Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review
Abstract
:1. Introduction
2. Effects of Pectin on In Vivo Starch Utilization
2.1. Human Studies
2.2. Rodent Studies
2.2.1. Studies on Commercially Available Pectin Samples
2.2.2. Isolated Pectin Samples from Natural Sources
2.3. Consumption of Pectin-Rich Whole Food and the Blood-Glucose Responses
3. Mechanisms of Effects of Pectic Polysaccharides on Starch Digestion
3.1. Physicochemical Changes Caused by Pectin in Digesta
3.2. Influence of Pectin on Amylase Activity
3.3. The Interplay between Pectin and Starch Substrate
3.4. Pectin as a Cell Wall Material in Whole Food
3.5. In Vivo Physiological Regulation Induced by Pectin Ingestion
3.5.1. Gastric Emptying (GE)
3.5.2. Hormones
3.5.3. Histology of the Gastrointestinal Tract
3.5.4. Gut Microbiota and Short-Chain Fatty Acids
4. The Characteristics and Future Perspectives of Pectin’s Effects on Starch Digestion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. Polym. 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Sila, D.N.; Van Buggenhout, S.; Duvetter, T.; Fraeye, I.; De Roeck, A.; Van Loey, A.; Hendrickx, M. Pectins in processed fruits and vegetables: Part II—Structure–function relationships. Compr. Rev. Food Sci. Food Saf. 2009, 8, 86–104. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to pectins and reduction of post-prandial glycaemic responses (ID 786), maintenance of normal blood cholesterol concentrations (ID 818) and increase in satiety leading to a reduction in energy intake (ID 4692) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. Eur. Food Saf. Auth. 2010, 8, 1747. [Google Scholar] [CrossRef]
- Vincken, J.-P.; Schols, H.A.; Oomen, R.J.; McCann, M.C.; Ulvskov, P.; Voragen, A.G.; Visser, R.G. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol. 2003, 132, 1781–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, M.; Albersheim, P.; Darvill, A. The pectic polysaccharides of primary cell walls. In Methods in Plant Biochemistry; Dey, P.M., Ed.; Academic Press: London, UK, 1990; Volume 2, pp. 415–441. [Google Scholar]
- Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef] [PubMed]
- Grant, G.T.; Morris, E.R.; Rees, D.A.; Smith, P.J.; Thom, D. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 1973, 32, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef]
- Hoang, N.-L.; Landolfi, A.; Kravchuk, A.; Girard, E.; Peate, J.; Hernandez, J.M.; Gaborieau, M.; Kravchuk, O.; Gilbert, R.G.; Guillaneuf, Y.; et al. Toward a full characterization of native starch: Separation and detection by size-exclusion chromatography. J. Chromatogr. A 2008, 1205, 60–70. [Google Scholar] [CrossRef]
- Goff, H.D.; Repin, N.; Fabek, H.; El Khoury, D.; Gidley, M.J. Dietary fibre for glycaemia control: Towards a mechanistic understanding. Bioact. Carbohydr. Diet. Fibre 2018, 14, 39–53. [Google Scholar] [CrossRef]
- Pawlak, D.; Ebbeling, C.; Ludwig, D. Should obese patients be counselled to follow a low-glycaemic index diet? Yes. Obes. Rev. 2002, 3, 235–243. [Google Scholar] [CrossRef]
- Ceriello, A. The emerging role of post-prandial hyperglycaemic spikes in the pathogenesis of diabetic complications. Diabet. Med. 1998, 15, 188–193. [Google Scholar] [CrossRef]
- Bonora, E.; Muggeo, M. Postprandial blood glucose as a risk factor for cardiovascular disease in type II diabetes: The epidemiological evidence. Diabetologia 2001, 44, 2107–2114. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.C. Postprandial glycemia, glycemic index, and the prevention of type 2 diabetes. Am. J. Clin. Nutr. 2004, 80, 243–244. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, E.; Monami, M.; Lamanna, C.; Adalsteinsson, J.E. Post-prandial glucose and diabetic complications: Systematic review of observational studies. Acta Diabetol. 2012, 49, 307–314. [Google Scholar] [CrossRef]
- Blaak, E.E.; Antoine, J.-M.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of postprandial glycaemia on health and prevention of disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, U.; Robin, F. Slowly digestible starch‚ its structure and health implications: A review. Trends Food Sci. Technol. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Singh, J.; Dartois, A.; Kaur, L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol. 2010, 21, 168–180. [Google Scholar] [CrossRef]
- Brennan, C.S. Dietary fibre, glycaemic response, and diabetes. Mol. Nutr. Food Res. 2005, 49, 1613–4125. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Perry, J.; Ying, W. A review of physiological effects of soluble and insoluble dietary fibers. J. Nutr. Food Sci. 2016, 6, 476. [Google Scholar] [CrossRef]
- Qi, X.; Al-Ghazzewi, F.H.; Tester, R.F. Dietary Fiber, Gastric Emptying, and Carbohydrate Digestion: A Mini-Review. Starch-Stärke 2018, 70, 1700346. [Google Scholar] [CrossRef]
- Baron, A.D. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pract. 1998, 40, S51–S55. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Leeds, A.; Wolever, T.S.; Goff, D.; George, K.; Alberti, M.M.; Gassull, M.; Derek, T.; Hockaday, R. Unabsorbable carbohydrates and diabetes: Decreased post-prandial hyperglycÆmia. Lancet 1976, 308, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Leeds, A.R.; Gassull, M.A.; Cochet, B.; Alberti, G.M. Decrease in postprandial insulin and glucose concentrations by guar and pectin. Ann. Intern. Med. 1977, 86, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.; Heading, R.C.; Carter, D.C.; Prescott, L.F.; Tothill, P. Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet 1979, 1, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Wolever, T.M.S.; Leeds, A.R.; Gassull, M.A.; Haisman, P.; Dilawari, J.; Goff, D.V.; Metz, G.L.; Alberti, K.G.M.M. Dietary fibres, fibre analogues, and glucose tolerance: Importance of viscosity. Br. Med. J. 1978, 1, 1392–1394. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.A.; Gassull, M.A.; Leeds, A.R.; Metz, G.; Dilawari, J.B.; Slavin, B.; Blendis, L.M. Effect of dietary fiber on complications of gastric surgery: Prevention of postprandial hypoglycemia by pectin. Gastroenterology 1977, 73, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, S.; Champ, M.; Pechard, C.; Blanchard, P.; Nguyen, M.; Colonna, P.; Krempf, M. Comparative study of the acute effects of resistant starch and dietary fibers on metabolic indexes in men. Am. J. Clin. Nutr. 1994, 59, 879–883. [Google Scholar] [CrossRef]
- Jones, M.; Gu, X.; Stebbins, N.; Crandall, P.; Ricke, S.; Lee, S.-O. Effects of soybean pectin on blood glucose and insulin responses in healthy men. FASEB J. 2015, 29, 596. [Google Scholar] [CrossRef]
- Hagander, B.; Schersten, B.; Asp, N.G.; Sartor, G.; Agardh, C.D.; Schrezenmeir, J.; Kasper, H.; Ahren, B.; Lundquist, I. Effect of dietary fibre on blood glucose, plasma immunoreactive insulin, C-peptide and GIP responses in non insulin dependent (type 2) diabetics and controls. Acta Med. Scand. 1984, 215, 205–213. [Google Scholar] [CrossRef]
- de Queiroz, M.d.S.R.; Janebro, D.I.; da Cunha, M.A.L.; Medeiros, J.d.S.; Sabaa-Srur, A.U.O.; Diniz, M.d.F.F.M.; dos Santos, S.C. Effect of the yellow passion fruit peel flour (Passiflora edulis f. flavicarpa deg.) in insulin sensitivity in type 2 diabetes mellitus patients. Nutr. J. 2012, 11, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimoyama, Y.; Kusano, M.; Kawamura, O.; Zai, H.; Kuribayashi, S.; Higuchi, T.; Nagoshi, A.; Maeda, M.; Mori, M. High-viscosity liquid meal accelerates gastric emptying. Neurogastroenterol. Motil. 2007, 19, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, S.Y.; Washington, N.; Wilson, C.G.; Macdonald, I.A.; Homer-Ward, M.D. The effect of pectin on the gastric emptying rates and blood glucose levels after a test meal. J. Pharm. Pharmacol. 1994, 46, 851–853. [Google Scholar] [CrossRef]
- Sanaka, M.; Yamamoto, T.; Anjiki, H.; Nagasawa, K.; Kuyama, Y. Effects of agar and pectin on gastric emptying and post-prandial glycaemic profiles in healthy human volunteers. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.; Levine, R.; Singh, A.; Scheidecker, J.; Track, N. Sustained pectin ingestion delays gastric emptying. Gastroenterology 1982, 83, 812–817. [Google Scholar] [CrossRef]
- Schwab, U.; Louheranta, A.; Törrönen, A.; Uusitupa, M. Impact of sugar beet pectin and polydextrose on fasting and postprandial glycemia and fasting concentrations of serum total and lipoprotein lipids in middle-aged subjects with abnormal glucose metabolism. Eur. J. Clin. Nutr. 2006, 60, 1073–1080. [Google Scholar] [CrossRef]
- Khramova, D.S.; Vityazev, F.V.; Saveliev, N.Y.; Burkov, A.A.; Beloserov, V.S.; Martinson, E.A.; Litvinets, S.G.; Popov, S.V. Pectin gelling in acidic gastric condition increases rheological properties of gastric digesta and reduces glycaemic response in mice. Carbohydr. Polym. 2019, 205, 456–464. [Google Scholar] [CrossRef]
- Sasaki, T.; Sotome, I.; Okadome, H. In vitro starch digestibility and in vivo glucose response of gelatinized potato starch in the presence of non-starch polysaccharides. Starch-Stärke 2015, 67, 415–423. [Google Scholar] [CrossRef]
- Sánchez, D.; Muguerza, B.; Moulay, L.; Hernández, R.; Miguel, M.; Aleixandre, A. Highly methoxylated pectin improves insulin resistance and other cardiometabolic risk factors in zucker fatty rats. J. Agric. Food Chem. 2008, 56, 3574–3581. [Google Scholar] [CrossRef]
- Silva, D.C.; Freitas, A.L.P.; Pessoa, C.D.S.; Paula, R.C.M.; Mesquita, J.X.; Leal, L.K.A.M.; Brito, G.A.C.; Gonçalves, D.O.; Viana, G.S.B. Pectin from Passiflora edulis shows anti-inflammatory action as well as hypoglycemic and hypotriglyceridemic properties in diabetic rats. J. Med. Food 2011, 14, 1118–1126. [Google Scholar] [CrossRef]
- Xu, P.; Wu, J.; Zhang, Y.; Chen, H.; Wang, Y. Physicochemical characterization of puerh tea polysaccharides and their antioxidant and α-glycosidase inhibition. J. Funct. Foods 2014, 6, 545–554. [Google Scholar] [CrossRef]
- Kim, M. High-methoxyl pectin has greater enhancing effect on glucose uptake in intestinal perfused rats. Nutrition 2005, 21, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Chen, Y.; Li, X.; Tai, G.; Fan, Y.; Zhou, Y. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct. 2014, 5, 845–848. [Google Scholar] [CrossRef]
- Wu, J.; Chen, M.; Shi, S.; Wang, H.; Li, N.; Su, J.; Liu, R.; Huang, Z.; Jin, H.; Ji, X. Hypoglycemic effect and mechanism of a pectic polysaccharide with hexenuronic acid from the fruits of Ficus pumila L. in C57BL/KsJ db/db mice. Carbohydr. Polym. 2017, 178, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Zhang, X.; Wang, M.; Li, B.; Liu, Z.; Liu, S. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing. Carbohydr. Polym. 2014, 114, 567–573. [Google Scholar] [CrossRef]
- Yang, S.W.; Qu, Y.H.; Zhang, H.; Xue, Z.J.; Liu, T.; Yang, L.L.; Sun, L.; Zhou, Y.F.; Fan, Y.Y. Hypoglycemic effects of polysaccharides from Gomphidiaceae rutilus fruiting bodies and their mechanisms. Food Funct. 2020, 11, 424–434. [Google Scholar] [CrossRef]
- Macagnan, F.T.; Santos, L.R.d.; Roberto, B.S.; de Moura, F.A.; Bizzani, M.; da Silva, L.P. Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioact. Carbohydr. Diet. Fibre 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Vervuert, I.; Klein, S.; Coenen, M. Effect of mixing dietary fibre (purified lignocellulose or purified pectin) and a corn meal on glucose and insulin responses in healthy horses. J. Anim. Physiol. Anim. Nutr. 2009, 93, 331–338. [Google Scholar] [CrossRef]
- Wang, P.-C.; Zhao, S.; Yang, B.-Y.; Wang, Q.-H.; Kuang, H.-X. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr. Polym. 2016, 148, 86–97. [Google Scholar] [CrossRef]
- Riaz, M.; Rahman, N.U.; Zia-Ul-Haq, M.; Jaffar, H.Z.E.; Manea, R. Ginseng: A dietary supplement as immune-modulator in various diseases. Trends Food Sci. Technol. 2019, 83, 12–30. [Google Scholar] [CrossRef]
- Ryden, P.; MacDougall, A.J.; Tibbits, C.W.; Ring, S.G. Hydration of pectic polysaccharides. Biopolymers 2000, 54, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Flourie, B.; Vidon, N.; Florent, C.; Bernier, J.J. Effect of pectin on jejunal glucose absorption and unstirred layer thickness in normal man. Gut 1984, 25, 936–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.; Shih, B.; Hsu, J. Effects of different sources of dietary non-starch polysaccharides on the growth performance, development of digestive tract and activities of pancreatic enzymes in goslings. Br. Poult. Sci. 2010, 51, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Forman, L.; Schneeman, B. Dietary pectin’s effect on starch utilization in rats. J. Nutr. 1982, 112, 528–533. [Google Scholar] [CrossRef]
- Harris, P.J.; Tasmanjones, C.; Ferguson, L.R. Effects of two contrasting dietary fibres on starch digestion, short-chain fatty acid production and transit time in rats. J. Sci. Food Agric. 2000, 80, 2089–2095. [Google Scholar] [CrossRef]
- Hillebrand, I.; Boehme, K.; Frank, G.; Fink, H.; Berchtold, P. The effects of theα-glucosidase inhibitor BAY g 5421 (Acarbose) on meal-stimulated elevations of circulating glucose, insulin, and triglyceride levels in man. Res. Exp. Med. 1979, 175, 81–86. [Google Scholar] [CrossRef]
- Isaksson, G.; Lundquist, I.; Ihse, I. Effect of dietary fiber on pancreatic enzyme activity in vitro. Gastroenterology 1982, 82, 918–924. [Google Scholar] [CrossRef]
- Espinal-Ruiz, M.; Parada-Alfonso, F.; Restrepo-Sánchez, L.-P.; Narváez-Cuenca, C.-E. Inhibition of digestive enzyme activities by pectic polysaccharides in model solutions. Bioact. Carbohydr. Diet. Fibre 2014, 4, 27–38. [Google Scholar] [CrossRef]
- Thomsen, L.; Tasman-Jones, C. Disaccharidase levels of the rat jejunum are altered by dietary fibre. Digestion 1982, 23, 253–258. [Google Scholar] [CrossRef]
- Isaksson, G.; Lundquist, I.; Åkesson, B.; Ihse, I. Effects of pectin and wheat bran on intraluminal pancreatic enzyme activities and on fat absorption as examined with the triolein breath test in patients with pancreatic insufficiency. Scand. J. Gastroenterol. 1984, 19, 467–472. [Google Scholar] [CrossRef]
- Pluschke, A.M.; Williams, B.A.; Zhang, D.; Gidley, M.J. Dietary pectin and mango pulp effects on small intestinal enzyme activity levels and macronutrient digestion in grower pigs. Food Funct. 2018, 9, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Tsai, C.C.; Hsu, J.C.; Chiou, P.W. Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydrases of domestic geese. Br. Poult. Sci. 1998, 39, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Mosenthin, R.; Sauer, W.C.; Ahrens, F. Dietary pectin’s effect on ileal and fecal amino acid digestibility and exocrine pancreatic secretions in growing pigs. J. Nutr. 1994, 124, 1222–1229. [Google Scholar] [CrossRef]
- Bai, Y.; Atluri, S.; Zhang, Z.; Gidley, M.J.; Li, E.; Gilbert, R.G. Structural reasons for inhibitory effects of pectin on α-amylase enzyme activity and in-vitro digestibility of starch. Food Hydrocoll. 2021, 114, 106581. [Google Scholar] [CrossRef]
- Dunaif, G.; Schneeman, B.O. The effect of dietary fiber on human pancreatic enzyme activity in vitro. Am. J. Clin. Nutr. 1981, 34, 1034–1035. [Google Scholar] [CrossRef] [PubMed]
- Forman, L.P.; Schneeman, B.O. Effects of dietary pectin and fat on the small intestinal contents and exocrine pancreas of rats. J. Nutr. 1980, 110, 1992–1999. [Google Scholar] [CrossRef]
- Ishwarya, S.P.; Nisha, P. Advances and prospects in the food applications of pectin hydrogels. Crit. Rev. Food Sci. Nutr. 2021, 62, 4393–4417. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; McClements, D.J.; Zhang, Z.; Zhang, R.; Jin, Z.; Tian, Y. Effect of dietary fibers on the structure and digestibility of fried potato starch: A comparison of pullulan and pectin. Carbohydr. Polym. 2019, 215, 47–57. [Google Scholar] [CrossRef]
- Ma, Y.-S.; Pan, Y.; Xie, Q.-T.; Li, X.-M.; Zhang, B.; Chen, H.-Q. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chem. 2019, 274, 319–323. [Google Scholar] [CrossRef]
- Zhang, B.; Bai, B.; Pan, Y.; Li, X.M.; Cheng, J.S.; Chen, H.Q. Effects of pectin with different molecular weight on gelatinization behavior, textural properties, retrogradation and in vitro digestibility of corn starch. Food Chem. 2018, 264, 58–63. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Gong, S.; Gu, X.; Yu, Y.; Wu, J.; Wang, Z. Low and high methoxyl pectin lowers on structural change and digestibility of fried potato starch. LWT 2020, 132, 109853. [Google Scholar] [CrossRef]
- Yin, X.; Zheng, Y.; Kong, X.; Cao, S.; Chen, S.; Liu, D.; Ye, X.; Tian, J. RG- I pectin affects the physicochemical properties and digestibility of potato starch. Food Hydrocoll. 2021, 117, 106687. [Google Scholar] [CrossRef]
- Ogawa, Y.; Donlao, N.; Thuengtung, S.; Tian, J.; Cai, Y.; Reginio, F.C., Jr.; Ketnawa, S.; Yamamoto, N.; Tamura, M. Impact of food structure and cell matrix on digestibility of plant-based food. Curr. Opin. Food Sci. 2018, 19, 36–41. [Google Scholar] [CrossRef]
- Dhital, S.; Bhattarai, R.R.; Gorham, J.; Gidley, M.J. Intactness of cell wall structure controls the in vitro digestion of starch in legumes. Food Funct. 2016, 7, 1367–1379. [Google Scholar] [CrossRef]
- Li, H.; Gidley, M.J.; Dhital, S. Wall porosity in isolated cells from food plants: Implications for nutritional functionality. Food Chem. 2019, 279, 416–425. [Google Scholar] [CrossRef]
- Bi, Y.; Zhang, Y.; Jiang, H.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Molecular structure and digestibility of banana flour and starch. Food Hydrocoll. 2017, 72, 219–227. [Google Scholar] [CrossRef]
- Christiaens, S.; Van Buggenhout, S.; Houben, K.; Jamsazzadeh Kermani, Z.; Moelants, K.R.; Ngouémazong, E.D.; Van Loey, A.; Hendrickx, M.E. Process–structure–function relations of pectin in food. Crit. Rev. Food Sci. Nutr. 2016, 56, 1021–1042. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Mujumdar, A.S.; Jin, X.; Liu, Z.-L.; Zhang, Y.; Xiao, H.-W. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocoll. 2021, 118, 106808. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, M.; Atluri, S.C.; Chen, J.; Gilbert, R.G. Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocoll. 2020, 106, 105894. [Google Scholar] [CrossRef]
- Howarth, N.C.; Saltzman, E.; Roberts, S.B. Dietary fiber and weight regulation. Nutr. Rev. 2001, 59, 129–139. [Google Scholar] [CrossRef]
- Slavin, J.; Green, H. Dietary fibre and satiety. Nutr. Bull. 2007, 32, 32–42. [Google Scholar] [CrossRef]
- Goyal, R.K.; Cristofaro, V.; Sullivan, M.P. Rapid gastric emptying in diabetes mellitus: Pathophysiology and clinical importance. J. Diabetes Its Complicat. 2019, 33, 107414. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.D.; Williams, C.M.; Hajnal, F.; Valenzuela, J.E. Pectin Delays Gastric Emptying and Increases Satiety in Obese Subjects. Gastroenterology 1988, 95, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Salmenkallio-Marttila, M.; Due, A.; Gunnarsdottir, I.; Karhunen, L.; Saarela, M.; Lyly, M. Satiety, Weight Management and Foods; Literature Review; Nordic Innovation Centre: Oslo, Norway, 2009. [Google Scholar]
- Adam, C.L.; Williams, P.A.; Dalby, M.J.; Garden, K.; Thomson, L.M.; Richardson, A.J.; Gratz, S.W.; Ross, A.W. Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats. Nutr. Metab. 2014, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Adam, C.L.; Williams, P.A.; Garden, K.E.; Thomson, L.M.; Ross, A.W. Dose-dependent effects of a soluble dietary Fibre (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats. PLoS ONE 2015, 10, e0115438. [Google Scholar] [CrossRef] [Green Version]
- Adam, C.L.; Gratz, S.W.; Peinado, D.I.; Thomson, L.M.; Garden, K.E.; Williams, P.A.; Richardson, A.J.; Ross, A.W. Effects of dietary fibre (pectin) and/or increased protein (casein or pea) on satiety, body weight, adiposity and caecal fermentation in high fat diet-induced obese rats. PLoS ONE 2016, 11, e0155871. [Google Scholar] [CrossRef] [Green Version]
- Farness, P.L.; Schneeman, B.O. Effects of dietary cellulose, pectin and oat bran on the small intestine in the rat. J. Nutr. 1982, 112, 1315–1319. [Google Scholar] [CrossRef]
- Fuse, K.; Bamba, T.; Hosoda, S. Effects of pectin on fatty acid and glucose absorption and on thickness of unstirred water layer in rat and human intestine. Dig. Dis. Sci. 1989, 34, 1109–1116. [Google Scholar] [CrossRef]
- Guarner, F.; Malagelada, J. Gut flora in health and disease. Lancet 2003, 361, 512–519. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Jakobsdottir, G.; Xu, J.; Molin, G.; Ahrné, S.; Nyman, M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE 2013, 8, e80476. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Scholte, J.; Borewicz, K.; Den Bogert, B.V.; Smidt, H.; Scheurink, A.J.W.; Gruppen, H.; Schols, H.A. Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Mol. Nutr. Food Res. 2016, 60, 2256–2266. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Gao, X.; Wu, C.; Tian, F.; Lei, Q.; Bi, J.; Xie, B.; Wang, H.Y.; Chen, S.; Wang, X. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients 2016, 8, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, M.; Yue, H.; Zhou, L.; Huang, L.; Du, Z.; Ding, K. Structural elucidation of a pectic polysaccharide from Fructus Mori and its bioactivity on intestinal bacteria strains. Carbohydr. Polym. 2018, 186, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Bruggeman, G.; Den Berg, M.A.V.; Borewicz, K.; Scheurink, A.J.W.; Bruininx, E.M.A.M.; De Vos, P.; Smidt, H.; Schols, H.A.; Gruppen, H. Effects of pectin on fermentation characteristics, carbohydrate utilization and microbial community composition in the gastrointestinal tract of weaning pigs. Mol. Nutr. Food Res. 2017, 61, 1600186. [Google Scholar] [CrossRef] [PubMed]
- Tazoe, H.; Otomo, Y.; Kaji, I.; Tanaka, R.; Karaki, S.; Kuwahara, A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 2008, 59, 251–262. [Google Scholar] [CrossRef]
- Sleeth, M.L.; Thompson, E.L.; Ford, H.E.; Zacvarghese, S.; Frost, G. Free fatty acid receptor 2 and nutrient sensing: A proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr. Res. Rev. 2010, 23, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Sakata, T.; Von Engelhardt, W. Stimulatory effect of short chain fatty acids on the epithelial cell proliferation in rat large intestine. Comp. Biochem. Physiol. Part A Physiol. 1983, 74, 459–462. [Google Scholar] [CrossRef]
- Ichikawa, H.; Sakata, T. Effect of L-lactic acid, short-chain fatty acids, and pH in cecal infusate on morphometric and cell kinetic parameters of rat cecum. Dig. Dis. Sci. 1997, 42, 1598–1610. [Google Scholar] [CrossRef]
- Savastano, D.M.; Hodge, R.J.; Nunez, D.J.; Walker, A.; Kapikian, R. Effect of two dietary fibers on satiety and glycemic parameters: A randomized, double-blind, placebo-controlled, exploratory study. Nutr. J. 2014, 13, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, K.; Wright, A.J.; Goff, H.D. Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food Funct. 2015, 6, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Bhattarai, R.R.; Dhital, S.; Deng, R.; Chen, X.D.; Gidley, M.J. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model. J. Food Eng. 2017, 202, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Molly, K.; Vande Woestyne, M.; Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 1993, 39, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Wickham, M.; Faulks, R.; Mills, C. In vitro digestion methods for assessing the effect of food structure on allergen breakdown. Mol. Nutr. Food Res. 2009, 53, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Singh, R.P. A Human Gastric Simulator (HGS) to Study Food Digestion in Human Stomach. J. Food Sci. 2010, 75, E627–E635. [Google Scholar] [CrossRef]
- Ménard, O.; Cattenoz, T.; Guillemin, H.; Souchon, I.; Deglaire, A.; Dupont, D.; Picque, D. Validation of a new in vitro dynamic system to simulate infant digestion. Food Chem. 2014, 145, 1039–1045. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
Subject | Reference | Effect | Mechanisms | Term of Ingestion | Pectin Information | Pectin Dosage or Concentration | Diet |
---|---|---|---|---|---|---|---|
Human Experiments | |||||||
8 non-insulin dependent and 3 insulin-dependent diabetic patients | [24] | ↓ pBGL * | - | single intake | NA | 16 g guar and 10 g pectin | 16 g guar and 10 g pectin to the control meal containing 106 g carbohydrate |
healthy human: age 19–33 | [25] | ↓ pBGL | - | single intake | NA | 10 pectin in 80 g marmalade; 33 mg/mL | 70 g white bread + 16 g butter + 80 g marmalade + 300 mL of tea (43 g milk) |
healthy human: age 25–32 | [26] | ↓ pBGL | increase viscosity; delay gastric emptying | single intake | NA | 72.5 mg/mL; 5.5% wt | glucose: 50 g in 200 mL |
11 human volunteers: age 20–40 | [27] | ↓ pBGL | increase viscosity; slow absorption; prolong transit time | single intake | NA | 14.5 g pectin; ~36 mg/mL | 50 g glucose, 25 g xylose, 15 g lactulose, and 40 g Pure Lemon Juice in 400 mL of water |
9 post-gastric surgery patients | [28] | flattening pBGL | increase viscosity; Prolonged absorption | single intake | HM-pectin | 14.5 g HM pectin; 36.25 mg/mL | 50 g glucose + 400 mL water + 40 g of pure lemon juice + 14.5 g of HM-pectin |
healthy male: age 22–26, BMI 20 | [29] | ↓ pBGL | increase viscosity | single intake | HM-pectin DE 68%; 140 kDa | 30 g; 10% wt% | 50 g glucose in 20% solution (Aguettant, France) alone or mixed with 30 g pectin |
30 healthy males: age 18–45 | [30] | ↓ pBGL | - | single intake | soybean pectin | 10 g; 16.7 mg/mL | 10 g pectin + 50 g glucose + 600 mL water |
8 diabetes: average age 54, BMI 28; 8 healthy: average age 21, BMI 21. | [31] | ↓ pBGL | by prolonging intestinal digestion and/or absorption | single intake | natural pectin in apple and whole grain bread | high fiber group-12 g, 12% (wt%); low fiber group-4 g, 7% (wt%) | Margarine milk cheese bread apple |
43 diabetic patient volunteers: age 57–73, average weight 66.8 kg, average BMI 27.8 | [32] | ↓ fBGL | increase viscosity, (hypothesis) | long term intake | yellow passion fruit peel flour | about 6.3 g/day | 30 g flour, equal to 17.4 g of total fiber (6.3 g of soluble fiber and 11.1 g of insoluble fiber), |
11 healthy volunteers: age 22–35 | [33] | ↑ pBGL | accelerate gastric emptying | single intake | NA | 90 g; 180 mg/mL | 400 mL, 400 kcal; protein, 14.8 g; fat, 14.4 g; glucose, 52.8 g; dietary fiber, 4 g + inorganic salts |
10 healthy humans | [34] | × pBGL | slowed gastric emptying | single intake | pectin in drink | 2 g | 2 eggs (60 g), 30 mL milk, 25 g butter, 2 slices of toast and 300 mL high-glucose drink 61.5 g carbohydrate. 655 kcal |
10 healthy male: age 21–33, 56.8–73.2 kg, BMI 19.4–23.9 | [35] | × pBGL | slowed gastric emptying | single intake | NA | 5 g; 10 mg/mL | 450 kcal energy and 500 mL; 70 g Maltodextrin + 5 g glucose + 9 g fat + 17 g protein |
13 healthy adults: age 18–37 | [36] | × pBGL | - | 4 weeks | pectin baked in muffin | 20 g/day | 2400-calorie, 50% carbohydrate, 3 g crude fiber. |
66 unhealthy human volunteers: age 30–65, 70–90 kg, BMI 25–32 | [37] | × pBGL & fBGL | - | 12 weeks | SBP | 16 g/day; 40 mg/mL SBP (soluble fiber content, 76%) | was 40 g white bread, 40 g cucumber, 160 g orange juice and 2 dL drink |
Subject | Reference | Effect | Mechanisms | Term of Ingestion | Pectin Information | Pectin Dosage or Concentration | Diet |
---|---|---|---|---|---|---|---|
Animal Experiments | |||||||
Swiss albino mice; 30 g | [38] | flattening pBGL * | form gel; increase viscosity; affect gastric emptying | single intake | LM-pectin with structural information | 2% in solution | chow diet containing 5% lipid, 14% protein and 76% carbohydrate, including 5% dietary fiber (cellulose) |
health male Sprague Dawley rats | [39] | ↓ pBGL | inhibit enzyme digestion process | single intake | Citrus pectin (Sigma Aldrich P9135) | 5% based on starch dry weight | 1.8 g gelatinized potato starch + 90 mg pectin; 10 mL diet per kg of rat’s body weight |
Zucker fatty rats; 260–275 g | [40] | ↓ fBGL | form gel and increase viscosity | long term intake | HM 73% apple pectin | 10% wt% | 10% pectin + protein (14%), fat (4%), and carbohydrates (72%) |
alloxan-induced diabetic rats | [41] | ↓ fBGL | increase viscosity | 5 days | passion fruit pectin | 0.5–25 mg/kg orally | - |
alloxan induced diabetes Male ICR mice; 20 g | [42] | ↓ pBGL | amylase inhibitory (assumed) | single intake | puerh tea pectic polysaccharides | 50 mg/kg of body weight | soluble starch (2 g/kg BW) alone |
Male Sprague-Dawley rats | [43] | ↓ Glucose absorption | increase viscosity; affect the unstirred layer in intestines | single intake | Citrus pectin; DE 30% and 90% | 10 mg/mL | perfusions: pH 7.4 + pectin (10 g/L) + glucose 10 mmol/mL, etc. |
Male ICR STZ induced diabetes mice; 6–8 weeks old; 24 g | [44] | ↓ fBGL | anti-oxidation; stimulating increased insulin secretion | 10 days | ginseng pectin | with WGP (50 mg per kg per day), WGPA (10 mg per kg per day) and WGPN (30 mg per kg per day) | - |
Genetically diabetic C57BL/Ksj db/db male mice; 5 weeks | [45] | ↓ fBGL | improving hepatic glycogen metabolism | 4 weeks | extracted FPLP | 100 mg kg−1 day−1 (DFL); FPLP 200 mg kg−1 day−1 (DFH) | - |
ICR alloxan induced diabetic male mice; 20 g; 6–8 weeks | [46] | ↓ fBGL | anti-oxidation | 4 weeks | ginseng pectins | 100 mg/kg of GPW, GPR and GPS, | - |
Male C57BL/6 J and db/db mice | [47] | ↓ pBGL | increased insulin sensitivity by inhibiting lipid accumulation in the liver | 5 weeks | mushroom pectic polysaccharides | 50 mg/kg | testing solution: glucose solution 2 g/kg; diet (60% cereals, 33% protein and 3% oil) and water |
Male Wistar rats; 21 days | [48] | ↓ pBGL | increase viscosity: slow diffusion and absorption | 32 days | Apple pomace Orange bagasse Passion fruit peel | ~2% wt in diet | Casein, sucrose, soybean oil, starch, cellulose and by-products |
4 horses; 12 yrs; 642 kg | [49] | × pBGL | - | single intake | apple pectin | 0.1 g/kg bodyweight | pellet containing 50% corn starch and 25% apple pectin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Gilbert, R.G. Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review. Nutrients 2022, 14, 5107. https://doi.org/10.3390/nu14235107
Bai Y, Gilbert RG. Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review. Nutrients. 2022; 14(23):5107. https://doi.org/10.3390/nu14235107
Chicago/Turabian StyleBai, Yeming, and Robert G. Gilbert. 2022. "Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review" Nutrients 14, no. 23: 5107. https://doi.org/10.3390/nu14235107
APA StyleBai, Y., & Gilbert, R. G. (2022). Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review. Nutrients, 14(23), 5107. https://doi.org/10.3390/nu14235107