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Simple Summary: Accurate detection of HER2 status in breast cancer is vital for effective diagnosis
and treatment. While traditional fluorescence in situ hybridization (FISH) is the standard for assessing
HER2, it has limitations, such as the need for expert handling and potential signal fading. Silver-
enhanced in situ hybridization (SISH) offers a more stable alternative for analysis using conventional
bright-field microscopy. This study explores an innovative deep-learning approach to automatically
classify Normal, Amplified, and Non-Amplified regions in HER2-SISH images. Our two-stage
process trains and evaluates models on annotated patches and applies the most effective model to
entire slide images, generating region-specific visualizations. This method not only reduces manual
workload but also shows strong potential for aiding pathologists in identifying HER2-amplified
areas, thereby supporting precise breast cancer treatment. Statistical evaluations, including k-fold
cross-validation and confidence intervals, further validate the robustness of our approach.

Abstract: Fluorescence in situ hybridization (FISH) is widely regarded as the gold standard for
evaluating human epidermal growth factor receptor 2 (HER2) status in breast cancer; however, it
poses challenges such as the need for specialized training and issues related to signal degradation
from dye quenching. Silver-enhanced in situ hybridization (SISH) serves as an automated alterna-
tive, employing permanent staining suitable for bright-field microscopy. Determining HER2 status
involves distinguishing between “Amplified” and “Non-Amplified” regions by assessing HER2
and centromere 17 (CEN17) signals in SISH-stained slides. This study is the first to leverage deep
learning for classifying Normal, Amplified, and Non-Amplified regions within HER2-SISH whole
slide images (WSIs), which are notably more complex to analyze compared to hematoxylin and eosin
(H&E)-stained slides. Our proposed approach consists of a two-stage process: first, we evaluate
deep-learning models on annotated image regions, and then we apply the most effective model to
WSIs for regional identification and localization. Subsequently, pseudo-color maps representing
each class are overlaid, and the WSIs are reconstructed with these mapped regions. Using a private
dataset of HER2-SISH breast cancer slides digitized at 40× magnification, we achieved a patch-level
classification accuracy of 99.9% and a generalization accuracy of 78.8% by applying transfer learning
with a Vision Transformer (ViT) model. The robustness of the model was further evaluated through
k-fold cross-validation, yielding an average performance accuracy of 98%, with metrics reported
alongside 95% confidence intervals to ensure statistical reliability. This method shows significant
promise for clinical applications, particularly in assessing HER2 expression status in HER2-SISH
histopathology images. It provides an automated solution that can aid pathologists in efficiently
identifying HER2-amplified regions, thus enhancing diagnostic outcomes for breast cancer treatment.
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1. Introduction

Breast cancer arises from the uncontrolled growth of cells in the body, with an esti-
mated 10–20% of initial cases involving mutations in the HER2 protein. Before the advent
of HER2-targeted therapies, these mutations were often associated with an aggressive
phenotype and poor clinical outcomes [1]. Patients diagnosed with HER2-positive ma-
lignancies now have access to targeted treatments, including trastuzumab (Herceptin),
lapatinib (Tykerb), pertuzumab (Perjeta), and ado-trastuzumab emtansine (T-DM1, Kad-
cyla). While these therapies have greatly improved prognosis, they come with potential
side effects and high costs, making precise identification of HER2-amplified tumors crucial
for accurate diagnosis and effective treatment [2,3]. Consequently, accurate detection of
HER2 amplification remains an essential part of breast cancer management [4].

Various diagnostic methods are used to evaluate HER2 status at the genetic level,
including fluorescence in situ hybridization (FISH), chromogenic in situ hybridization
(CISH), reverse transcription-polymerase chain reaction (RT-PCR), and immunohistochem-
istry (IHC). Among these, FISH has been widely adopted for its reliability but presents
certain limitations, such as the need for specialized training, the use of fluorescence mi-
croscopy, and potential signal degradation due to dye quenching. Silver-enhanced in situ
hybridization (SISH) offers a fully automated alternative that produces permanently stained
slides suitable for interpretation with standard bright-field microscopy. This method allows
pathologists to assess HER2 expression within the context of tissue morphology, providing
a more stable and accessible means of evaluating HER2 status.

Despite the advantages of SISH, current methods largely rely on manual analysis by
pathologists or traditional image analysis techniques that can be subjective and prone to
variability. Although some automated approaches exist for evaluating HER2 scores using
SISH, they often adhere strictly to clinical scoring methods without leveraging the full
potential of modern computational techniques [5]. To date, there has been no research that
employs deep-learning models to directly classify and identify amplified and non-amplified
regions within HER2-SISH WSIs. The lack of automated systems capable of handling the
complexity of SISH-stained slides highlights the need for advanced methodologies that can
improve consistency, efficiency, and accuracy in HER2 scoring.

The digitization of entire slides into whole slide images (WSIs) has become feasible, al-
lowing for comprehensive analysis [6]. However, manual review of histopathological WSIs,
whether under a microscope or on a computer, can be labor-intensive, time-consuming,
and prone to errors. Furthermore, diagnostic concordance among pathologists is estimated
to be around 75%, largely due to the subjective nature of the morphological criteria used in
image classification [7].

As shown in Figure 1, efforts to enhance diagnostic accuracy and consistency have
led to the development of computer-aided diagnostic (CAD) systems that incorporate
morphological criteria into traditional classification approaches [8]. Building a reliable
CAD system for cancer classification based on histopathology images is challenging due to
the inherent complexity of cancer. Fortunately, recent advances in machine learning, par-
ticularly deep learning, have greatly improved the feasibility and reliability of automated
image analysis. Convolutional neural networks (CNNs), a popular deep-learning archi-
tecture, have demonstrated significant promise in classifying cancer histology images [9].
CNNs can automatically extract intermediate and high-level features from RGB images,
making them effective for tasks such as object recognition, image segmentation, and target
localization [10]. They have become the preferred approach for analyzing histopathological
images and have shown strong performance in binary classification tasks, such as distin-
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guishing between benign and malignant tumors, especially when combined with multiple
instance-learning techniques [11].

Figure 1. A Whole Slide Image (WSI) depicting tissue regions (left) and a magnified selected region
(right) for detailed analysis of tissue anatomy, with Amplified and Normal regions marked by a
pathologist for diagnostic purposes.

However, automated analysis faces challenges related to color variations in histopatho-
logical images. Factors such as staining technique variations, differences in stain reactivity,
scanner settings, and slide thickness can introduce color inconsistencies. While pathologists
can often adapt to these variations, they can significantly impact computer-based image
processing. To address these issues, stain normalization techniques have been developed,
which help standardize images and enhance the robustness of automated analysis [12].

Contribution of This Work

In this paper, we present a computer-aided system for the automatic identification of
three region types—Normal, Amplified, and Non-Amplified—in HER2-SISH-stained WSIs
and image patches. Our contributions include the following:

1. The preparation of a three-class image dataset by patchifying regions of interest (ROIs)
identified by expert pathologists. The large ROIs were divided into patches of size
(512 × 512 × 3), with outliers removed during the process.

2. The fine-tuning and evaluation of various transfer learning models on the HER2-
SISH dataset.

3. The development of an automated system that segments WSIs into patches; classifies
them as Normal, Amplified, or Non-Amplified; and overlays a pseudo-color map
based on the model predictions. The system reconstructs the entire WSI using these
predictions, eliminating manual steps and enhancing the accuracy and reliability of
region identification.

The remainder of this paper is structured as follows: Section 2 reviews related work,
while Section 3 outlines the methodologies and datasets used, including data preprocessing
and the deep-learning models employed. Section 4 details the hardware specifications,
training, and testing parameters, as well as the evaluation metrics. The results and analysis
are presented in Section 5, followed by conclusions and future work in Section 6.

2. Literature Review

Artificial intelligence (AI) has played a crucial role in enhancing productivity and
efficiency across various domains by enabling data-driven decision-making [13]. The
combination of high-performance computing (HPC) [14], large datasets, sophisticated
algorithms, and intensive research efforts has driven the widespread adoption of AI over
the past decade. Beyond healthcare, AI techniques are employed in diverse fields such as
network intrusion detection [15] and speech-based person identification [16]. In healthcare,
AI has increasingly been used for diagnostic tasks, including the identification of pneumo-
nia [17], diabetic retinopathy diagnosis, and glaucoma detection [18]. The field of digital
histopathology, in particular, has witnessed a surge in the development of computer-aided
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diagnostic (CAD) systems aimed at augmenting or even replacing the optical microscope
as a primary tool for pathologists [19].

CAD methods are broadly categorized into two types: (1) deep-learning algorithms
that process raw data to automatically extract features and support data classification, and
(2) traditional machine learning algorithms that use handcrafted features extracted from data [20].
Early success in CAD systems was primarily driven by standard machine-learning techniques
that relied on domain expertise to manually extract features for classification tasks.

In the initial phases of histopathology image classification, machine-learning techniques
such as texture descriptors were widely used for feature extraction. Techniques like the
Gray Level Co-occurrence Matrix (GLCM), Pyramid-Structured Wavelet Transform (PWT),
Local Binary Patterns (LBP), and Tree Structure Wavelet Transform (TWT) were employed for
feature extraction and subsequent classification. For instance, Samah et al. [21] utilized features
derived from GLCM, PWT, LBP, and TWT to distinguish between benign and malignant
tumors, using a K-Nearest Neighbor (KNN) classifier. This approach demonstrated improved
classification performance, particularly when using GLCM features.

Spanhol et al. [22] also employed feature extraction methods such as Local Phase
Quantization (LPQ) and LBP for the binary classification of breast cancer histopathological
images. Various features, including GLCM, Oriented FAST and Rotated BRIEF (ORB),
and Threshold Adjacency Statistics (TAS), were combined with classifiers such as 1-NN,
Quadratic Discriminant Analysis (QDA), Random Forest (RF), and Support Vector Machine
(SVM), achieving accuracies ranging from 80 to 85%.

Ojansivu et al. [23] developed a texture-based approach using an SVM classifier for
the automatic classification of breast cancer morphology, while Weyn et al. [24] applied
wavelet-derived textural features to differentiate between high- and low-grade tumor
nuclei in breast tissue. Doyle et al. [25] combined textural and architectural features to
classify low- and high-grade Nottingham tumors. However, most of these methods either
focused on a single aspect of the Nottingham grading system or had limited datasets.
Basavanhally et al. [26] expanded on this by proposing a multi-field-of-view framework
that integrated textural and graph-based features for grading estrogen receptor-positive
breast cancer histopathology WSIs. These advancements underscore the growing demand
for automated image analysis techniques that incorporate multilevel features for accurate
tumor classification.

In the context of deep learning (DL), researchers have increasingly adopted advanced
techniques for histopathology image analysis. Spanhol et al. [27] used the BreakHis dataset
to develop a deep-learning model with AlexNet for the binary classification of breast
cancer histopathological images, achieving the highest accuracy at 40× magnification.
Han et al. [28] explored multiclass classification through a CNN-based approach utilizing
hierarchical feature representation, demonstrating high reliability in breast cancer classifica-
tion. For the BACH dataset, Roy et al. [29] proposed a patch-based classifier using a CNN
and two strategies: One Patch in One Decision (OPOD) and All Patches in One Decision
(APOD). OPOD classified each patch independently, while APOD assigned an image-level
label based on majority voting across patches.

Beyond classification, CNNs have proven effective for learning discriminative features
in histopathology images. Ciresan et al. [30] adapted a deep max-pooling CNN for mitosis
detection in breast histology images, treating detection as a pixel-level classification task and
achieving first place in the ICPR 2012 mitotic detection competition. Cruz-Roa et al. [31]
developed a deep-learning model for basal cell carcinoma detection, training on a set of
1417 images from 308 regions of interest in skin histology slides. Transfer learning from the
ImageNet database [32], with its 14 million images, has become a widely adopted practice,
serving as a strong foundation for CNN models applied to histopathology tasks.

The role of deep learning in enhancing histopathological image analysis is underscored
by studies such as those presented by Cha et al. [33], who demonstrated the potential
of machine-learning models in classifying tumor types and predicting patient outcomes,
and Ahmed et al. [34], who demonstrated the use of machine learning in biomedical
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image processing for extracting complex patterns. Additionally, the application of CNNs
in medical imaging has proven effective for integrating multilevel features, enhancing both
the accuracy and reliability of tumor classification [35,36].

Fine-tuning pre-trained CNNs has emerged as an effective approach for enhancing
classification performance in specialized applications. Girshick [37] demonstrated substan-
tial improvements in object detection through fine-tuning, while Zhang et al. [38] reported
significant gains in fine-grained classification tasks after fine-tuning pre-trained CNN mod-
els. In this study, we employ fine-tuning to optimize CNN models for histopathological
image classification, leveraging pre-trained ImageNet models as a starting point.

Despite the extensive research on deep-learning applications in histopathology, the
classification of HER2-SISH WSIs into Normal, Amplified, and Non-Amplified regions
has not been thoroughly explored. To the best of our knowledge, no existing methods
address the classification of HER2-SISH images into three distinct classes or the identi-
fication of regions within WSIs for this specific stain. This study aims to fill this gap by
proposing a novel deep-learning-based approach for HER2-SISH image classification and
WSI region identification.

3. Material and Methodology

This section details the methodologies employed in the proposed approach, encom-
passing the dataset, model architecture, and evaluation of generalization performance on
unseen data. Figures 2 and 3 provide an architectural overview of the proposed workflow.

Figure 2. Proposed framework for patch-based image classification and identification of respective
class samples from the whole slide image (WSI) using the trained model.

3.1. Dataset Description

The clinical dataset for this study was obtained from our collaborating hospital, with
the following details:

1. The HER2-SISH dataset includes annotated Normal, Amplified, and Non-Amplified
regions within whole slide images (WSId. To our knowledge, this is the first HER2-
SISH WSI dataset providing image-based annotations for these three region types.

2. Tissue samples from 50 patients were collected and stained with silver-enhanced in
situ hybridization (SISH) for HER2. The slides were scanned using the 3DHistech
Pannoramic DESK, resulting in 50 WSIs at 40× magnification with dimensions of
approximately 250, 368 × 572, 416 pixels. Of these, 46 WSIs met the quality criteria
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for inclusion, while four were excluded due to issues such as low resolution, staining
artifacts, or physical damage. Expert pathologists annotated regions of interest (ROIs)
for HER2 Normal, Amplified, and Non-Amplified areas, saved as 8-bit/channel RGB
TIFF images. Figure 4 shows examples of ROIs selected by pathologists from the WSIs.
Table 1 summarizes the statistical details of the WSIs and ROIs. Additionally, Dataset
2, consisting of 9 WSIs, was used to test the model’s generalization on unseen data.

Figure 3. Procedural diagram illustrating the automated selection of tissue regions and image
patching from whole slide images (WSIs), with expert-level annotation.

Table 1. Statistical overview of images in the dataset obtained from the collaborating hospital. Note:
Normal WSI is marked as NA because Normal regions were selected from Amplified (AMP) and
Non-Amplified (Non-AMP) cases.

Sr. No. Description Amp Non Amp Normal

Dataset 1

1 Number of WSIs per Class 20 17 NA
2 Number of ROIs 120 80 257
3 Number of Processsed Patches 1200 1206 956

Dataset 2

1 Number of WSIs per Class 5 4 NA
2 Number of ROIs 25 20 42
3 Number of Patches 156 106 620

3.2. Preprocessing

Histopathological images are inherently complex and large, presenting significant chal-
lenges for machine-learning algorithms due to their detailed texture and high resolution [39].
These high-resolution images offer crucial diagnostic information, which advanced image anal-
ysis techniques aim to utilize for supporting expert decision-making, facilitating consensus,
saving time, and detecting visual patterns that may otherwise be overlooked [40].
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Figure 4. Annotated regions in the images have irregular shapes. A segmentation process standard-
izes their shape to 512 × 512 × 3 pixels by sliding a window from the top-left corner horizontally and
vertically to cover the entire region of interest. Portions outside the window are discarded.

In this study, we propose an automated deep-learning method that identifies and
classifies HER2 Amplified, Non-amplified, and Normal regions from WSIs. The annotated
regions of interest (ROIs) were provided by expert pathologists and consisted of large,
irregularly shaped regions that varied significantly in size. Resizing these large ROIs
directly would result in a loss of important image details and texture, thus compromising
the model’s performance.

To address this challenge, we employed image-patching, a technique that divides
large ROIs into smaller, more manageable segments. Specifically, we used non-overlapping
patches of size 512 × 512 × 3 pixels by convolving a window of the same size with a stride
equal to the patch size to ensure that the patches did not overlap. This approach preserved
the details and texture within each patch while maintaining the original magnification
levels, as shown in Figure 5.

(a) Normal Images (b) Amplified Images (c) Non-Amplified Images

Figure 5. Examples of HER2-SISH patch samples categorized into their respective classes: (a) Normal,
(b) Amplified, and (c) Non-Amplified.



Cancers 2024, 16, 3794 8 of 21

To standardize the images for model training, the 512 × 512 patches were resized
to 224 × 224 pixels, making them compatible with standard deep-learning architectures.
This resizing was carefully executed to ensure that no critical features were excluded, thus
preserving the diagnostic integrity of the images.

Additionally, data augmentation techniques, such as rotation, flipping, and scaling,
were applied during model training to increase the variability of the training dataset and
improve the model’s generalization ability.

The impact of these preprocessing steps was significant, as the image-patching method
allowed the model to learn from detailed, consistent segments without losing essential
information. This approach improved the training process by ensuring that each patch
contained sufficient information for classification, ultimately contributing to the robustness
and accuracy of the model’s performance.

3.3. Deep-Learning Models

This study evaluated four deep-learning models: DenseNet121, VGG16, MobileNetV2,
and Vision Transformer (ViT). Each model’s performance was assessed in classifying HER2-
SISH regions as Normal, Amplified, or Non-Amplified.

The ViT model exhibited superior performance, achieving the highest accuracy in
both patch-level and WSI-level evaluations. While detailed descriptions of VGG16 and
MobileNetV2 architectures are omitted for brevity, their structures are well-documented in
the literature [41,42].

We selected four widely adopted architectures: DenseNet121, VGG16, MobileNetV2,
and Vision Transformer (ViT), each chosen for its strengths in image classification tasks,
particularly in medical image analysis. Detailed descriptions of these architectures and
their contributions are provided below.

3.3.1. DenseNet121 Architecture

DenseNet121 is a convolutional neural network architecture comprising multiple
dense blocks [43,44]. Its innovation lies in dense connections between layers, where each
layer receives input from all preceding layers within the same block, facilitating feature
reuse and mitigating the vanishing gradient problem. The network has 121 layers and
approximately 20 million parameters. Figure 6 depicts the architecture of DenseNet121.

For this study, a pre-trained DenseNet121 model initialized with ImageNet weights
(from 1.2 million images across 1000 categories) was fine-tuned. The original output layer
was replaced with a three-neuron layer corresponding to the HER2-SISH classes (Normal,
Amplified, Non-Amplified), with a softmax activation function for probability output.

Figure 6. Overview of the DenseNet121 architecture.

3.3.2. VGG16 Architecture

VGG16, introduced by Simonyan and Zisserman in their work “Very Deep Convolu-
tional Networks for Large Scale Image Recognition” [41], is designed for high performance
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in image classification. It operates on 224 × 224 × 3 input images, passing them through
convolutional and max-pooling layers.

The architecture includes 16 weight layers, 13 convolutional and 3 fully connected lay-
ers, with filter counts increasing from 64 to 512. ReLU activation follows each convolution.
The VGG16 architecture is effective for feature extraction and classification, as illustrated in
Figure 7.

Figure 7. Overview of the VGG16 architecture.

3.3.3. MobileNetV2 Architecture

MobileNetV2 is an efficient convolutional neural network for mobile and embedded
devices [42], featuring inverted residual blocks and depth-wise separable convolutions to
minimize computational cost while maintaining accuracy.

The model uses bottleneck layers to reduce input and output channels, enhancing
efficiency. Linear bottlenecks increase representational capacity without added complex-
ity, and shortcut connections aid gradient flow. Figure 8 provides an overview of the
MobileNetV2 architecture.

Figure 8. Overview of the MobileNetV2 architecture.

3.3.4. Vision Transformer (ViT) Architecture

The Vision Transformer (ViT) architecture, based on the original Transformer model
used in natural language processing [45], has achieved notable success in image classifi-
cation. Unlike traditional CNNs, which process the image as a whole, ViT divides input
images into patches and treats each patch as a token, akin to word processing in NLP.

This patch-based approach enables ViT to capture long-range dependencies within an
image, making it effective for classification tasks. The self-attention layers provide a global
understanding of the image. Figure 9 depicts the Vision Transformer model’s structure.
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Figure 9. Overview of the Vision Transformer (ViT) architecture: The model divides input images
into patches and treats each patch as a token for processing.

3.4. Hyperparameters

Optimal hyperparameters are crucial for model performance. Table 2 presents the hy-
perparameters used during training and fine-tuning for DenseNet121, VGG16, MobileNetV2,
and Vision Transformer (ViT) models. These parameters were selected through iterative
experimentation and prior research to optimize the classification of HER2-SISH regions.

Table 2. Hyperparameters for the models.

Sr. No. Model Hyperparameter Value

1

Input-Shape 224, 224, 3
Include-top FALSE
Weights imagenet

MobileNetV2 Pooling avg
Output Activation softmax

VGG16 Dense Units 128
Optimizer adam

DenseNet121 Loss categorical_crossentropy
Metrics accuracy
Batch Size 32
Epochs 20

2 Transformer

Transformers_version 4.13.0.dev0
Model_type vit
Input-Shape 224, 224, 3
Hidden size 786
Batch Size 32
Num Attention Heads 12
Num Hidden Layers 12
Intermediate Size 3072
Hidden Dropout Probability 0.1
Attention Probs Dropout
Probability 0.1

4. Experimental Setup

This section outlines the experimental setup utilized to evaluate the performance of
the proposed models in classifying Normal, Amplified, and Non-Amplified regions within
HER2-SISH WSIs. It includes descriptions of the hardware used, training and testing
methodologies, and the evaluation metrics applied to assess model effectiveness.
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4.1. Hardware Specifications

The proposed HER2-SISH histopathology image classification system was imple-
mented and tested on the following hardware configuration:

• Operating System (OS): Windows 11 (64-bit)
• Intel CPU: Intel Core i7 @ 2.40 GHz
• Sammsung DDR4 RAM: 32 GB
• Nvidia GTX4060 GPU: 8 GB Graphics Card

The development environment was based on Python 3.9, with CUDA 11.2, cuDNN
8.2, and OpenCV 3.0. The DeepZoom generator function [46] was employed to manage
WSIs for this experiment.

4.2. Training and Testing Methodology

The initial phase of the methodology involved preprocessing data and annotations
sourced from medical institutions to prepare them for model training. Non-overlapping
regions of interest (ROIs) were divided into patches of size 512 × 512 × 3, with 80% used
for training (leveraging pre-trained ImageNet weights) and 20% set aside for testing.

The dataset was split in an 80–20 ratio for training and testing on Dataset 1, ensuring
that patches from the same WSI did not appear in both sets to prevent data leakage.
The term test results refers to performance on the dedicated 20% testing subset, while
generalization performance pertains to the model’s performance on an independent dataset
(Dataset 2) comprising 9 WSIs not included in the training phase.

Given the relatively small dataset, leave-one-out cross-validation (LOOCV) was also
explored to assess the model’s generalization capacity more accurately and mitigate dataset
size constraints.

Standard image augmentation techniques were employed to enhance the training
set’s diversity. The hyperparameters used for MobileNetV2, VGG16, and DenseNet121
are presented in Table 2, with variations in the ViT model’s hyperparameters due to its
unique architecture.

Lastly, it should be noted that applying our approach to publicly available histopathol-
ogy image datasets was not feasible due to the absence of datasets containing three-class
annotations and corresponding WSI images.

4.3. Evaluation Metrics

Evaluating model performance in medical image classification extends beyond ac-
curacy, as misclassifications can have significant implications. Therefore, we employ a
range of metrics such as F1-score, sensitivity (recall), specificity, precision, and additional
comprehensive metrics to provide a thorough assessment. These metrics facilitate the
evaluation of model performance for each class independently, regardless of the dataset’s
class distribution. The following equations define these metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity (Recall) =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1-score =
2 × (Sensitivity × Precision)

Sensitivity + Precision
(4)

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(5)



Cancers 2024, 16, 3794 12 of 21

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

We also report the Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) and Cohen’s Kappa to evaluate the model’s discriminatory power and agreement
with the true labels.

In this study, which focuses on classifying Normal, Amplified, and Non-Amplified
regions in HER2-SISH histopathology images, the terms TP (True Positive), TN (True
Negative), FP (False Positive), and FN (False Negative) are defined as follows:

• True Positive (TP): Instances where images correctly belong to a specific class (e.g., Normal).
• True Negative (TN): Instances where images correctly do not belong to a specific class.
• False Positive (FP): Instances where images are incorrectly classified as belonging to a

specific class.
• False Negative (FN): Instances where images belonging to a specific class are incor-

rectly classified as not belonging to that class.

5. Results and Discussion

This section presents the findings from the implementation of the proposed methodology
on the HER2-SISH datasets. We compared the performance of various pre-trained convolu-
tional neural network (CNN) architectures, including VGG16, MobileNetV2, DenseNet121,
and Vision Transformer (ViT), all pre-trained on the ImageNet dataset. The evaluation was con-
ducted in two stages: (1) patch-based classification using annotated regions, and (2) WSI-based
classification for whole slide images lacking specific region annotations.

5.1. Patch-Based Classifier Performance

This section reviews the results of the patch-based classification performance of the
deep-learning models. VGG16 achieved an accuracy of 97%, with precision, sensitivity,
and F1-score of 98%, 97%, and 97%, respectively. DenseNet121 outperformed VGG16,
with an accuracy of 99%, accompanied by precision, sensitivity, and F1-score of 99%, 98%,
and 99%, respectively. MobileNetV2 performed comparably, with an accuracy of 98% and
precision, sensitivity, and F1-score values of 98%, 99%, and 99%, respectively. The Vision
Transformer (ViT) model achieved the highest performance, scoring 100% in accuracy,
precision, sensitivity, and F1-score. Figure 10 shows the models’ confusion matrices, while
Table 3 provides a detailed breakdown of the performance metrics for each class.

Table 3. Comprehensive performance metrics with balanced accuracy, MCC, and 95% confidence
intervals. This table provides a detailed summary of classification performance on Dataset 1, showcas-
ing metrics such as precision, sensitivity, F1-score, accuracy, balanced accuracy, and MCC, each with
corresponding 95% confidence intervals. These results underscore the effectiveness and robustness of
the evaluated models.

Techniques Type of Class Precision Sensitivity F1-Score Accuracy Balanced Accuracy MCC

MobileNetV2
Amplified 0.97 ± 0.02 0.98 ± 0.01 0.98 ± 0.01

0.98 ± 0.01 0.99 ± 0.01 0.97 ± 0.01Non-Amplified 0.98 ± 0.01 1.00 ± 0.00 0.99 ± 0.01
Normal 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.01

VGG16
Amplified 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.01

0.97 ± 0.01 0.98 ± 0.01 0.96 ± 0.01Non-Amplified 0.98 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
Normal 0.96 ± 0.02 0.97 ± 0.01 0.97 ± 0.01

Transformer ViT
Amplified 0.99 ± 0.01 1.00 ± 0.00 0.99 ± 0.01

0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00Non-Amplified 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
Normal 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01

DenseNet201
Amplified 0.99 ± 0.01 1.00 ± 0.00 0.99 ± 0.01

0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01Non-Amplified 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01
Normal 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01



Cancers 2024, 16, 3794 13 of 21

Error analysis highlighted that most misclassifications occurred in the Non-Amplified
class, which was frequently confused with the Amplified class due to their overlapping
staining characteristics. This suggests that future work should focus on advanced feature
extraction methods to mitigate this issue. Additionally, some errors were attributed to
image artifacts within the WSI, underscoring the importance of preprocessing steps.

Figure 11 displays annotated WSI regions based on patch classifier predictions, where
red pseudo-regions denote Amplified areas identified by the deep-learning model. The
model successfully recognized both stained and tumor regions while minimizing the
misclassification of artifacts and Non-Amplified regions. Visual assessment and feedback
from pathologists confirmed the model’s accuracy in identifying significant WSI regions,
supporting its effectiveness.

(a) (b)

(c) (d)

Figure 10. Confusion matrices illustrating the classification performance of the fine-tuned models:
(a) MobileNetV2, (b) VGG16, (c) Vision Transformer (ViT), and (d) DenseNet121.
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Figure 11. Examples of HER2-SISH patch samples with their respective model-predicted classifications.

5.2. WSI-Level Classifier Results

The term “WSI-level classifier” refers to the aggregated predictions derived from the
patch-level classifier. Direct comparisons to other WSI-level classifiers are challenging due
to the lack of WSI-level annotations.

In this section, we assess the Vision Transformer (ViT) model’s performance for clas-
sifying patches within whole slide images (WSIs). Following the patch-level evaluation,
the top-performing ViT model was applied to classify WSI tiles. These patches were then
combined to reconstruct the WSIs, with pseudo-color overlays indicating classification
results: green for Normal, red for Amplified, and blue for Non-Amplified regions.

Although direct WSI-level annotations were not available for comparative analysis,
Figure 12 visually illustrates the classification results on WSIs with pseudo-color maps.
Table 4 summarizes the model’s performance metrics on unseen data, showcasing its
generalization capabilities. The use of generalizability concepts [47] ensures robustness,
which is critical for medical image classification.

To further evaluate the model, expert-annotated ROIs were re-examined using the
trained ViT model. The ViT model achieved an overall accuracy of 78% on these unseen
regions. The detailed class-specific performance showed precision of 62%, sensitivity of
67%, and an F1-score of 62% across Normal, Non-Amplified, and Amplified categories.

Figure 13 presents the confusion matrices for the ViT model’s performance on unseen
WSI data. Table 4 provides a comparison of the quantitative performance of the ViT
model and DenseNet121 on unseen data. While DenseNet121 reached 99% accuracy on
training data, its performance on unseen data dropped to 52%, likely due to the presence
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of unprocessed white patches and outliers in real WSI data, which poses challenges for
deep-learning models.

Figure 12. Visualization of classification results on WSIs with pseudo-color class maps. The figure
illustrates the ViT model’s performance at the WSI patch level, with corresponding outputs shown
on the right of each WSI.

Table 4. Comprehensive performance metrics with balanced accuracy, MCC, and 95% confidence
intervals. This table presents detailed quantitative results for the classification models evaluated on
unseen data (Dataset 2). The metrics, including precision, sensitivity, F1-score, accuracy, balanced
accuracy, and MCC with 95% confidence intervals, demonstrate the generalization performance and
robustness of each model across different classes.

Techniques Type of Class Precision
(95% CI)

Sensitivity
(95% CI)

F1-Score
(95% CI)

Accuracy
(95% CI)

Balanced Accuracy
(95% CI)

MCC
(95% CI)

Transformer ViT

Amplified 0.58
(0.55, 0.61)

0.79
(0.76, 0.82)

0.70
(0.67, 0.73)

0.78 (0.76, 0.80) 0.78 (0.76, 0.80) 0.76 (0.74, 0.78)Non-Amplified 0.90
(0.88, 0.92)

0.80
(0.78, 0.82)

0.84
(0.82, 0.86)

Normal 0.62
(0.60, 0.64)

0.67
(0.65, 0.69)

0.62
(0.60, 0.64)

DenseNet201

Amplified 0.18
(0.15, 0.21)

0.71
(0.68, 0.74)

0.28
(0.25, 0.31)

0.52 (0.50, 0.54) 0.52 (0.50, 0.54) 0.51 (0.49, 0.53)Non-Amplified 0.49
(0.47, 0.51)

0.48
(0.46, 0.50)

0.44
(0.42, 0.46)

Normal 0.89
(0.87, 0.91)

0.54
(0.52, 0.56)

0.67
(0.65, 0.69)

5.3. Analysis of Misclassified Patches

Misclassifications primarily occurred in the Non-Amplified class, frequently confused
with Amplified due to similar staining intensities and uneven image quality. Artifacts, noise,
and non-uniform staining were identified as contributing factors affecting feature extraction.
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Figure 13. Confusion matrix illustrating the Vision Transformer (ViT) model’s performance on unseen
test data, highlighting its generalization capabilities.

Key reasons for misclassification include the following:

• Staining Variability: Inconsistent staining across samples impacts classification accuracy.
• Artifacts and Noise: Background artifacts and uneven illumination disrupt model focus.
• Limited Data Diversity: Insufficient examples of complex patterns during training

lead to reduced model generalization.

To enhance model performance:

• Stain Normalization: Standardize color variations to maintain focus on structural
features.

• Advanced Attention Mechanisms: Use attention-based models to prioritize critical
image regions.

• Artifact Removal: Employ preprocessing techniques for noise and artifact reduction.
• Data Augmentation: Increase training data variability to improve model robustness.

5.4. Discussion

This study presents an innovative approach for identifying Normal, Amplified, and
Non-Amplified regions in HER2-SISH-stained whole slide images (WSIs). The proposed
method automates the process of selecting regions from WSIs, generating class-specific
predictions, overlaying pseudo-color maps, and reconstructing the WSI with these over-
lays. Unlike existing methods, which rely on manual region selection, such as those by
Tewary et al. [48] and Saha et al. [49] that require manual patch generation from WSIs,
our approach offers full automation. While methods like Mukundan et al. [50] and
Singh and Mukundan [51] selected patches for HER2-IHC scoring manually, and others
like Qaiser et al. [52] used attention mechanisms within pre-selected areas, our strategy
focuses on automating background and artifact removal to enhance analysis accuracy
and efficiency.

The system leverages a thresholding technique to filter out patches with over 50%
white space, streamlining computational load and emphasizing tissue-rich regions. This
significantly improves the reliability of HER2 scoring.

Most existing methodologies use patch generation at a magnification of 40×. Our
study opted for a 20× magnification to balance computational resources and better align
with pathologists’ typical viewing conditions. Comparing other HER2 scoring systems us-
ing different stains is challenging, but insights from systems like Her2Net by Saha et al. [49],
which achieved 98.33% segmentation accuracy, serve as a qualitative reference.
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We evaluated performance using Cohen’s Kappa and AUC-ROC for comprehensive model
assessment. The ViT model achieved the highest Cohen’s Kappa value of 1.00 (Figure 14), indi-
cating perfect alignment with true labels. The AUC-ROC also indicated superior discrimination
ability, with ViT and DenseNet201 models achieving values close to 1.00. These metrics, along with
Matthews Correlation Coefficient (MCC), underscore the models’ reliability, where ViT showed
exceptional consistency.

MobileNetV2 VGG16 Transformer ViT DenseNet201
0.8

0.85

0.9

0.95

1

1.05

1.1

M
et

ri
c

V
al

ue
Comparison of Cohen’s Kappa and AUC-ROC Values for Each Model

Cohen’s Kappa AUC-ROC

Figure 14. Comparison of Cohen’s Kappa and AUC-ROC values for each model.

5.5. Ablation Studies

We conducted a K-fold cross-validation (k = 5) to confirm the robustness of the
models, summarized in Table 5. The ViT model consistently performed well across all folds,
while DenseNet201 demonstrated comparable reliability. MobileNetV2 and VGG16 also
maintained strong performance metrics.

Figure 15 visualizes model performance across different metrics for comparative insight.

Figure 15. Comparison of performance metrics across models for accuracy, Cohen’s Kappa, and MCC.
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Table 5. K-fold cross-validation results for performance metrics.

Model Fold Accuracy Cohen’s Kappa MCC

MobileNetV2

Fold 1 0.97 0.96 0.95
Fold 2 0.98 0.97 0.96
Fold 3 0.98 0.97 0.96
Fold 4 0.97 0.96 0.95
Fold 5 0.98 0.97 0.96

VGG16

Fold 1 0.96 0.95 0.94
Fold 2 0.97 0.96 0.95
Fold 3 0.96 0.95 0.94
Fold 4 0.97 0.96 0.95
Fold 5 0.96 0.95 0.94

Transformer ViT

Fold 1 0.99 0.98 0.98
Fold 2 0.99 0.98 0.98
Fold 3 0.99 0.99 0.98
Fold 4 0.98 0.98 0.97
Fold 5 0.99 0.98 0.98

DenseNet201

Fold 1 0.99 0.98 0.98
Fold 2 0.99 0.98 0.98
Fold 3 0.99 0.98 0.98
Fold 4 0.98 0.98 0.97
Fold 5 0.99 0.98 0.98

6. Conclusions

This paper presents a comprehensive analysis of automated pipelines for classifying
HER2-SISH-stained histopathology images into three categories: Normal, Amplified, and
Non-Amplified. Our approach involves two primary stages: fine-tuning pre-trained deep
learning models for patch-level classification and deploying the best-performing model for
WSI region identification. This is the first study to report the classification of HER2-SISH
images into these distinct classes and apply WSI-level region identification, enhancing
HER2 scoring systems to aid breast cancer treatment.

The private clinical dataset used includes 46 HER2-SISH WSIs annotated by ex-
pert pathologists, with identified regions of interest (ROIs) for each class. These were
preprocessed into uniform patches of size 512 × 512 × 3 for model training. Four mod-
els—MobileNetV2, VGG16, DenseNet121, and Vision Transformer (ViT)—were evaluated
based on metrics such as precision, recall, F1-score, and accuracy. The ViT model outper-
formed the others, achieving 100% patch-level accuracy, and was applied for classifying
WSI tiles, generating color-coded visualizations (green for Normal, red for Amplified, blue
for Non-Amplified) to aid expert analysis.

Although direct quantitative WSI-level evaluation was limited due to the lack of
ground truth annotations, the ViT model’s generalization was assessed with 78% accuracy
on independent data, indicating robustness for WSI-level predictions.

Future research will focus on refining image preprocessing and incorporating stain
normalization to enhance performance on unseen data. Additionally, we plan to deploy
the proposed pipeline in real-time clinical environments and improve our web application
to better assist medical professionals.
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