HS) mode: 1.2 m (range) ˆ 2.2 m (azimuth) spatial resolution;
Landsat-8 provides imagery in 15 m (pan) and 30 m (multi-spectral) spatial resolution; 2 relative orbit: For
Landsat-8: WSR-Path/WSR-Row; for TerraSAR-X: Relative orbit/Path direction with ascending (Asc.) and
descending (Desc.).

3. Method

The basic principle of the methodology proposed in this article is to detect landslides via
change detection of freely available, systematically-acquired HR optical pre-event and VHR PolSAR
post-event imagery. Figure 2 shows the flowchart of the procedure. Assuming land cover changes
due to a landslide event, i.e., destruction and removal of the vegetation cover the first step (I) of the
object-oriented procedure is the pre-selection of formerly-vegetated areas based on the Normalized
Difference Vegetation Index (NDVI) of the multispectral pre-event imagery (e.g., Landsat-8 or
Sentinel-2). (II) Next, after polarimetric speckle filtering using the edge-preserving refined Lee filter,
(III) the H/α decomposition is applied to the post-event polarimetric SAR image to detect, within the
pre-selected areas, regions characterized by low entropy (H) values, i.e., evidence of bare soil or rock
(landslide material). (IV) Then, assuming a minimum slope value δě 20˝ (cf. Section 3.4) as a necessary
requirement for a landslide event, the landslide detection map is refined accordingly. (V) Finally, to
reduce the number of false classifications, all detected landslides smaller than a minimum mapping
unit (MMU) are excluded (cf. Section 3.4).

3.1. Pre-Event Imagery: Selection of Vegetated Areas

Cloud-free optical (multispectral, MS) pre-event imagery is used to derive vegetated areas prior
to the landslide event. Landsat-8 or the recently launched Sentinel-2 sensor are the preferred sources
as their imagery is freely available and systematically acquired with a high repetition rate of five days
(Sentinel-2 constellation) to 16 days (Landsat-8). In the ideal case, the optical imagery is acquired
shortly before the landslide event. However, due to too high cloud coverage no useful imagery might
be available, and optical imagery acquired one year before the event could be used. To minimize
seasonal effects on the change detection procedure described below, it is important to use optical data
acquired in the same season as the PolSAR imagery.

By using data of MS sensors working in the visible and near infrared (NIR) region of the
electromagnetic spectrum, one is able to calculate the NDVI, being a proxy for the site’s vegetation
density and greenness [48–50]. The NDVI uses the difference of the vegetation signature between the
RED (0.6–0.7 µm) and NIR (0.7–1.1 µm) channel (Equation (1)) [51]:

NDVI “
NIR´ RED
NIR` RED

(1)
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The rationing concept makes the NDVI independent of the illumination, atmospheric effects,
topography, etc. Consequently, NDVI images acquired at different dates can be compared. The NDVI
ranges from ´1 to +1. As water has commonly no reflection in infrared, its NDVI is ´1. The NDVI
value of bare areas (rock, sand, and snow) is less than +0.1. The NDVI increases with vegetation
density (NDVI range +0.1 to +0.7) [50]. Vegetated areas in the MS pre-event imagery are selected by
setting NDVI > +0.1 as threshold.Remote Sens. 2016, 8, 307 6 of 20 
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pre-event optical imagery.

3.2. Post-Event Imagery: Selection of Bare Areas

The selection of bare areas (i.e., possible landslide areas) by means of the post-event VHR PolSAR
imagery requires several pre-processing steps, which are described in the following.

3.2.1. Polarimetric Speckle Filtering

The speckle effect, which is caused by the interference of the coherent reflected SAR waves of
many individual scatterers within a resolution cell, complicates visual interpretation and classification
of SAR images. The natural environment, characterized by distributed targets, is mainly affected by
the speckle effect. To reduce this effect, polarimetric speckle filtering using the refined Lee filter is
applied [52,53]. This filter aims to preserve the structure of the image, i.e., the edges, while filtering
homogenous areas. The correlation between the different polarizations is conserved. The refined Lee
filter searches for edges in eight directions: in the vertical, horizontal, and two diagonal directions.
A kernel window of 7 ˆ 7 pixels is used. Then, the covariance matrix is filtered.
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3.2.2. Polarimetric Decomposition

Objects with different geometric and structural properties show different SAR backscatter.
Based on physical assumptions, polarimetric decomposition procedures aim to separate these
different backscatter types [54,55]. As dual-pol SAR imagery was available for this study, the H/α
decomposition proposed by Cloude and Pottier [40] was applied.

This decomposition is based on the eigenvalues λ and eigenvectors of the covariance matrix C,
which is shown in Equation (2) for the current dual-pol case (HH/VV):

xC2y “ x

«

|SHH|
2 SHHS˚

VV
SVVS˚

HH |SVV |
2

ff

y (2)

with the Sinclair-Matrix Sxy representing the two combinations of transmitted (index y) and received
polarization (index x). The superscript * denotes the complex conjugate.

α describes the type of backscattering. α values close to zero indicate domination of surface
scattering (single bounce scattering). α values around 45˝ show domination of volume scattering,
caused by multiple scattering inside a volume, such as the crown of a tree or dense vegetation [56].
High α values (up to 90˝) represent domination of double-bounce scattering (e.g., in urban area).
αm represents the mean of α1 and α2. The former describes the backscattering type of the dominant
scatterer and the latter the backscattering type of the second dominant one (Equation (3)):

αm “
1

λ1 ` λ2

”

λ1 λ2

ı

«

α1

α2

ff

(3)

The heterogeneity of the scattering is represented by the entropy H, which ranges from 0 to 1
(Equation (4)). H = 0 indicates a dominant scatterer such as a corner reflector. H << 1 indicates natural
areas free of vegetation, i.e., bare soil/rocks and landslide material. High H values with H close to 1
represent a random mixture of scattering mechanisms, e.g., multiple scattering inside the crown of a
tree. Therefore, high H values are an indicator of vegetated areas such as forests.

H “
´1

λ1 ` λ2

”

λ1 λ2

ı

log2

˜

1
λ1 ` λ2

«

λ1

λ2

ff¸

(4)

Rapid landslides [4] remove the vegetation cover. Therefore, the entropy H can be used to detect
possible landslides, which are characterized by low H values.

The use of α for landslide detection is more critical, especially in the dual-pol case, which is
investigated in this study. As shown for the Yeager Airport landslide, the landslide is indistinguishable
in the α image (Figure 3). Landslide material is very heterogeneous. Depending on the geological and
environmental setting, landslide material may consist of rocks and debris of different size, as well as
trunks and branches of fallen trees. Consequently, within a landslide body, α could show high variable
values: α close to zero for rocks/debris and α close to 90˝ for tree trunks. Therefore, in the following
only H is used to differ between landslides and areas not affected by landslides.

The change detection described in Section 3.3 requires all imagery to be in the same coordinate
system. Therefore, the H image is orthorectified and map projected, i.e., transformed from the typical
SAR geometry (range/azimuth) into a projected coordinate system.
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Figure 3. Yeager Airport: (a) α angle and (b) polarimetric entropy H computed from the post-event
dual-pol TerraSAR-X (acquired on 25 March 2015). As described above, the landslide is well
recognizable in the H image but not in the α image. The black/pink polygon marks the reference
landslide derived by visual interpretation and manual digitization of the TerraSAR-X imagery.

3.3. Change Detection: Mapping of the Landslides

The landslides are detected by change detection of the aforementioned pre-event NDVI (cf.
Section 3.1) and the post-event H derived from the VHR PolSAR imagery. The basic concept of the
proposed methodology is to detect areas free of vegetation based on low H values at time tpost, which
were previously covered by vegetation, i.e., NDVI > +0.1 at time tpre. This change detection is executed
in an object-based image analysis (OBIA) environment using the Cognition Network Language (CNL).
First, the H image is segmented using the multiresolution approach based on the Fractal Net Evolution
Approach (FNEA) [57,58]. The developed procedure described above uses a scale parameter of 10.
The scale parameter is an abstract value to determine the maximum possible change of heterogeneity
with no direct correlation to the object size measured in pixels [59]. A compactness (ranging from 0
to 1) value of 0.5 is chosen. The features of interest are natural ones. Therefore, the shape parameter,
ranging from 0 to 1 was set to 0.1.

All thresholds mentioned in the following are mean values for the generated objects, with X
representing the mean value of all pixels within a certain object for variable X. There are three
possible cases (Equation (5)). Based on empirical tests, H ď 0.8 turned out to be best suited to detect
landslide areas.

# NDVItpre ď `0.1 areas free of vegetation at time tpre

NDVItpre ą `0.1 Λ Htpost ď 0.8 landslide candidate
NDVItpre ą 0.1 Λ Htpost ą 0.8 no landslide candidate

(5)

Areas of NDVI ď +0.1 are free of vegetation at time tpre and are not considered in the following.
Based on a threshold of NDVI > +0.1 vegetated areas at the time tpre before the landslide event are
selected (cf. Section 3.1). Then, the polarimetric entropy H (cf. Section 3.2.2) is investigated for the areas,
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which were vegetated at time tpre. Low H values indicate areas free of vegetation, such as landslide
material. Consequently, objects are selected as landslide candidates if they are covered by vegetation
at tpre but are free of vegetation at tpost, i.e., if NDVItpre ą `0.1 Λ Htpost ď 0.8 is true (Equation (5)).

3.4. Refinement of Classification by Topographic Information

Assuming a minimum slope δ value as a necessary requirement for a landslide event, the landslide
detection map, described in Section 3.3, is refined as follows: only landslide candidates located at
δ ě 20˝ are selected as final landslides (Equation (6)).

#

NDVItpre ą `0.1 Λ Htpost ď 0.8 Λ δ ě 20˝ final landslide
NDVItpre ą `0.1 Λ Htpost ď 0.8 Λ δ ă 20˝ no landslide

(6)

To detect the foot of a landslide region-growing into neighboring areas of H ď 0.8 and δ > 12˝ is
executed. Next, all neighboring landslide objects are merged to a common object.

As the Yeager Airport landslide took place on an artificial slope, which was constructed in
the year 2007 (cf. Section 2), the Shuttle Radar Topography Mission (SRTM) DEM [60] from the
year 2000 is too old and could not be used for the slope analysis at this site. Therefore, we used a
bi-static TanDEM-X [61] dataset acquired on 2 April 2014 to generate via SAR interferometric (InSAR)
analysis an up-to-date DEM of 12 m spatial resolution. Therefore, a more accurate measurement of the
pre-failure slope was obtained.

Analysis of optical imagery (Landsat, as well as GoogleEarth) showed that the second study site,
i.e., the mining waste landslide in Russia, is a very dynamic area with lots of changes that occurred
after the last TanDEM-X acquisition on 23 August 2012 over this area. Therefore, neither the SRTM
DEM nor a TanDEM-X DEM could be used for slope analysis in this area.

Finally, to decrease the number of false classifications, all detected landslides smaller than a
minimum mapping unit (MMU) of 30 m ˆ 30 m are excluded.

4. Results and Discussion

4.1. The Yeager Airport Landslide, Charleston, West Virginia, USA

First, the methodology is applied to Test Case 1: the Yeager Airport landslide, located near
Charleston, West Virginia, USA. Figures 4–6 show the results of the developed landslide detection
procedure based on pre-event optical Landsat-8 imagery and post-event polarimetric VHR TerraSAR-X
imagery acquired on 25 March 2015 (after the first failure of the slope) and 16 April 2015 (after the
second slope failure). Figures 5 and 6 demonstrate that the landslide is very well detected by the
classification. In the SAR image acquired on 25 March 2015, one can also see a small over classification
east of the landslide. At the SAR image acquired after the second slope failure the landslide detection
procedure was able to detect the main part of the landslide. However, the scarp area of the landslide
is not detected. Here, the second slope failure extended the scarp area of the landslide. At this very
steep part, geometric distortions such as layover and foreshortening occurred, changing the SAR
backscattering values, which influence the landslide detection procedure.
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interpretation and manual digitization of the TerraSAR-X imagery. TerraSAR-X © 2015 German
Aerospace Center (DLR), 2015 Airbus Defence and Space/Infoterra GmbH.



Remote Sens. 2016, 8, 307 11 of 20
Remote Sens. 2016, 8, 307 11 of 20 

 

 
Figure 6. Result (red) of the landslide detection procedure at the Yeager Airport based on post-event 
dual-pol TerraSAR-X (acquired on 16 April 2015; background image) and pre-event optical 
Landsat-8 (15 January 2015) imagery. The green polygon marks the reference landslide derived by 
visual interpretation and manual digitization of the TerraSAR-X imagery. TerraSAR-X © 2015 
German Aerospace Center (DLR), 2015 Airbus Defence and Space/Infoterra GmbH. 

Table 2. Classification accuracies for the Yeager Airport landslide (12 March and 13 April 2015). 
Overall accuracy (OA), user’s (UA), and producer’s accuracy (PA). 

Date OA [%] 
PA Landslide 

[%] 
UA Landslide 

[%] 
PA Other 

[%] 
UA Other 

[%] 
KHAT 

25 March 2015 99.9 87.0 67.4 99.9 100.0 +0.759 
16 April 2015 99.9 64.3 66.9 99.9 99.9 +0.655 

It is important to note that not only the relatively small areas shown in Figures 3–9 were 
considered for the validation procedure, but the entire TerraSAR-X HS scene (5 km azimuth × 10 km 
ground range). The values of the confusion matrix are described as follows: the overall accuracy 
(OA), ranging from 0%–100%, describes the ratio of correctly classified area units (e.g., pixels) to the 
total number of pixels of the satellite scene. The producer’s accuracy (PA), ranging from 0%–100%, 
gives the percentage of reference data detected by the classification, while the user’s accuracy (also 
ranging from 0%–100%) describes the percentage of the classification matching with the reference 
data. Finally, the KHAT statistics gives information about the strength of the correlation between the 
classification result and the reference data. The KHAT coefficient ranges from 0, representing a 
completely random match between classification result and reference data, to +1, representing no 
random match between classification result and the reference [62]. 

The OA, as well as the values UA and PA, of the class other are very high (99.9%). This is due to 
a two-class problem, i.e., landslide and other (areas not affected by landslides), with the percentage 
area of the latter being much higher than the percentage area coverage of landslide. Consequently, 
the interesting parameters of the accuracy assessment are the UA and PA values of the landslides 
class. 

The good matching between the landslide classification result and the reference data, shown in 
Figure 5 for the SAR image acquired after the first slope failure, is reflected by the high UA and PA 

Figure 6. Result (red) of the landslide detection procedure at the Yeager Airport based on post-event
dual-pol TerraSAR-X (acquired on 16 April 2015; background image) and pre-event optical Landsat-8
(15 January 2015) imagery. The green polygon marks the reference landslide derived by visual
interpretation and manual digitization of the TerraSAR-X imagery. TerraSAR-X © 2015 German
Aerospace Center (DLR), 2015 Airbus Defence and Space/Infoterra GmbH.

Table 2 shows the accuracy values of the methodology applied to the Yeager Airport landslide at
the two stages of the landslide event. We applied an area-based accuracy assessment. The classification
results are compared to a polygon of the landslide derived by visual interpretation of the SAR image
and manual digitization. The landslide boundary is clearly visible in the SAR image due to its different
roughness compared to the surroundings. Furthermore, photographs taken in the field or by airplanes
(Figure 1), as well as the drone video (Supplementary Materials S2), were used to refine the reference
polygon of the landslide.

Table 2. Classification accuracies for the Yeager Airport landslide (12 March and 13 April 2015). Overall
accuracy (OA), user’s (UA), and producer’s accuracy (PA).

Date OA [%] PA Landslide
[%]

UA Landslide
[%]

PA Other
[%]

UA Other
[%] KHAT

25 March 2015 99.9 87.0 67.4 99.9 100.0 +0.759
16 April 2015 99.9 64.3 66.9 99.9 99.9 +0.655

It is important to note that not only the relatively small areas shown in Figures 3–9 were considered
for the validation procedure, but the entire TerraSAR-X HS scene (5 km azimuth ˆ 10 km ground
range). The values of the confusion matrix are described as follows: the overall accuracy (OA), ranging
from 0%–100%, describes the ratio of correctly classified area units (e.g., pixels) to the total number of
pixels of the satellite scene. The producer’s accuracy (PA), ranging from 0%–100%, gives the percentage
of reference data detected by the classification, while the user’s accuracy (also ranging from 0%–100%)
describes the percentage of the classification matching with the reference data. Finally, the KHAT
statistics gives information about the strength of the correlation between the classification result and the
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reference data. The KHAT coefficient ranges from 0, representing a completely random match between
classification result and reference data, to +1, representing no random match between classification
result and the reference [62].

The OA, as well as the values UA and PA, of the class other are very high (99.9%). This is due to
a two-class problem, i.e., landslide and other (areas not affected by landslides), with the percentage
area of the latter being much higher than the percentage area coverage of landslide. Consequently, the
interesting parameters of the accuracy assessment are the UA and PA values of the landslides class.

The good matching between the landslide classification result and the reference data, shown
in Figure 5 for the SAR image acquired after the first slope failure, is reflected by the high UA and
PA values of the landslide class of ca. 64% and 87%, respectively (cf. Table 2). Contrary to this, the
classification results of the image acquired after the second slope failure clearly show lower values for
the landslide class PA while the landslide class UA is stable. The KHAT coefficient of the two SAR
acquisitions shows a similar behavior.

4.2. Mining Waste Landslide near Bolshaya Talda, Kemerovo Oblast, Russia

Second, the methodology is applied to Test Case 2: the mining waste landslide near Bolshaya
Talda, Kemerovo Oblast, Russia. Figure 7 shows a false color composite pre-event Landsat-8 imagery
acquired on 14 September 2014 of the mining waste site.
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Figure 7. Landsat-8 pre-event imagery (14 September 2014) of the Russian mining waste site
(NIR/Red/Green). The mining area (cyan) is free of vegetation. Landsat-8 © USGS 2014.

The landslide was covered twice by dual-pol TerraSAR-X HS imagery: On 26 April 2015 and
14 August 2015. Figures 8 and 9 show the corresponding classification results of the developed landslide
detection procedure as well as the reference data derived by visual interpretation, i.e., visual change
detection between the pre-event optical HR and post-event SAR image data, and manual digitization.



Remote Sens. 2016, 8, 307 13 of 20
Remote Sens. 2016, 8, 307 13 of 20 

 

 

Figure 8. Result (red) of the landslide detection procedure at the Russian mining waste site based on 
post-event dual-pol TerraSAR-X (acquired on 26 April 2015; background image) and pre-event 
optical Landsat-8 (14 September 2014) imagery. Green: Reference derived by visual interpretation 
and manual digitization of the TerraSAR-X imagery. TerraSAR-X © 2015 German Aerospace Center 
(DLR), 2015 Airbus Defence and Space/Infoterra GmbH. 

 

Figure 9. Result (red) of the landslide detection procedure at the Russian mining waste site based on 
post-event dual-pol TerraSAR-X (acquired on 14 August 2015; background image) and pre-event 
optical Landsat-8 (14 September 2014) imagery. Green: reference derived by visual interpretation and 
manual digitization of the TerraSAR-X imagery. TerraSAR-X © 2015 German Aerospace Center 
(DLR), 2015 Airbus Defence and Space/Infoterra GmbH. 

Figure 8. Result (red) of the landslide detection procedure at the Russian mining waste site based on
post-event dual-pol TerraSAR-X (acquired on 26 April 2015; background image) and pre-event optical
Landsat-8 (14 September 2014) imagery. Green: Reference derived by visual interpretation and manual
digitization of the TerraSAR-X imagery. TerraSAR-X © 2015 German Aerospace Center (DLR), 2015
Airbus Defence and Space/Infoterra GmbH.
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Figure 9. Result (red) of the landslide detection procedure at the Russian mining waste site based
on post-event dual-pol TerraSAR-X (acquired on 14 August 2015; background image) and pre-event
optical Landsat-8 (14 September 2014) imagery. Green: reference derived by visual interpretation and
manual digitization of the TerraSAR-X imagery. TerraSAR-X © 2015 German Aerospace Center (DLR),
2015 Airbus Defence and Space/Infoterra GmbH.
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The figures clearly show that the developed methodology is only able to detect parts of the
landslide. UA values of the landslide class are very high, with ca. 90%, i.e., most of the classification
results are correct. However, the low PA values (landslide class) show that only ca. 50% of the real
landslide area is detected (Table 3). The reason for this is that the methodology assumes that the
landslide area was covered by vegetation before the landslide event. However, this is only true for
the area at the foot of the landslide, where the landslide ran over an area outside of the mining waste
area (formerly vegetated area). The landslide moved from east to west. The mining waste area itself is
free of vegetation and, therefore, shows low NDVI values in the pre-event optical imagery (Figure 7).
Therefore, the developed methodology is not able to detect the part of the landslide which occurred
inside the mining waste area. Furthermore, the entropy H, alone, would only detect the entire mining
waste area and not only the landslide area, as the entire mining waste area is characterized by low H
values, i.e., the area is free of vegetation (bare soil).

Table 3. Classification accuracies for the Russian mining waste landslide (01 April 2015). Overall
accuracy (OA), user’s (UA), and producer’s accuracy (PA).

Date OA [%] PA Landslide
[%]

UA Landslide
[%]

PA Other
[%]

UA Other
[%] KHAT

26 April 2015 96.8 48.2 89.6 99.7 97.0 +0.612
14 August 2015 96.8 49.7 90.0 99.7 97.0 +0.625

When considering only the area outside of the original mining site as affected landslide area, the
PA of the landslide class increases to 83%–90%, while the UA of the landslide class slightly decreases
(Table 4).

The developed landslide detection methodology based on post-event polarimetric VHR SAR
imagery showed promising accuracy values. However, the limitation of this methodology is that only
landslides at slopes previously covered by vegetation can be detected.

Table 4. Classification accuracies for the Russian mining waste landslide (1 April 2015). Only landslide
material outside the original mining site is treated as a landslide. Overall accuracy (OA), user’s (UA),
and producer’s accuracy (PA).

Date OA [%] PA Landslide
[%]

UA Landslide
[%]

PA Other
[%]

UA Other
[%] KHAT

26 April 2015 98.8 83.1 76.4 99.3 99.5 +0.790
14 August 2015 99.1 90.0 81.6 99.4 99.7 +0.850

4.3. General Discussion

Other landslide detection methodologies reported in the literature are based on change detection
approaches using pre- and post-event PolSAR imagery [16,29,35,37,39,63]. As the side-looking
geometry of SAR systems causes geometric distortions (e.g., shadowing, foreshortening, etc.) identical
acquisition geometries for pre- and post-disaster imagery are required for change detection applications.
However, as mentioned in Section 1, VHR archive SAR imagery acquired shortly before a disaster
event, in particularly at the same image geometry as the next possible post-event acquisition, is in
most cases not available. The advantage of the methodology presented in this article is that in addition
to freely available and systematically acquired pre-event HR optical imagery only post-event VHR
PolSAR is required, which can be programmed before the next overpass of the satellite, independent
of any geometrical restrictions by a pre-event SAR imagery. Nevertheless, to guarantee useful image
acquisition geometries, i.e., to decrease the influence of layover and shadowing effects, the terrain
and the slope’s orientation in space should be considered [64]. Also, the procedure proposed in the
current article is based on change detection. Contrary to the aforementioned studies, we use an optical
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HR imagery, which is systematically acquired and freely available for the entire Earth’s landmass (cf.
Section 3.1).

Compared to other published procedures, which apply a pixel-based classification of the
PolSAR imagery, e.g., [16,29,35,37], the proposed OBIA methodology enables an incorporation of
optical pre-event imagery and also the additional use of DEM data, which strongly increases the
classification accuracy.

According to Shimada et al. [17] and Dabbiru et al. [65], L-band is better suited for landslide
detection than X-band, as due to its longer wavelength, L-band is characterized by a better penetration
through the forest canopy. On the other hand, the shorter wavelength of X-band enables the acquisition
of higher spatial resolution imagery compared to L-band. Consequently, smaller and thinner landslides
are only detectable by X-band. In summary, one has to find a compromise between the degree of
penetration through vegetation (i.e., detection of landslide mass under tree canopy) and spatial
resolution (i.e., detection of smaller landslides, not covered by vegetation)—and data availability.
L-band imagery is currently only provided by ALOS-2/PALSAR-2. However, its imagery is acquired
at a pre-planned acquisition schedule. Contrary to this, X-band satellite missions, such as TerraSAR-X,
acquire imagery after an on demand tasking, enabling a very flexible acquisition and fast reaction in
case of a disaster, e.g., a landslide event. Therefore, this article presented a methodology based on
VHR X-band PolSAR imagery.

The most important information for the landslide identification is the polarimetric entropy H
derived from the post-event SAR imagery. As shown in Table 1, the proposed methodology is based on
TerraSAR-X HS imagery of 1.2 m (range) ˆ 2.2 m (azimuth) spatial resolution. Based on our experience
we can report that landslides with a minimum size of 30 m ˆ 30 m are detectable using only VHR
PolSAR imagery. The pre-failure information on vegetation cover can be derived from 10 m to 30 m
spatial resolution optical imagery (e.g., Sentinel-2 or Landsat-8). The aforementioned MMU of 30 m
ˆ 30 m was also chosen to consider the spatial resolution of Landsat-8. Since very small landslides
as mentioned above cover only 1 to 9 pixels in the optical imagery, it is very difficult to identify such
landslides in the optical imagery itself. However, this does not influence the results of the methodology,
as the optical data is only used to derive NDVI information for selecting pre-failure vegetated slopes.
The segmentation of the OBIA approach is based on the higher spatial resolution PolSAR imagery (cf.
Section 3.3).

The proposed landslide detection methodology is based on change detection between pre-event
optical and post-event PolSAR imagery. The change we focus on is the removal of the vegetation cover
by the landslide. However, as slow-moving slides and slide-earth flows often still preserve entire
portions of undisturbed vegetation cover, the proposed methodology is limited to the detection of rapid
and faster movements [4], i.e., to the detection of landslides where the vegetation cover was removed.

Czuchlewski et al. [21] used VHR L-band airborne SAR imagery of full polarization to map
landslides after the 1999 Chi-Chi earthquake in Taiwan. Despite of their promising results, a worldwide
applicability of airborne PolSAR sensors is not feasible. Only satellite-based remote sensing enables
fast response to disasters with global applicability.

Quad-pol imagery provides more information on the backscattering characteristics than dual-pol
imagery. In general, the former achieves higher classification accuracies [28]. The methodology
proposed in the current article is based on TerraSAR-X imagery. This SAR sensor provides only
dual-pol imagery in operational mode (quad-pol data are only available in an experimental mode).
Nevertheless, Sections 4.1 and 4.2 showed that high accuracy values can be achieved even with
dual-pol imagery.

5. Conclusions

This article presented a fast and transferable methodology for landslide detection. The procedure
combines post-event Very High Resolution (VHR) Polarimetric Synthetic Aperture Radar
(PolSAR) imagery of TerraSAR-X with pre-event multispectral imagery of Landsat-8 or Sentinel-2.
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First, vegetated slopes are selected in the pre-event imagery using the Normalized Difference
Vegetation Index (NDVI) and a Digital Elevation Model (DEM). Second, based on the post-event
VHR PolSAR imagery, areas of low polarimetric entropy H, derived by the entropy/alpha (H/α)
polarimetric decomposition, are extracted. Low H values represent areas free of vegetation, e.g., areas
covered by landslide material, whereas high H values are characteristic for densely vegetated areas,
such as forests. Landslides are detected by change detection between the pre-event optical and the
post-event PolSAR imagery. More precisely, possible landslides are areas, which are characterized by a
high NDVI value in the pre-event imagery and a low H value in the post-event acquisition.

The developed landslide detection procedure is characterized by the following advantages:

1. The utilization of SAR imagery allows fast response in a crisis situation due to the day/night
availability and almost complete weather independency of the SAR system. As heavy rain events
are an important trigger for landslides, optical sensors, relying on a cloud-free sky to be able to
provide a useful imagery are, in many cases, not suited.

2. The presented methodology requires only freely-available and systematically-acquired pre-event
optical high resolution imagery and post-event VHR PolSAR imagery. Other landslide mapping
procedures, which are based on change detection using SAR imagery, require pre- and post-event
VHR SAR imagery. However, the VHR archive SAR imagery acquired shortly before a landslide
event are, in most cases, not available. This is especially true when a certain imaging geometry is
required determined by the next possible SAR acquisition over the crisis area. Modern VHR SAR
missions, such as COSMO-SkyMed, TerraSAR-X, or RADARSAT-2 do not systematically cover
the entire Earth’s landmass.

3. The methodology proposed in this article is also based on change detection. However,
high-resolution optical imagery of Landsat-8 or Sentinel-2 is used as pre-event information.
As these imagery are freely available and systematically acquired on the entire Earth’s landmass
at high repetition rates (cf. Section 3.1), it is guaranteed that useful, i.e., cloud-free, pre-event
imagery is available for the entire Earth’s landmass. In the ideal case, the optical imagery is
acquired shortly before the landslide event. However, in cases where cloud coverage is too high,
cloud-free optical imagery acquired at the same season one year before could be used.

The methodology was successfully applied to two landslide case studies of different characteristics:
a rotational slide near Charleston, West Virginia, USA, which occurred on 12 March 2015, and a mining
waste earthflow near Bolshaya Talda, Russia, which occurred on 1 April 2015.

In the future, the developed methodology will be applied and tested on further upcoming
landslide events, also including applicability tests during rapid mapping activities of DLR’s Center
for Satellite Based Crisis Information (ZKI). In addition to the Landsat-8 data utilized in this study,
imagery of the recently launched Sentinel-2 will also be employed as pre-event information.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/4/307/s1,
Video S1: First slope failure of the Yeager Airport landslide (from AGU landslide blog of Dave Petley [43]),
Video S2: Drone flight over the Yeager Airport landslide (AGU landslide blog of Dave Petley [43]), Video S3:
Moving landslide mass at Bolshaya Talda mining waste landslide (It is originally from [47]).
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Abbreviations

The following abbreviations are used in this manuscript:

ALOS Advanced Land Observing Satellite
CNL Cognition Network Language
DEM Digital Elevation Model
DLR German Aerospace Center
EMAS Engineered Material Arrestor System
EO Earth Observation
FAA Federal Aviation Administration
FNEA Fractal Net Evolution Approach
HR High Resolution
HS HighResolution SpotLight
InSAR Synthetic Aperature Radar Interferometry
LiDAR Light Detection And Ranging
MS Multispectral
NDVI Normalized Difference Vegetation Index
NIR Near-Infra-Red
OA Overall Accuracy
OBIA Object-Based Image Analysis
PA Producer’s Accuracy
PALSAR Phased Array type L-band Synthetic Aperture Radar
PolSAR Polarimetric Synthetic Aperture Radar
RVI Radar Vegetation Index
SAR Synthetic Aperture Radar
SRTM Shuttle Radar Topography Mission
UA User’s Accuracy
USGS United States Geological Survey
VHR Very High Resolution
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