Prevalence of Sarcopenia Determined by Computed Tomography in Pancreatic Cancer: A Systematic Review and Meta-Analysis of Observational Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Measured Variables and Subgroup Analyses
- Method used to calculate sarcopenia. In particular, we specified three subgroups: skeletal muscle index (SMI) or analogous (e.g., SKMI, SKM), and total psoas area (TPA) or analogous (e.g., TPV, PMI).
- For studies measured by SMI, we analyzed the differences between groups according to three intervals: <40 cm2/m2, 40–50 cm2/m2, and >50 cm2/m2. In the study by Park et al. [22], data were provided in different units (i.e., kg/m2) because the authors converted their data to a previously reported reference value (Appendicular Skeletal Muscle, ASM) obtained from DXA imaging, and thus, we re-calculated the reference values according to the formula used [23]: ASM/height2 (kg/m2) = 0.11 × SMI (cm2/m2) + 1.17. When a study reported the prevalence of sarcopenia using different cutoffs, the sample was split or duplicated accordingly and independently analyzed.
- Oncological context in terms of patient management, namely palliative (non-resectable or metastatic cancer) or curative (managed with surgery with or without chemo/radiotherapy).
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Included Studies
3.2. Prevalence of Sarcopenia and Subgroup Analyses
3.2.1. Prevalence of Sarcopenia
3.2.2. Prevalence of Sarcopenia Based on the CT-Based Measurement Index Chosen in the Included Studies
3.2.3. Prevalence of Sarcopenia Based on the Cutoff Value Chosen in the Included Studies
3.2.4. Prevalence of Sarcopenia Based on Treatment Intention in the Included Studies
3.3. Sensitivity Analysis and Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Afghani, E.; Klein, A.P. Pancreatic Adenocarcinoma: Trends in Epidemiology, Risk Factors, and Outcomes. Hematol. Oncol. Clin. N. Am. 2022, 36, 879–895. [Google Scholar] [CrossRef]
- Griffin, O.M.; Bashir, Y.; O’Connor, D.; Peakin, J.; McMahon, J.; Duggan, S.N.; Geoghegan, J.; Conlon, K.C. Measurement of Body Composition in Pancreatic Cancer: A Systematic Review, Meta-Analysis, and Recommendations for Future Study Design. Dig. Surg. 2022, 39, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Shin, Y.; Huh, J.; Sung, Y.S.; Lee, I.S.; Yoon, K.H.; Kim, K.W. Recent Issues on Body Composition Imaging for Sarcopenia Evaluation. Korean J. Radiol. 2019, 20, 205–217. [Google Scholar] [CrossRef]
- Jäger, J.; Callensee, L.; Albayrak-Rena, S.; Esser, S.; Witzke, O.; Schönfeld, A. Prevalence of sarcopenia among people living with HIV defined by the revised European working group on sarcopenia in older people. Int. J. STD AIDS 2024, 35, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Fan, Y.; Wang, Y.; Wang, Z.; Zhou, J. Prevalence and clinical outcomes of sarcopenia in patients with esophageal, gastric or colorectal cancers receiving preoperative neoadjuvant therapy: A meta-analysis. Asia Pac. J. Oncol. Nurs. 2024, 11, 100436. [Google Scholar] [CrossRef]
- Liu, C.; An, L.; Zhang, S.; Deng, S.; Wang, N.; Tang, H. Association between preoperative sarcopenia and prognosis of pancreatic cancer after curative-intent surgery: A updated systematic review and meta-analysis. World J. Surg. Oncol. 2024, 22, 38. [Google Scholar] [CrossRef] [PubMed]
- Tagliafico, A.S.; Bignotti, B.; Torri, L.; Rossi, F. Sarcopenia: How to measure, when and why. Radiol. Med. 2022, 127, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Bajestani, S.M.R.; Mazurak, V.C.; Baracos, V. Computed tomography-defined muscle and fat wasting are associated with cancer clinical outcomes. Semin. Cell Dev. Biol. 2016, 54, 2–10. [Google Scholar] [CrossRef]
- Ní Bhuachalla, É.B.; Daly, L.E.; Power, D.G.; Cushen, S.J.; MacEneaney, P.; Ryan, A.M. Computed tomography diagnosed cachexia and sarcopenia in 725 oncology patients: Is nutritional screening capturing hidden malnutrition? J. Cachexia Sarcopenia Muscle 2018, 9, 295–305. [Google Scholar] [CrossRef]
- Prado, C.M.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Dalal, S.; Hui, D.; Bidaut, L.; Lem, K.; Del Fabbro, E.; Crane, C.; Reyes-Gibby, C.C.; Bedi, D.; Bruera, E. Relationships among Body Mass Index, Longitudinal Body Composition Alterations, and Survival in Patients with Locally Advanced Pancreatic Cancer Receiving Chemoradiation: A Pilot Study. J. Pain Symptom. Manag. 2012, 44, 181–191. [Google Scholar] [CrossRef]
- Kays, J.K.; Shahda, S.; Stanley, M.; Bell, T.M.; O’Neill, B.H.; Kohli, M.D.; Couch, M.E.; Koniaris, L.G.; Zimmers, T.A. Three cachexia phenotypes and the impact of fat-only loss on survival in FOLFIRINOX therapy for pancreatic cancer. J. Cachexia Sarcopenia Muscle 2018, 9, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Chang, M.C.; Lyadov, V.K.; Liang, P.C.; Chen, C.M.; Shih, T.T.F.; Chang, Y.T. Comparing Western and Eastern criteria for sarcopenia and their association with survival in patients with pancreatic cancer. Clin. Nutr. 2019, 38, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Hyder, O.; Firoozmand, A.; Kneuertz, P.; Schulick, R.D.; Huang, D.; Makary, M.; Hirose, K.; Edil, B.; Choti, M.A.; et al. Impact of Sarcopenia on Outcomes Following Resection of Pancreatic Adenocarcinoma. J. Gastrointest. Surg. 2012, 16, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Yamaguchi, J.; Takami, H.; Hayashi, M.; Kodera, Y.; Nishida, Y.; Watanabe, N.; Onoe, S.; Mizuno, T.; Yokoyama, Y.; et al. Impact of skeletal muscle mass on the prognosis of patients undergoing neoadjuvant chemotherapy for resectable or borderline resectable pancreatic cancer. Int. J. Clin. Oncol. 2023, 28, 688–697. [Google Scholar] [CrossRef]
- Hou, Y.-C.; Chen, C.-Y.; Huang, C.-J.; Wang, C.-J.; Chao, Y.-J.; Chiang, N.-J.; Wang, H.-C.; Tung, H.-L.; Liu, H.-C.; Shan, Y.-S. The Differential Clinical Impacts of Cachexia and Sarcopenia on the Prognosis of Advanced Pancreatic Cancer. Cancers 2022, 14, 3137. [Google Scholar] [CrossRef] [PubMed]
- Amini, N.; Spolverato, G.; Gupta, R.; Margonis, G.A.; Kim, Y.; Kamel, I.R.; Pawlik, T.M. Impact Total Psoas Volume on Short- and Long-Term Outcomes in Patients Undergoing Curative Resection for Pancreatic Adenocarcinoma: A New Tool to Assess Sarcopenia. J. Gastrointest. Surg. 2016, 19, 1593–1602. [Google Scholar] [CrossRef] [PubMed]
- Williet, N.; Fovet, M.; Maoui, K.; Chevalier, C.; Maoui, M.; Le Roy, B.; Roblin, X.; Hag, B.; Phelip, J.M. A Low Total Psoas Muscle Area Index Is a Strong Prognostic Factor in Metastatic Pancreatic Cancer. Pancreas 2021, 50, 579–586. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, J.; Xia, M.; Zhang, Y.; Liu, S.; Tan, G. Effect of sarcopenia on survival in patients after pancreatic surgery: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1315097. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Choi, S.J.; Kim, Y.S.; Ahn, H.K.; Hong, J.; Sym, S.J.; Park, J.; Cho, E.K.; Lee, J.H.; Shin, Y.J.; et al. Prognostic Factors for Risk Stratification of Patients with Recurrent or Metastatic Pancreatic Adenocarcinoma Who Were Treated with Gemcitabine-Based Chemotherapy. Cancer Res. Treat. 2016, 48, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Mourtzakis, M.; Prado, C.M.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Lainez Ramos-Bossini, A.J.; Lopez Zuniga, D.; Ruiz Santiago, F.; Láinez Ramos-Bossini, A.J.; López Zúñiga, D.; Ruiz Santiago, F. Percutaneous vertebroplasty versus conservative treatment and placebo in osteoporotic vertebral fractures: Meta-analysis and critical review of the literature. Eur. Radiol. 2021, 31, 8542–8553. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Beetz, N.L.; Geisel, D.; Maier, C.; Auer, T.A.; Shnayien, S.; Malinka, T.; Neumann, C.C.M.; Pelzer, U.; Fehrenbach, U. Influence of Baseline CT Body Composition Parameters on Survival in Patients with Pancreatic Adenocarcinoma. J. Clin. Med. 2022, 11, 2356. [Google Scholar] [CrossRef]
- Cai, Z.-W.; Li, J.-L.; Liu, M.; Wang, H.-W.; Jiang, C.-Y. Low preoperative skeletal muscle index increases the risk of mortality among resectable pancreatic cancer patients: A retrospective study. World J. Gastrointest. Surg. 2022, 14, 1350–1362. [Google Scholar] [CrossRef]
- Choi, Y.; Oh, D.-Y.; Kim, T.-Y.; Lee, K.-H.; Han, S.-W.; Im, S.-A.; Kim, T.-Y.; Bang, Y.-J. Skeletal Muscle Depletion Predicts the Prognosis of Patients with Advanced Pancreatic Cancer Undergoing Palliative Chemotherapy, Independent of Body Mass Index. PLoS ONE 2015, 10, e0139749. [Google Scholar] [CrossRef] [PubMed]
- Clement, D.S.V.M.; van Leerdam, M.E.; de Jong, S.; Weickert, M.O.; Ramage, J.K.; Tesselaar, M.E.T.; Srirajaskanthan, R. Prevalence of Sarcopenia and Impact on Survival in Patients with Metastatic Gastroenteropancreatic Neuroendocrine Tumours. Cancers 2023, 15, 782. [Google Scholar] [CrossRef]
- Cloyd, J.M.; Nogueras-Gonzalez, G.M.; Prakash, L.R.; Petzel, M.Q.B.; Parker, N.H.; Ngo-Huang, A.T.; Fogelman, D.; Denbo, J.W.; Garg, N.; Kim, M.P.; et al. Anthropometric Changes in Patients with Pancreatic Cancer Undergoing Preoperative Therapy and Pancreatoduodenectomy. J. Gastrointest. Surg. 2018, 22, 703–712. [Google Scholar] [CrossRef] [PubMed]
- d’Engremont, C.; Grillot, J.; Raillat, J.; Vernerey, D.; Vuitton, L.; Koch, S.; Turco, C.; Heyd, B.; Mouillet, G.; Jacquinot, Q.; et al. Additive Value of Preoperative Sarcopenia and Lymphopenia for Prognosis Prediction in Localized Pancreatic Ductal Adenocarcinoma. Front. Oncol. 2021, 11, 683289. [Google Scholar] [CrossRef] [PubMed]
- Emori, T.; Itonaga, M.; Ashida, R.; Tamura, T.; Kawaji, Y.; Hatamaru, K.; Yamashita, Y.; Shimokawa, T.; Koike, M.; Sonomura, T.; et al. Impact of sarcopenia on prediction of progression-free survival and overall survival of patients with pancreatic ductal adenocarcinoma receiving first-line gemcitabine and nab-paclitaxel chemotherapy. Pancreatology 2022, 22, 277–285. [Google Scholar] [CrossRef]
- Gruber, E.S.; Jomrich, G.; Tamandl, D.; Gnant, M.; Schindl, M.; Sahora, K. Sarcopenia and sarcopenic obesity are independent adverse prognostic factors in resectable pancreatic ductal adenocarcinoma. PLoS ONE 2022, 14, e0215915. [Google Scholar] [CrossRef]
- Asama, H.; Ueno, M.; Kobayashi, S.; Fukushima, T.; Kawano, K.; Sano, Y.; Tanaka, S.; Nagashima, S.; Morimoto, M.; Ohira, H.; et al. Sarcopenia Prognostic Value for Unresectable Pancreatic Ductal Adenocarcinoma Patients Treated with Gemcitabine Plus Nab-Paclitaxel. Pancreas 2022, 51, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, A.; Okuwaki, K.; Kida, M.; Imaizumi, H.; Iwai, T.; Yamauchi, H.; Kaneko, T.; Hasegawa, R.; Watanabe, M.; Kurosu, T.; et al. Implication of Skeletal Muscle Loss in the Prognosis of Patients with Pancreatic Ductal Adenocarcinoma Receiving Chemotherapy. Intern. Med. 2023, 62, 2783–2793. [Google Scholar] [CrossRef]
- Jin, K.; Tang, Y.; Wang, A.; Hu, Z.; Liu, C.; Zhou, H.; Yu, X. Body Composition and Response and Outcome of Neoadjuvant Treatment for Pancreatic Cancer. Nutr. Cancer 2022, 74, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Ahn, H.; Kim, K.W.; Lee, S.S.; Kim, H.J.; Ko, Y.; Park, T.; Lee, J. Prognostic Value of Sarcopenia and Myosteatosis in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Korean J. Radiol. 2022, 23, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-H.; Choi, M.H.; Lee, I.S.; Hong, T.H.; Lee, M.A. Clinical significance of skeletal muscle density and sarcopenia in patients with pancreatic cancer undergoing first-line chemotherapy: A retrospective observational study. BMC Cancer 2021, 21, 77. [Google Scholar] [CrossRef]
- Kurita, Y.; Kobayashi, N.; Tokuhisa, M.; Goto, A.; Kubota, K.; Endo, I.; Nakajima, A.; Ichikawa, Y. Sarcopenia is a reliable prognostic factor in patients with advanced pancreatic cancer receiving FOLFIRINOX chemotherapy. Pancreatology 2019, 19, 127–135. [Google Scholar] [CrossRef]
- Mortier, V.; Wei, F.; Pellat, A.; Marchese, U.; Dohan, A.; Brezault, C.; Barat, M.; Fuks, D.; Soyer, P.; Coriat, R. Impact of Sarcopenia on Patients with Localized Pancreatic Ductal Adenocarcinoma Receiving FOLFIRINOX or Gemcitabine as Adjuvant Chemotherapy. Cancers 2022, 14, 6179. [Google Scholar] [CrossRef] [PubMed]
- Nakano, O.; Kawai, H.; Kobayashi, T.; Kohisa, J.; Ikarashi, S.; Hayashi, K.; Yokoyama, J.; Terai, S. Rapid decline in visceral adipose tissue over 1 month is associated with poor prognosis in patients with unresectable pancreatic cancer. Cancer Med. 2021, 10, 4291–4301. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, G.; Fujii, T.; Yamada, S.; Yabusaki, N.; Suzuki, K.; Iwata, N.; Kanda, M.; Hayashi, M.; Tanaka, C.; Nakayama, G.; et al. Clinical impact of sarcopenia on prognosis in pancreatic ductal adenocarcinoma: A retrospective cohort study. Int. J. Surg. 2017, 39, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.; Shin, S.H.; Kim, J.-H.; Jeong, W.K.; Park, D.J.; Kim, N.; Heo, J.S.; Choi, D.W.; Han, I.W. The effects of sarcopenia and sarcopenic obesity after pancreaticoduodenectomy in patients with pancreatic head cancer. HPB 2020, 22, 1782–1792. [Google Scholar] [CrossRef]
- Sato, H.; Goto, T.; Hayashi, A.; Kawabata, H.; Okada, T.; Takauji, S.; Sasajima, J.; Enomoto, K.; Fujiya, M.; Oyama, K.; et al. Prognostic significance of skeletal muscle decrease in unresectable pancreatic cancer: Survival analysis using the Weibull exponential distribution model. Pancreatology 2021, 21, 892–902. [Google Scholar] [CrossRef]
- Shen, X.; Wang, X.; Zheng, Z.; Chen, Y.; Tan, C.; Liu, X.; Ke, N. The differential effects of sarcopenia and cachexia on overall survival for pancreatic ductal adenocarcinoma patients following pancreatectomy: A retrospective study based on a large population. Cancer Med. 2023, 12, 10438–10448. [Google Scholar] [CrossRef]
- Sohal, D.P.S.; Boutin, R.D.; Lenchik, L.; Kim, J.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L., 3rd; Guthrie, K.A.; Chiorean, E.G.; Ahmad, S.A.; et al. Body composition measurements and clinical outcomes in patients with resectable pancreatic adenocarcinoma—Analysis from SWOG S1505. J. Gastrointest. Surg. 2024, 28, 232–235. [Google Scholar] [CrossRef]
- Sugimoto, M.; Farnell, M.B.; Nagorney, D.M.; Kendrick, M.L.; Truty, M.J.; Smoot, R.L.; Chari, S.T.; Moynagh, M.R.; Petersen, G.M.; Carter, R.E.; et al. Decreased Skeletal Muscle Volume Is a Predictive Factor for Poorer Survival in Patients Undergoing Surgical Resection for Pancreatic Ductal Adenocarcinoma. J. Gastrointest. Surg. 2018, 22, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Saito, K.; Nakai, Y.; Oyama, H.; Kanai, S.; Suzuki, T.; Sato, T.; Hakuta, R.; Ishigaki, K.; Saito, T.; et al. Early skeletal muscle mass decline is a prognostic factor in patients receiving gemcitabine plus nab-paclitaxel for unresectable pancreatic cancer: A retrospective observational study. Support. Care Cancer 2023, 31, 197. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.H.L.; Birdsell, L.A.; Martin, L.; Baracos, V.E.; Fearon, K.C.H. Sarcopenia in an Overweight or Obese Patient Is an Adverse Prognostic Factor in Pancreatic Cancer. Clin. Cancer Res. 2009, 15, 6973–6979. [Google Scholar] [CrossRef]
- Tazeoglu, D.; Benli, S.; Colak, T.; Apaydin, F.D. Comparative analysis of the sarcopenia and HALP score on postoperative outcomes in pancreatic cancer patients after pancreatoduodenectomy. Pancreatology 2023, 23, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Uemura, S.; Iwashita, T.; Ichikawa, H.; Iwasa, Y.; Mita, N.; Shimizu, M. The impact of skeletal muscle mass loss in patients with advanced pancreatic cancer during folfirinox. Gastroenterology 2020, 158, S863. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, J.; Tan, X.; He, M.; Qiu, T.; Jiang, L. 18F-fluorodeoxyglucose PET/computed tomography metabolic parameters and sarcopenia in pancreatic cancer. Nucl. Med. Commun. 2023, 44, 719–725. [Google Scholar] [CrossRef]
- Basile, D.; Corvaja, C.; Caccialanza, R.; Aprile, G. Sarcopenia: Looking to muscle mass to better manage pancreatic cancer patients. Curr. Opin. Support. Palliat. Care 2019, 13, 279–285. [Google Scholar] [CrossRef]
- Cho, W.K.; Yu, J.I.; Park, H.C.; Lim, D.H.; Kim, T.H.; Chie, E.K. Impact of sarcopenia on survival of pancreatic cancer patients treated with concurrent chemoradiotherapy. Tumori 2021, 107, 247–253. [Google Scholar] [CrossRef]
- Nowak, S.; Kloth, C.; Theis, M.; Marinova, M.; Attenberger, U.I.; Sprinkart, A.M.; Luetkens, J.A. Deep learning-based assessment of CT markers of sarcopenia and myosteatosis for outcome assessment in patients with advanced pancreatic cancer after high-intensity focused ultrasound treatment. Eur. Radiol. 2024, 34, 279–286. [Google Scholar] [CrossRef]
- Masuda, S.; Yamakawa, K.; Masuda, A.; Toyama, H.; Sofue, K.; Nanno, Y.; Komatsu, S.; Omiya, S.; Sakai, A.; Kobayashi, T.; et al. Association of Sarcopenia with a Poor Prognosis and Decreased Tumor-Infiltrating CD8-Positive T Cells in Pancreatic Ductal Adenocarcinoma: A Retrospective Analysis. Ann. Surg. Oncol. 2023, 30, 5776–5787. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-C.; Wu, C.-H.; Tien, Y.-W.; Lu, T.-P.; Wang, Y.-H.; Chen, B.B. Preoperative sarcopenia is associated with poor overall survival in pancreatic cancer patients following pancreaticoduodenectomy. Eur. Radiol. 2021, 31, 2472–2481. [Google Scholar] [CrossRef] [PubMed]
- Rom, H.; Tamir, S.; Van Vugt, J.L.A.; Berger, Y.; Perl, G.; Morgenstern, S.; Tovar, A.; Brenner, B.; Benchimol, D.; Kashtan, H.; et al. Sarcopenia as a Predictor of Survival in Patients with Pancreatic Adenocarcinoma After Pancreatectomy. Ann. Surg. Oncol. 2022, 29, 1553–1563. [Google Scholar] [CrossRef]
- Choi, M.H.; Yoon, S.B.; Lee, K.; Song, M.; Lee, I.S.; Lee, M.A.; Hong, T.H.; Choi, M.-G. Preoperative sarcopenia and post-operative accelerated muscle loss negatively impact survival after resection of pancreatic cancer. J. Cachexia Sarcopenia Muscle 2018, 9, 326–334. [Google Scholar] [CrossRef]
- Okumura, S.; Kaido, T.; Hamaguchi, Y.; Kobayashi, A.; Shirai, H.; Yao, S.; Yagi, S.; Kamo, N.; Hatano, E.; Okajima, H.; et al. Visceral Adiposity and Sarcopenic Visceral Obesity are Associated with Poor Prognosis after Resection of Pancreatic Cancer. Ann. Surg. Oncol. 2017, 24, 3732–3740. [Google Scholar] [CrossRef] [PubMed]
- Okumura, S.; Kaido, T.; Hamaguchi, Y.; Fujimoto, Y.; Masui, T.; Mizumoto, M.; Hammad, A.; Mori, A.; Takaori, K.; Uemoto, S. Impact of preoperative quality as well as quantity of skeletal muscle on survival after resection of pancreatic cancer. Surgery 2015, 157, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Shimura, M.; Mizuma, M.; Motoi, F.; Kusaka, A.; Aoki, S.; Iseki, M.; Inoue, K.; Douchi, D.; Nakayama, S.; Miura, T.; et al. Negative prognostic impact of sarcopenia before and after neoadjuvant chemotherapy for pancreatic cancer. Pancreatology 2023, 23, 65–72. [Google Scholar] [CrossRef]
- Özkul, B.; Özkul, Ö.; Bilir, C. Predicting the Overall Survival in Patients with Advanced Pancreatic Cancer by Calculating L3 Skeletal Muscle Index Derived from CT. Curr. Med. Imaging 2022, 18, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, D.P.J.; Bakens, M.J.A.M.; Coolsen, M.M.E.; Rensen, S.S.; van Dam, R.M.; Bours, M.J.L.; Weijenberg, M.P.; Dejong, C.H.C.; Damink, S.W.M.O. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer. J. Cachexia Sarcopenia Muscle 2017, 8, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Thormann, M.; Hinnerichs, M.; Ordonez, F.B.; Saalfeld, S.; Perrakis, A.; Croner, R.; Omari, J.; Pech, M.; Zamsheva, M.; Meyer, H.-J.; et al. Sarcopenia is an Independent Prognostic Factor in Patients with Pancreatic Cancer—A Meta-analysis. Acad. Radiol. 2023, 30, 1552–1561. [Google Scholar] [CrossRef]
- Salavatizadeh, M.; Soltanieh, S.; Radkhah, N.; Ataei Kachouei, A.H.; Bahrami, A.; Khalesi, S.; Hejazi, E. The association between skeletal muscle mass index (SMI) and survival after gastrectomy: A systematic review and meta-analysis of cohort studies. Eur. J. Surg. Oncol. 2023, 49, 106980. [Google Scholar] [CrossRef]
- Fujiwara, N.; Nakagawa, H.; Kudo, Y.; Tateishi, R.; Taguri, M.; Watadani, T.; Nakagomi, R.; Kondo, M.; Nakatsuka, T.; Minami, T.; et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J. Hepatol. 2015, 63, 131–140. [Google Scholar] [CrossRef]
- Damm, M.; Efremov, L.; Jalal, M.; Nadeem, N.; Dober, J.; Michl, P.; Wohlgemuth, W.A.; Wadsley, J.; Hopper, A.D.; Krug, S.; et al. Body composition parameters predict survival in pancreatic cancer—A retrospective multicenter analysis. United Eur. Gastroenterol. J. 2023, 11, 998–1009. [Google Scholar] [CrossRef]
- Surov, A.; Wienke, A. Prevalence of sarcopenia in patients with solid tumors: A meta-analysis based on 81,814 patients. J. Parenter. Enter. Nutr. 2022, 46, 1761–1768. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Y.; Khan, A.A.; Lu, L.; Wang, J.; Chen, J.; Jia, N.; Zheng, S.; Xu, X. Deep learning-based radiomics allows for a more accurate assessment of sarcopenia as a prognostic factor in hepatocellular carcinoma. J. Zhejiang Univ. Sci. B 2022, 25, 83–90. [Google Scholar] [CrossRef]
Author (Year) | Country | Design | Number of Institutions | N | Age m (IQR) X ± SD | Women (%) | Sarcopenia (n) | Sarcopenia (%) | Imaging Index for Sarcopenia | Definition of Cut-Off Value | Sex-Specific Cut-Off Values | Tumor Information | Management | NOS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amini et al. (2015) [18] | USA | Retrospective | Single-center | 763 | 67 (58–74) | 45.2 | 152 | 19.9 | TPV | Lowest quartile | M < 17.2 cm2/m2 F < 12.0 cm2/m2 | PDAC | Curative | 6★ |
Basile et al. (2019) [55] | Italy | Retrospective | Single-center | 94 | 45 (48% <70 years) | 44.6 | 69 | 73.4 | SMI | Prado et al. | M < 43 cm2/m2 (BMI < 25); 53 cm2/m2 (BMI > 25) F < 41 cm2/m2 | Advanced PC | Palliative | 7★ |
Beetz et al. (2022) [28] | Germany | Retrospective | Single-center | 103 | 62 + 11 (37–84) | 39.8 | 65 | 63.1 | SMI | Prado et al. | M < 52.3 cm2/m2 F < 38.5 cm2/m2 | PDAC | Not specified | 7★ |
Cai et al. (2022) [29] | China | Retrospective | Single-center | 115 | 65.1 + 9 | 38.2 | 38 | 33 | SMI | AUC (best accuracy, outcome: ‘mortality’) | M < 45.16 cm2/m2 F <34.65 cm2/m2 | PDAC | Curative | 8★ |
Cho et al. (2021) [56] | Korea | Retrospective | Single-center | 299 | 62 (35–83) | 40.4 | 29 | 9.6 | SMI | Fujiwara et al. | M < 36.2 cm2/m2 F < 29.6 cm2/m2 | Locally advanced PC | Palliative | 8★ |
Choi et al. (2015) [30] | Korea | Retrospective | Single-center | 484 | 60.4 (20–85) | 39 | 161 | 33.2 | SMI | AUC (not specified) | M < 42.2 cm2/m2 F < 33.9 cm2/m2 | Advanced PC | Palliative | 8★ |
Choi et al. (2018) [61] | Korea | Retrospective | Single-center | 180 | 64.4 + 9.3 | 45.5 | 60 | 33.3 | SMI | Lowest tertile | M < 45.3 cm2/m2 F < 39.3 cm2/m2 | PC | Curative | 7★ |
Clement et al. (2023) [31] | UK | Retrospective | Single-center | 44 | 62 (52–68) | 52 | 26 | 59 | SMI | Prado et al. | M < 43 cm2/m2 (BMI < 25); <53 (BMI > 25) F < 41 cm2/m2 | Metastatic PC | Palliative | 8★ |
Cloyd et al. (2018) [32] | USA | Retrospective | Single-center | 127 | 64.6 + 8.9 | 59 | 80 | 62.9 | SKM (=SMI) | Mourtzakis et al. | M < 38.9 cm2/m2 F < 55.4 cm2/m2 | PDAC | Curative | 7★ |
Dalal et al. (2012) [12] | USA | Retrospective | Single-center | 41 | 59 (42–81) | 56 | 26 | 63.4 | SKM (=SMI) | Prado et al. | M < 52.4 cm2/m2 F < 38.5 cm2/m2 | Locally advanced PC | Palliative | 6★ |
d‘Engremont et al. (2021) [33] | France | Retrospective | Single-center | 98 | 67.7 (61.8–73.8) | 47.8 | 55 | 56.1 | SMI | Prado et al. | M < 52.4 cm2/m2 F < 38.5 cm2/m2 | Localized PDAC | Curative | 7★ |
Emori et al. (2022) [34] | Japan | Retrospective | Single-center | 84 | <65: 30 (36%) >65: 54 (64%) | 36.9 | 42 | 50 | SMI | Nishikawa et al. | M < 42 cm2/m2 F < 38 cm2/m2 | Unresectable PDAC | Palliative | 7★ |
Gruber et al. (2019) [35] | Austria | Retrospective | Single-center | 133 | 68 (34–87) | 48.8 | 78 | 58.6 | SMI | Prado et al. | M < 52.4 cm2/m2 F < 38.5 cm2/m2 | PDAC | Curative | 6★ |
Hiroyuki Asama et al. (2022) [36] | Japan | Retrospective | Single-center | 124 | 69 (40–84) | 45.9 | 63 | 50.8 | SMI | Nishikawa et al. | M < 42 cm2/m2 F < 38 cm2/m2 | Unresectable PDAC | Palliative | 8★ |
Hou et al. (2022) [17] | Taiwan | Retrospective | Single-center | 232 | <65: 139 (59.9) >65 = 93 (40.1) | 35.7 | 114 | 49.1 | TPA | Prado et al. | M < 545 mm2/m2 F < 385 mm2/m2 | Advanced PC | Palliative | 7★ |
Ishizaki et al. (2023) [37] | Japan | Retrospective | Single-center | 180 | <65: 90 (50%) >65: 90 (50%) | 43.8 | 90 | 50 | SMI | Nishikawa et al. | M < 42 cm2/m2 F < 38 cm2/m2 | Unresectable PC | Palliative | 8★ |
Jin et al. (2020) [38] | China | Retrospective | Single-center | 119 | 60.2 + 8.4 | 50.4 | 57 | 47.8 | SMI | Nishikawa et al. | M < 41 cm2/m2 F < 38.5 cm2/m2 | Potentially resectable PDAC | Curative | 7★ |
Kays et al. (2018) [13] | USA | Retrospective | Single-center | 53 | 59.5 + 9.9 | 37.7 | 26 | 49 | SKMI (=SMI) | Prado et al. | M < 52.4 cm2/m2 F < 38.5 cm2/m2 | Advanced PC | Palliative | 6★ |
Kim et al. (2022) [39] | Korea | Retrospective | Single-center | 347 | 63.6 + 9.6 | 41.7 | 188 | 54.1 | SMI | Prado et al. | M < 42.2 cm2/m2 F < 33.9 cm2/m2 | PDAC | Curative | 7★ |
Kim In-Ho et al. (2021) [40] | Korea | Retrospective | Single-center | 251 | 63.4 + 9.4 | 35.8 | 102 | 40.6 | SMI | outcome-based Contal and O‘Quigley method | M < 43 cm2/m2 (BMI < 25); <53 (BMI > 25) F < 41 cm2/m2 | Metastatic PC | Palliative | 6★ |
Kurita et al. (2019) [41] | Japan | Retrospective | Single-center | 82 | 64 (40–80) | 26.8 | 42 | 51.2 | SMI | Optimum stratification (log-rank, outcome: ‘mortality’) | M < 45.3 cm2/m2 F < 37.1 cm2/m2 | PC | Palliative | 7★ |
Masuda et al. (2023) [58] | Japan | Retrospective | Single-center | 162 | 69 (40–85) | 44.4 | 81 | 50 | SMI | Median value | M < 41.9 cm2/m2 F < 36.6 cm2/m2 | Localized PDAC | Curative | 8★ |
Mortier et al. (2022) [42] | France | Retrospective | Single-center | 70 | Sarcopenic: 65 (43–85) Non-sarcopenic: 73 (54–80) | 52.8 | 15 | 21.4 | SMI | Prado et al. | M < 43 cm2/m2 (BMI < 25); <53 (BMI > 25) F < 41 cm2/m2 | Localized PDAC | Curative | 8★ |
Nakajima et al. (2023)-1 [16] | Japan | Retrospective | Single-center | 44 | 72 (65–76) | 61.3 | 15 | 34 | TPA | Lowest tertile | M < 7.79 cm2/m2 F < 5.70 cm2/m2 | Resectable PC | Curative | 7★ |
Najakima et al. (2023)-2 [16] | Japan | Retrospective | Single-center | 71 | 67 (60–72) | 59.1 | 23 | 32.3 | TPA | Lowest tertile | M < 7.16 cm2/m2 F < 6.44 cm2/m2 | Borderline resectable PC | Curative | 7★ |
Nakano et al. (2020) [43] | Japan | Retrospective | Single-center | 55 | 67 (35–85) | 23.6 | 27 | 49 | SMI | Choi et al. | M < 42.2 cm2/m2 F < 33.9 cm2/m2 | Advanced PC | Palliative | 8★ |
Ninomiya et al. (2017) [44] | Japan | Retrospective | Single-center | 265 | 65.4 + 10.1 | 38.1 | 170 | 64.1 | SMI | Prado et al. | M < 43.75 cm2/m2 F < 38.5 cm2/m2 | PDAC | Curative | 7★ |
Nowak et al. (2024) [57] | Germany | Retrospective | Single-center | 142 | 64.1 + 10.5 | 51.4 | 72 | 50.7 | SMI | Median value | M < 13.5 cm2/m2 F < 11.7 cm2/m2 | Advanced PC | Palliative | 8★ |
Okumura et al. (2015) [63] | Japan | Retrospective | Single-center | 230 | 67 (32–87) | 46 | 64 | 27.8 | PMI | AUC (best accuracy, outcome: ‘death’) | M < 5.9 cm2/m2 F < 4.1 cm2/m2 | PDAC | Curative | 7★ |
Okumura et al. (2017) [62] | Japan | Retrospective | Single-center | 301 | 68 (61–74) | 44.1 | 120 | 39.8 | SMI | AUC (best accuracy, outcome ‘death’) | M < 47.1 cm2/m2 F < 36.6 cm2/m2 | PC | Curative | 7★ |
Özkul et al. (2022) [65] | Turkey | Retrospective | Single-center | 115 | 65.5 + 10.3 | 29.5 | 34 | 29.5 | SMI | AUC (best accuracy, outcome: `mortality`) | M < 56.44 cm2/m2 F < 43.56 cm2/m2 | Unresectable PC | Palliative | 8★ |
Park et al. (2016) [22] | Korea | Retrospective | Single-center | 88 | 65 (34–83) | 32.9 | 76 | 86.3 | ASM (=SMI) | Conversion from SMI to ASM. <1 SD for young adults | M < 7.50 kg/m2; F < 5.38 kg/m2 (sarcopenia class I *) | PC | Palliative | 7★ |
Peng et al. (2012) [15] | China | Retrospective | Single-center | 557 | 65.7 + 10.6 | 46.8 | 139 | 24.9 | TPA | Choi et al. | M < 4.92 cm2/m2 F < 3.62 cm2/m2 | PC | Curative | 6★ |
Peng et al. (2021) [59] | China | Retrospective | Single-center | 116 | 66.2 + 11.9 | 41.3 | 20 | 17.2 | SMI | Lowest quartile | M < 42.2 cm2/m2 F < 33.9 cm2/m2 | PC | Curative | 7★ |
Rom et al. (2022) [60] | Israel | Retrospective | Single-center | 111 | 67 (61–75) | 46.8 | 30 | 27 | SMI | Lowest quartile | M < 44.35 cm2/m2 F < 34.82 cm2/m2 | PDAC | Curative | 7★ |
Ryu et al. (2020) [45] | Korea | Retrospective | Single-center | 548 | 62.51 (24–88) | 40.5 | 252 | 45.9 | SMI | Moon et al. | M < 50.18 cm2/m2 F < 38.63 cm2/m2 | PC (head of pancreas) | Curative | 7★ |
Sato et al. (2021) [46] | Japan | Retrospective | Single-center | 112 | 67.7 (59.2–72.3) | 51.7 | 54 | 48.2 | SMI | Nishikawa et al. | M < 42 cm2/m2 F < 38 cm2/m2 | Advanced PDAC | Palliative | 7★ |
Shen et al. (2023) [47] | China | Retrospective | Single-center | 614 | 59.9 + 10.3 | 40 | 378 | 61.5 | SMI | Prado et al. | M < 52.4 cm2/m2 F < 38.5 cm2/m2 | PDAC | Curative | 8★ |
Shimura et al. (2023) [64] | Japan | Retrospective | Single-center | 75 | 67 + 7.8 | 46.6 | 45 | 60 | SMI | AUC | M < 48.4 cm2/m2 F < 35.5 cm2/m2 | PC | Curative | 8★ |
Sohal et al. (2024) [48] | USA | Prospective | Multi-center | 90 | 63.2 + 8.5 | 54.4 | 32 | 35.5 | SMI (SMA/BMI) | Not specified (=Prado et al.) | M < 52 cm2/m2 F < 39 cm2/m2 | Resectable PDAC | Curative | 8★ |
Sugimoto et al. (2018) [49] | USA | Retrospective | Single-center | 323 | 65 (38–88) | 45.5 | 200 | 61.9 | SMI | Fearon et al. (=Prado et al.) | M < 55.4 cm2/m2 F < 38.9 cm2/m2 | PDAC | Curative | 7★ |
Suzuki et al. (2023) [50] | Japan | Retrospective | Single-center | 138 | 67.5 (59.7–74) | 42 | 61 | 44.2 | SMI | Nishikawa et al. | M < 42 cm2/m2 F < 38 cm2/m2 | Unresectable PC | Palliative | 8★ |
Tan et al. (2009) [51] | Canada | Retrospective | Single-center | 111 | 64.4 + 9.3 | 53.1 | 62 | 55.8 | SMI | Prado et al. | M < 59.1 cm2/m2 F < 48.4 cm2/m2 | PC | Palliative | 6★ |
Tazeoglu et al. (2023) [52] | Turkey | Retrospective | Single-center | 179 | 60.45 + 13.08 | 41.3 | 83 | 46.3 | PMI | Bahat et al. | M < 5.3 cm2/m2 F < 3.6 cm2/m2 | PC | Curative | 8★ |
Uemura et al. (2021) [53] | Japan | Retrospective | Single-center | 69 | 63 (38–74) | 44.9 | 33 | 47.8 | SMI | Nishikawa et al. | M < 42 cm2/m2 F < 38 cm2/m2 | Advanced PC | Palliative | 7★ |
Van Dijk et al. (2017) [66] | The Netherlands | Retrospective | Single-center | 186 | 66.5 | 45.1 | 62 | 33.3 | L3-muscle attenuation index (=SMI) | Lowest tertile | M < 45.1 cm2/m2 F < 36.9 cm2/m2 | PC (head of pancreas) | Curative | 6★ |
Williet et al. (2021) [19] | France | Retrospective | Single-center | 79 | 66 (58.5–74) | 45.5 | 55 | 69.6 | SMI | Optimum stratification (log rank, outcome: ‘mortality’) | M < 55 cm2/m2 F < 39 cm2/m2 | Metastatic PDAC | Palliative | 7★ |
Wu et al. (2019E) [14] | Taiwan | Retrospective | Single-center | 146 | 65.5 (36.7–92.2) | 63 | 16 | 10.9 | TSM (=SMI) | Fujiwara et al. | M < 36.2 cm2/m2 F < 29.6 cm2/m2 | PC | Not specified | 8★ |
Wu et al. (2019W) [14] | Taiwan | Retrospective | Single-center | 146 | 65.5 (36.7–92.2) | 63 | 97 | 66.4 | TSM (=SMI) | Prado et al. | M < 52.4 cm2/m2 F < 38.5 cm2/m2 | PC | Not specified | 8★ |
Zhang et al. (2023) [54] | China | Retrospective | Single-center | 113 | 59 (33–84) | 41.5 | 49 | 43.3 | SMI | Zeng et al. | M < 44.77 cm2/m2 F < 32.50 cm2/m2 | PC | Curative | 8★ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Láinez Ramos-Bossini, A.J.; Gámez Martínez, A.; Luengo Gómez, D.; Valverde-López, F.; Melguizo, C.; Prados, J. Prevalence of Sarcopenia Determined by Computed Tomography in Pancreatic Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Cancers 2024, 16, 3356. https://doi.org/10.3390/cancers16193356
Láinez Ramos-Bossini AJ, Gámez Martínez A, Luengo Gómez D, Valverde-López F, Melguizo C, Prados J. Prevalence of Sarcopenia Determined by Computed Tomography in Pancreatic Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Cancers. 2024; 16(19):3356. https://doi.org/10.3390/cancers16193356
Chicago/Turabian StyleLáinez Ramos-Bossini, Antonio Jesús, Antonio Gámez Martínez, David Luengo Gómez, Francisco Valverde-López, Consolación Melguizo, and José Prados. 2024. "Prevalence of Sarcopenia Determined by Computed Tomography in Pancreatic Cancer: A Systematic Review and Meta-Analysis of Observational Studies" Cancers 16, no. 19: 3356. https://doi.org/10.3390/cancers16193356
APA StyleLáinez Ramos-Bossini, A. J., Gámez Martínez, A., Luengo Gómez, D., Valverde-López, F., Melguizo, C., & Prados, J. (2024). Prevalence of Sarcopenia Determined by Computed Tomography in Pancreatic Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Cancers, 16(19), 3356. https://doi.org/10.3390/cancers16193356