Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer
Simple Summary
Abstract
1. Introduction
2. HSF1 as a Key Player in the Molecular Mechanisms of Cancer Progression
3. Functional Interactors of HSF1 in Cancer Cells
3.1. Chaperones
3.2. HSF1-Modifying Enzymes as Potent Regulators of Its Activity
3.3. Interactions Regulating HSF1-Dependent Transcription
Interacting Protein | Characteristics of PPI | Cell Lines | Methods | Outcomes of the Interaction with HSF1 | References |
---|---|---|---|---|---|
HSP90 | HSP90 in its “closed” conformation directly binds to the HR-A/B domain of HSF1 | Co-IP | negative regulation of HSF1 activity | [49,52,102] | |
HSP70 | HSP70 interacts directly through the TAD and HR-B domains of HSF1 | HeLa | Co-IP; GST in vitro binding assay | negative regulation of HSF1 activity | [47,56] |
HSP40 | HSP40 interacts directly through the TAD and HR-B domains of HSF1 | HeLa | GST in vitro binding assays | negative regulation of HSF1 activity | [47,56] |
TRiC/CCT | direct interaction | HeLa, HEK293T, NIH3T3, MEFs | co-IP, in vitro binding assays | negative regulation of HSF1 activity | [59] |
CHIP | direct interaction through NTD of HSF1 | COS7, HEK 293, H9c2, NRVMs | co-IP | stabilizing HSF1 and facilitating its nuclear translocation, which protects against stress-induced apoptosis | [61,62,63] |
BAG-1 | no direct interaction was demonstrated | BT-474, MCF-7 | In silico predictions of protein–protein interactions | no direct interaction was demonstrated | [66] |
BAG-3 | interaction through BAG-domain | HeLa | co-IP | regulation of HSF1 nuclear shuttling upon heat stress | [65] |
AKT1 | directly interacts with HSF1 and phosphorylates HSF1 at S326 mediates multiple phosphorylations of HSF1 | BT-474, MCF-7, MDA-MB-231, HEK293, MCF-7 | IP-WB, cell-free kinase assay | Slug overexpression and EMT Regulation of HSF1 transcriptional activity | [24,71] |
mTORC1 | transient interaction | HeLa | in vitro kinase assay | during proteotoxic stress activates HSF1 by phosphorylation at S326 | [76] |
MEK | physically interacts with HSF1 | HEK293T, HeLa | co-IP | preserves proteostasis by activating HSF1 | [80] |
ERK1/2 | physically interacts with HSF1 (immediately after heat shock) | HEK293T, HeLa | co-IP | suppresses MEK-HSF1 interactions to inactivate HSF1 | [80] |
AMPK | physically interacts with HSF1 and phosphorylates it at S121 | NIH3T3, HEK293T, MEF | co-IP, in vitro kinase assays | HSF1 inactivation that impacts stress resistance, proteostasis, and malignant growth. HSF1 governs lipid metabolism and protein cholesteroylation through AMPK regulation | [82] |
c-MYC | forms a complex with HSF1 and MAX | MEF, HEK293T, HeLa | Lumit immunoassays, co-IP, proximity ligation assay | HSF1 activates c-MYC transcriptional activity via GCN5 | [86] |
TRRAP-TIP60 | forms a complex with HSF1 | MEF | ChIP-MS, co-IP | promotes tumorigenesis | [88] |
PARP1-PARP13 | forms a complex with HSF1 | HEK293, HeLa | ChIP seq, IP-WB | protects cells from genotoxic stress and promotes breast cancer progression | [89] |
PRMT5 | forms a complex with HSF1 | T24 | co-IP, immunofluorescence | influences on histone methylation; increases the expression of a number of oncogenes; EMT and proliferation of metastatic cells in lymph nodes | [91] |
HSF2 | physically interacts with HSF1 | MCF-7, ZR-75-1, 231, PC3M, NCI-H838 | LUMIER assay, IP-MS, IP | promotes the expression of HSPs and non-HSP transcriptional targets to support malignant features | [93] |
p53 | during genotoxic stress and UV forms a complex with HSF1 | HEK293T, U2OS, MEF | co-IP | regulates the expression of p21 | [33] |
4. Perspectives on Modulating HSF1 via Its Interactors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mayer, M.P. Hsf1 and Hsf2 in Normal, Healthy Human Tissues: Immunohistochemistry Provokes New Questions. Cell Stress Chaperones 2024, 29, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Mendillo, M.L.; Santagata, S.; Koeva, M.; Bell, G.W.; Hu, R.; Tamimi, R.M.; Fraenkel, E.; Ince, T.A.; Whitesell, L.; Lindquist, S. HSF1 Drives a Transcriptional Program Distinct from Heat Shock to Support Highly Malignant Human Cancers. Cell 2012, 150, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Kabakov, A.; Yakimova, A.; Matchuk, O. Molecular Chaperones in Cancer Stem Cells: Determinants of Stemness and Potential Targets for Antitumor Therapy. Cells 2020, 9, 892. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.D.; Paullin, T.R.; Aoisa, C.; Menzie, C.J.; Ubaldini, A.; Westerheide, S.D. The Heat Shock Transcription Factor HSF1 Induces Ovarian Cancer Epithelial-Mesenchymal Transition in a 3D Spheroid Growth Model. PLoS ONE 2016, 11, e0168389. [Google Scholar] [CrossRef] [PubMed]
- Joutsen, J.; Pessa, J.C.; Jokelainen, O.; Sironen, R.; Hartikainen, J.M.; Sistonen, L. Comprehensive Analysis of Human Tissues Reveals Unique Expression and Localization Patterns of HSF1 and HSF2. Cell Stress Chaperones 2024, 29, 235–271. [Google Scholar] [CrossRef]
- Roos-Mattjus, P.; Sistonen, L. Interplay between Mammalian Heat Shock Factors 1 and 2 in Physiology and Pathology. FEBS J. 2022, 289, 7710–7725. [Google Scholar] [CrossRef]
- Neudegger, T.; Verghese, J.; Hayer-Hartl, M.; Hartl, F.U.; Bracher, A. Structure of Human Heat-Shock Transcription Factor 1 in Complex with DNA. Nat. Struct. Mol. Biol. 2016, 23, 140–146. [Google Scholar] [CrossRef]
- Gomez-Pastor, R.; Burchfiel, E.T.; Thiele, D.J. Regulation of Heat Shock Transcription Factors and Their Roles in Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 4–19. [Google Scholar] [CrossRef]
- Puustinen, M.C.; Sistonen, L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020, 9, 1202. [Google Scholar] [CrossRef]
- Dai, C. The Heat-Shock, or HSF1-Mediated Proteotoxic Stress, Response in Cancer: From Proteomic Stability to Oncogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160525. [Google Scholar] [CrossRef]
- Dayalan Naidu, S.; Sutherland, C.; Zhang, Y.; Risco, A.; de la Vega, L.; Caunt, C.J.; Hastie, C.J.; Lamont, D.J.; Torrente, L.; Chowdhry, S.; et al. Heat Shock Factor 1 Is a Substrate for P38 Mitogen-Activated Protein Kinases. Mol. Cell. Biol. 2016, 36, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
- Moreno, R.; Banerjee, S.; Jackson, A.W.; Quinn, J.; Baillie, G.; Dixon, J.E.; Dinkova-Kostova, A.T.; Edwards, J.; de la Vega, L. The Stress-Responsive Kinase DYRK2 Activates Heat Shock Factor 1 Promoting Resistance to Proteotoxic Stress. Cell Death Differ. 2021, 28, 1563–1578. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.; Gumilar, K.E.; Li, X.G.; Tjokroprawiro, B.A.; Lu, C.H.; Lu, J.; Zhou, M.; Sobol, R.W.; Tan, M. Targeting HSF1 for Cancer Treatment: Mechanisms and Inhibitor Development. Theranostics 2023, 13, 2281–2300. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Soncin, F.; Price, B.D.; Stevenson, M.A.; Calderwood, S.K. Sequential Phosphorylation by Mitogen-Activated Protein Kinase and Glycogen Synthase Kinase 3 Represses Transcriptional Activation by Heat Shock Factor-1. J. Biol. Chem. 1996, 271, 30847–30857. [Google Scholar] [CrossRef]
- Kline, M.P.; Morimoto, R.I. Repression of the Heat Shock Factor 1 Transcriptional Activation Domain Is Modulated by Constitutive Phosphorylation. Mol. Cell. Biol. 1997, 17, 2107–2115. [Google Scholar] [CrossRef]
- Kourtis, N.; Lazaris, C.; Hockemeyer, K.; Balandrán, J.C.; Jimenez, A.R.; Mullenders, J.; Gong, Y.; Trimarchi, T.; Bhatt, K.; Hu, H.; et al. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat. Med. 2018, 24, 1157–1166. [Google Scholar] [CrossRef]
- Hoj, J.P.; Mayro, B.; Pendergast, A.M. The ABL2 Kinase Regulates an HSF1-Dependent Transcriptional Program Required for Lung Adenocarcinoma Brain Metastasis. Proc. Natl. Acad. Sci. USA 2020, 117, 33486–33495. [Google Scholar] [CrossRef]
- Scherz-Shouval, R.; Santagata, S.; Mendillo, M.L.; Sholl, L.M.; Ben-Aharon, I.; Beck, A.H.; Dias-Santagata, D.; Koeva, M.; Stemmer, S.M.; Whitesell, L.; et al. The Reprogramming of Tumor Stroma by HSF1 Is a Potent Enabler of Malignancy. Cell 2014, 158, 564–578. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, L.; Zhang, R.; Hu, Y.; Wu, Y.; Dong, X.; Dong, D.; Chen, C.; Geng, Z.; Li, E.; et al. Thrombospondin 4/Integrin A2/HSF1 Axis Promotes Proliferation and Cancer Stem-like Traits of Gallbladder Cancer by Enhancing Reciprocal Crosstalk between Cancer-Associated Fibroblasts and Tumor Cells. J. Exp. Clin. Cancer Res. 2021, 40, 14. [Google Scholar] [CrossRef]
- Hockemeyer, K.; Sakellaropoulos, T.; Chen, X.; Ivashkiv, O.; Sirenko, M.; Zhou, H.; Gambi, G.; Battistello, E.; Avrampou, K.; Sun, Z.; et al. The Stress Response Regulator HSF1 Modulates Natural Killer Cell Anti-Tumour Immunity. Nat. Cell Biol. 2024, 26, 1734–1744. [Google Scholar] [CrossRef]
- Jacobs, C.; Shah, S.; Lu, W.C.; Ray, H.; Wang, J.; Hockaden, N.; Sandusky, G.; Nephew, K.P.; Lu, X.; Cao, S.; et al. HSF1 Inhibits Antitumor Immune Activity in Breast Cancer by Suppressing CCL5 to Block CD8+ T-Cell Recruitment. Cancer Res. 2024, 84, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Komarova, E.Y.; Marchenko, L.V.; Zhakhov, A.V.; Nikotina, A.D.; Aksenov, N.D.; Suezov, R.V.; Ischenko, A.M.; Margulis, B.A.; Guzhova, I.V. Extracellular Hsp70 Reduces the Pro-Tumor Capacity of Monocytes/Macrophages Co-Cultivated with Cancer Cells. Int. J. Mol. Sci. 2020, 21, 59. [Google Scholar] [CrossRef] [PubMed]
- Nikotina, A.D.; Vladimirova, S.A.; Kokoreva, N.E.; Nevdakha, V.A.; Lazarev, V.F.; Kuznetcova, L.S.; Komarova, E.Y.; Suezov, R.V.; Efremov, S.; Leonova, E.; et al. Novel Mechanism of Drug Resistance Triggered by Tumor-Associated Macrophages through Heat Shock Factor-1 Activation. Cancer Immunol. Immunother. 2024, 73, 25. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.L.; Paw, I.; Dewhirst, M.W.; Lo, H.W. Akt Phosphorylates and Activates HSF-1 Independent of Heat Shock, Leading to Slug Overexpression and Epithelial-Mesenchymal Transition (EMT) of HER2-Overexpressing Breast Cancer Cells. Oncogene 2015, 34, 546–557. [Google Scholar] [CrossRef]
- Chou, S.D.; Murshid, A.; Eguchi, T.; Gong, J.; Calderwood, S.K. HSF1 Regulation of β-Catenin in Mammary Cancer Cells through Control of HuR/ElavL1 Expression. Oncogene 2015, 34, 2178–2188. [Google Scholar] [CrossRef]
- Li, Y.; Xu, D.; Bao, C.; Zhang, Y.; Chen, D.; Zhao, F.; Ding, J.; Liang, L.; Wang, Q.; Liu, L.; et al. MicroRNA-135b, a HSF1 target, promotes tumor invasion and metastasis by regulating RECK and EVI5 in hepatocellular carcinoma. Oncotarget 2015, 6, 2421–2433. [Google Scholar] [CrossRef]
- Prince, T.L.; Lang, B.J.; Guerrero-Gimenez, M.E.; Fernandez-Muñoz, J.M.; Ackerman, A.; Calderwood, S.K. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity. Cells 2020, 9, 1046. [Google Scholar] [CrossRef]
- Xi, C.; Hu, Y.; Buckhaults, P.; Moskophidis, D.; Mivechi, N.F. Heat Shock Factor Hsf1 Cooperates with ErbB2 (Her2/Neu) Protein to Promote Mammary Tumorigenesis and Metastasis. J. Biol. Chem. 2012, 287, 35646–35657. [Google Scholar] [CrossRef]
- Stankiewicz, A.R.; Livingstone, A.M.; Mohseni, N.; Mosser, D.D. Regulation of Heat-Induced Apoptosis by Mcl-1 Degradation and Its Inhibition by Hsp70. Cell Death Differ. 2009, 16, 638–647. [Google Scholar] [CrossRef]
- Li, C.Y.; Lee, J.S.; Ko, Y.G.; Kim, J.I.; Seo, J.S. Heat Shock Protein 70 Inhibits Apoptosis Downstream of Cytochrome c Release and Upstream of Caspase-3 Activation. J. Biol. Chem. 2000, 275, 25665–25671. [Google Scholar] [CrossRef]
- Edlich, F.; Erdmann, F.; Jarczowski, F.; Moutty, M.C.; Weiwad, M.; Fischer, G. The Bcl-2 Regulator FKBP38-Calmodulin-Ca2+ Is Inhibited by Hsp90. J. Biol. Chem. 2007, 282, 15341–15348. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Marchenko, N.D.; Schulz, R.; Fischer, V.; Velasco-Hernandez, T.; Talos, F.; Moll, U.M. Functional Inactivation of Endogenous MDM2 and CHIP by HSP90 Causes Aberrant Stabilization of Mutant P53 in Human Cancer Cells. Mol. Cancer Res. 2011, 9, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Logan, I.R.; Mcneill, H.V.; Cook, S.; Lu, X.; Meek, D.W.; Fuller-Pace, F.V.; Lunec, J.; Robson, C.N. Heat Shock Factor-1 Modulates P53 Activity in the Transcriptional Response to DNA Damage. Nucleic Acids Res. 2009, 37, 2962–2973. [Google Scholar] [CrossRef] [PubMed]
- Schulz, R.; Streller, F.; Scheel, A.H.; Rüschoff, J.; Reinert, M.C.; Dobbelstein, M.; Marchenko, N.D.; Moll, U.M. HER2/ErbB2 Activates HSF1 and Thereby Controls HSP90 Clients Including MIF in HER2-Overexpressing Breast Cancer. Cell Death Dis. 2014, 5, e980. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lee, C.W.; Witt, A.; Thakkar, A.; Ince, T.A. Heat Shock Factor 1 Induces Cancer Stem Cell Phenotype in Breast Cancer Cell Lines. Breast Cancer Res. Treat. 2015, 153, 57–66. [Google Scholar] [CrossRef]
- Kusumoto, H.; Hirohashi, Y.; Nishizawa, S.; Yamashita, M.; Yasuda, K.; Murai, A.; Takaya, A.; Mori, T.; Kubo, T.; Nakatsugawa, M.; et al. Cellular Stress Induces Cancer Stem-like Cells through Expression of DNAJB8 by Activation of Heat Shock Factor 1. Cancer Sci. 2018, 109, 741–750. [Google Scholar] [CrossRef]
- Yasuda, K.; Hirohashi, Y.; Mariya, T.; Murai, A.; Tabuchi, Y.; Kuroda, T.; Kusumoto, H.; Takaya, A.; Yamamoto, E.; Kubo, T.; et al. Phosphorylation of HSF1 at Serine 326 Residue Is Related to the Maintenance of Gynecologic Cancer Stem Cells through Expression of HSP27. Oncotarget 2017, 8, 31540–31553. [Google Scholar] [CrossRef]
- Su, K.H.; Cao, J.; Tang, Z.; Dai, S.; He, Y.; Sampson, S.B.; Benjamin, I.J.; Dai, C. HSF1 Critically Attunes Proteotoxic Stress Sensing by MTORC1 to Combat Stress and Promote Growth. Nat. Cell Biol. 2016, 18, 527–539. [Google Scholar] [CrossRef]
- Holmes, B.; Benavides-Serrato, A.; Freeman, R.S.; Landon, K.A.; Bashir, T.; Nishimura, R.N.; Gera, J. MTORC2/AKT/HSF1/HuR Constitute a Feed-Forward Loop Regulating Rictor Expression and Tumor Growth in Glioblastoma. Oncogene 2018, 37, 732–743. [Google Scholar] [CrossRef]
- Desai, S.; Liu, Z.; Yao, J.; Patel, N.; Chen, J.; Wu, Y.; Ahn, E.E.Y.; Fodstad, O.; Tan, M. Heat Shock Factor 1 (HSF1) Controls Chemoresistance and Autophagy through Transcriptional Regulation of Autophagy-Related Protein 7 (ATG7). J. Biol. Chem. 2013, 288, 9165–9176. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tsujimura, A.; Taguchi, K.; Tanaka, M. HSF1 Stress Response Pathway Regulates Autophagy Receptor SQSTM1/P62-Associated Proteostasis. Autophagy 2017, 13, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Koh, G.C.K.W.; Porras, P.; Aranda, B.; Hermjakob, H.; Orchard, S.E. Analyzing Protein-Protein Interaction Networks. J. Proteome Res. 2012, 11, 2014–2031. [Google Scholar] [CrossRef] [PubMed]
- Rodina, A.; Wang, T.; Yan, P.; Gomes, E.D.; Dunphy, M.P.S.; Pillarsetty, N.; Koren, J.; Gerecitano, J.F.; Taldone, T.; Zong, H.; et al. The Epichaperome Is an Integrated Chaperome Network That Facilitates Tumour Survival. Nature 2016, 538, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Yang, G.J.; Wang, W.; Leung, C.H.; Ma, D.L. The Design and Development of Covalent Protein-Protein Interaction Inhibitors for Cancer Treatment. J. Hematol. Oncol. 2020, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, A. Protein-Protein Interactions: Basics, Characteristics, and Predictions. Soft Comput. Biol. Syst. 2018, 111–120. [Google Scholar] [CrossRef]
- Burchfiel, E.T.; Vihervaara, A.; Guertin, M.J.; Gomez-Pastor, R.; Thiele, D.J. Comparative Interactomes of HSF1 in Stress and Disease Reveal a Role for CTCF in HSF1-Mediated Gene Regulation. J. Biol. Chem. 2021, 296, 100097. [Google Scholar] [CrossRef]
- Shi, Y.; Mosser, D.D.; Morimoto, R.I. Molecular Chaperones as HSF1-Specific Transcriptional Repressors. Genes Dev. 1998, 12, 654–666. [Google Scholar] [CrossRef]
- Masser, A.E.; Ciccarelli, M.; Andréasson, C. Hsf1 on a Leash—Controlling the Heat Shock Response by Chaperone Titration. Exp. Cell Res. 2020, 396, 112246. [Google Scholar] [CrossRef]
- Zou, J.; Guo, Y.; Guettouche, T.; Smith, D.F.; Voellmy, R. Repression of Heat Shock Transcription Factor HSF1 Activation by HSP90 (HSP90 Complex) That Forms a Stress-Sensitive Complex with HSF1. Cell 1998, 94, 471–480. [Google Scholar] [CrossRef]
- Voellmy, R.; Boellmann, F. Chaperone Regulation of the Heat Shock Protein Response. Adv. Exp. Med. Biol. 2007, 594, 89–99. [Google Scholar] [CrossRef]
- Whitesell, L.; Bagatell, R.; Falsey, R. The Stress Response: Implications for the Clinical Development of Hsp90 Inhibitors. Curr. Cancer Drug Targets 2005, 3, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Kijima, T.; Prince, T.L.; Tigue, M.L.; Yim, K.H.; Schwartz, H.; Beebe, K.; Lee, S.; Budzynski, M.A.; Williams, H.; Trepel, J.B.; et al. HSP90 Inhibitors Disrupt a Transient HSP90-HSF1 Interaction and Identify a Noncanonical Model of HSP90-Mediated HSF1 Regulation. Sci. Rep. 2018, 8, 6976. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Z.; Khaleque, M.A.; Mei, J.Z.; Zhong, R.; Gaestel, M.; Calderwood, S.K. Phosphorylation of HSF1 by MAPK-Activated Protein Kinase 2 on Serine 121, Inhibits Transcriptional Activity and Promotes HSP90 Binding. J. Biol. Chem. 2006, 281, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Abravaya, K.; Myers, M.P.; Murphy, S.P.; Morimoto, R.I. The Human Heat Shock Protein Hsp70 Interacts with HSF, the Transcription Factor That Regulates Heat Shock Gene Expression. Genes Dev. 1992, 6, 1153–1164. [Google Scholar] [CrossRef]
- Krakowiak, J.; Zheng, X.; Patel, N.; Feder, Z.A.; Anandhakumar, J.; Valerius, K.; Gross, D.S.; Khalil, A.S.; Pincus, D. Hsf1 and Hsp70 Constitute a Two-Component Feedback Loop That Regulates the Yeast Heat Shock Response. Elife 2018, 7, e31668. [Google Scholar] [CrossRef]
- Kmiecik, S.W.; Le Breton, L.; Mayer, M.P. Feedback Regulation of Heat Shock Factor 1 (Hsf1) Activity by Hsp70-mediated Trimer Unzipping and Dissociation from DNA. EMBO J. 2020, 39, e104096. [Google Scholar] [CrossRef]
- Masser, A.E.; Kang, W.; Roy, J.; Kaimal, J.M.; Quintana-Cordero, J.; Friedländer, M.R.; Andréasson, C. Cytoplasmic Protein Misfolding Titrates Hsp70 to Activate Nuclear Hsf1. Elife 2019, 8, e47791. [Google Scholar] [CrossRef]
- Roh, S.H.; Kasembeli, M.; Bakthavatsalam, D.; Chiu, W.; Tweardy, D.J. Contribution of the Type II Chaperonin, TRiC/CCT, to Oncogenesis. Int. J. Mol. Sci. 2015, 16, 26706–26720. [Google Scholar] [CrossRef]
- Neef, D.W.; Jaeger, A.M.; Gomez-Pastor, R.; Willmund, F.; Frydman, J.; Thiele, D.J. A Direct Regulatory Interaction between Chaperonin TRiC and Stress-Responsive Transcription Factor HSF1. Cell Rep. 2014, 9, 955–966. [Google Scholar] [CrossRef]
- Kumar, S.; Basu, M.; Ghosh, M.K. Chaperone-Assisted E3 Ligase CHIP: A Double Agent in Cancer. Genes Dis. 2022, 9, 1521–1555. [Google Scholar] [CrossRef]
- Dai, Q.; Zhang, C.; Wu, Y.; McDonough, H.; Whaley, R.A.; Godfrey, V.; Li, H.H.; Madamanchi, N.; Xu, W.; Neckers, L.; et al. CHIP Activates HSF1 and Confers Protection against Apoptosis and Cellular Stress. EMBO J. 2003, 22, 5446–5458. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Yoon, J.H.; Kim, D.K.; Kim, S.G.; Ahn, S.G. CHIP Interacts with Heat Shock Factor 1 during Heat Stress. FEBS Lett. 2005, 579, 6559–6563. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Kuo, W.W.; Lo, J.F.; Ho, T.J.; Pai, P.Y.; Chiang, S.F.; Chen, P.Y.; Tsai, F.J.; Tsai, C.H.; Huang, C.Y. Doxorubicin Attenuates CHIP-Guarded HSF1 Nuclear Translocation and Protein Stability to Trigger IGF-IIR-Dependent Cardiomyocyte Death. Cell Death Dis. 2016, 7, e2455. [Google Scholar] [CrossRef] [PubMed]
- Mariotto, E.; Viola, G.; Zanon, C.; Aveic, S. A BAG’s Life: Every Connection Matters in Cancer. Pharmacol. Ther. 2020, 209, 107498. [Google Scholar] [CrossRef]
- Jin, Y.H.; Ahn, S.G.; Kim, S.A. BAG3 Affects the Nucleocytoplasmic Shuttling of HSF1 upon Heat Stress. Biochem. Biophys. Res. Commun. 2015, 464, 561–567. [Google Scholar] [CrossRef]
- Kizilboga, T.; Özden, C.; Can, N.D.; Onay Ucar, E.; Dinler Doganay, G. Bag-1-Mediated HSF1 Phosphorylation Regulates Expression of Heat Shock Proteins in Breast Cancer Cells. FEBS Open Bio 2024, 14, 1559–1569. [Google Scholar] [CrossRef]
- Joutsen, J.; Sistonen, L. Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harb. Perspect. Biol. 2019, 11, a034066. [Google Scholar] [CrossRef]
- Hietakangas, V.; Ahlskog, J.K.; Jakobsson, A.M.; Hellesuo, M.; Sahlberg, N.M.; Holmberg, C.I.; Mikhailov, A.; Palvimo, J.J.; Pirkkala, L.; Sistonen, L. Phosphorylation of Serine 303 Is a Prerequisite for the Stress-Inducible SUMO Modification of Heat Shock Factor 1. Mol. Cell. Biol. 2003, 23, 2953–2968. [Google Scholar] [CrossRef]
- Westerheide, S.D.; Anckar, J.; Stevens, S.M.; Sistonen, L.; Morimoto, R.I. Stress-Inducible Regulation of Heat Shock Factor 1 by the Deacetylase SIRT. Science 2009, 323, 1063–1066. [Google Scholar] [CrossRef]
- Tsai, P.J.; Lai, Y.H.; Manne, R.K.; Tsai, Y.S.; Sarbassov, D.; Lin, H.K. Akt: A Key Transducer in Cancer. J. Biomed. Sci. 2022, 29, 76. [Google Scholar] [CrossRef]
- Lu, W.C.; Omari, R.; Ray, H.; Wang, J.; Williams, I.; Jacobs, C.; Hockaden, N.; Bochman, M.L.; Carpenter, R.L. AKT1 Mediates Multiple Phosphorylation Events That Functionally Promote HSF1 Activation. FEBS J. 2022, 289, 3876–3893. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.L.; Sirkisoon, S.; Zhu, D.; Rimkus, T.; Harrison, A.; Anderson, A.; Paw, I.; Qasem, S.; Xing, F.; Liu, Y.; et al. Combined Inhibition of AKT and HSF1 Suppresses Breast Cancer Stem Cells and Tumor Growth. Oncotarget 2017, 8, 73947–73963. [Google Scholar] [CrossRef] [PubMed]
- Cigliano, A.; Wang, C.; Pilo, M.G.; Szydlowska, M.; Brozzetti, S.; Latte, G.; Pes, G.M.; Pascale, R.M.; Seddaiu, M.A.; Vidili, G.; et al. Inhibition of HSF1 Suppresses the Growth of Hepatocarcinoma Cell Lines in Vitro and AKT-Driven Hepatocarcinogenesis in Mice. Oncotarget 2017, 8, 54149–54159. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Sabatini, D.M. MTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. MTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Chou, S.D.; Prince, T.; Gong, J.; Calderwood, S.K. mTOR Is Essential for the Proteotoxic Stress Response, HSF1 Activation and Heat Shock Protein Synthesis. PLoS ONE 2012, 7, e39679. [Google Scholar] [CrossRef]
- Li, J.; Song, P.; Jiang, T.; Dai, D.; Wang, H.; Sun, J.; Zhu, L.; Xu, W.; Feng, L.; Shin, V.Y.; et al. Heat Shock Factor 1 Epigenetically Stimulates Glutaminase-1-Dependent mTOR Activation to Promote Colorectal Carcinogenesis. Mol. Ther. 2018, 26, 1828–1839. [Google Scholar] [CrossRef]
- Song, Y.; Bi, Z.; Liu, Y.; Qin, F.; Wei, Y.; Wei, X. Targeting RAS–RAF–MEK–ERK Signaling Pathway in Human Cancer: Current Status in Clinical Trials. Genes Dis. 2023, 10, 76–88. [Google Scholar] [CrossRef]
- Neuzillet, C.; Tijeras-Raballand, A.; De Mestier, L.; Cros, J.; Faivre, S.; Raymond, E. MEK in Cancer and Cancer Therapy. Pharmacol. Ther. 2014, 141, 160–171. [Google Scholar] [CrossRef]
- Tang, Z.; Dai, S.; He, Y.; Doty, R.A.; Shultz, L.D.; Sampson, S.B.; Dai, C. MEK Guards Proteome Stability and Inhibits Tumor-Suppressive Amyloidogenesis via HSF1. Cell 2015, 160, 729–744. [Google Scholar] [CrossRef]
- Wales, C.T.K.; Taylor, F.R.; Higa, A.T.; McAllister, H.A.; Jacobs, A.T. ERK-Dependent Phosphorylation of HSF1 Mediates Chemotherapeutic Resistance to Benzimidazole Carbamates in Colorectal Cancer Cells. Anticancer Drugs 2015, 26, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Tang, Z.; Cao, J.; Zhou, W.; Li, H.; Sampson, S.; Dai, C. Suppression of the HSF 1-mediated Proteotoxic Stress Response by the Metabolic Stress Sensor AMPK. EMBO J. 2015, 34, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Su, K.H.; Dai, S.; Tang, Z.; Xu, M.; Dai, C. Heat Shock Factor 1 Is a Direct Antagonist of AMP-Activated Protein Kinase. Mol. Cell 2019, 76, 546–561. [Google Scholar] [CrossRef]
- Chen, K.; Qian, W.; Li, J.; Jiang, Z.; Cheng, L.; Yan, B.; Cao, J.; Sun, L.; Zhou, C.; Lei, M.; et al. Loss of AMPK Activation Promotes the Invasion and Metastasis of Pancreatic Cancer through an HSF1-Dependent Pathway. Mol. Oncol. 2017, 11, 1475–1492. [Google Scholar] [CrossRef]
- Kovács, D.; Sigmond, T.; Hotzi, B.; Bohár, B.; Fazekas, D.; Deák, V.; Vellai, T.; Barna, J. HSF1Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes. Int. J. Mol. Sci. 2019, 20, 5815. [Google Scholar] [CrossRef]
- Xu, M.; Lin, L.; Ram, B.M.; Shriwas, O.; Chuang, K.H.; Dai, S.; Su, K.H.; Tang, Z.; Dai, C. Heat Shock Factor 1 (HSF1) Specifically Potentiates c-MYC-Mediated Transcription Independently of the Canonical Heat Shock Response. Cell Rep. 2023, 42, 112557. [Google Scholar] [CrossRef]
- McMahon, S.B.; Van Buskirk, H.A.; Dugan, K.A.; Copeland, T.D.; Cole, M.D. The Novel ATM-Related Protein TRRAP Is an Essential Cofactor for the c- Myc and E2F Oncoproteins. Cell 1998, 94, 363–374. [Google Scholar] [CrossRef]
- Fujimoto, M.; Takii, R.; Matsumoto, M.; Okada, M.; Nakayama, K.I.; Nakato, R.; Fujiki, K.; Shirahige, K.; Nakai, A. HSF1 Phosphorylation Establishes an Active Chromatin State via the TRRAP–TIP60 Complex and Promotes Tumorigenesis. Nat. Commun. 2022, 13, 4355. [Google Scholar] [CrossRef]
- Fujimoto, M.; Takii, R.; Takaki, E.; Katiyar, A.; Nakato, R.; Shirahige, K.; Nakai, A. The HSF1-PARP13-PARP1 Complex Facilitates DNA Repair and Promotes Mammary Tumorigenesis. Nat. Commun. 2017, 8, 1638. [Google Scholar] [CrossRef]
- Fujimoto, M.; Takii, R.; Katiyar, A.; Srivastava, P.; Nakai, A. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA. Mol. Cell. Biol. 2018, 38, e00051-18. [Google Scholar] [CrossRef]
- Huang, M.; Dong, W.; Xie, R.; Wu, J.; Su, Q.; Li, W.; Yao, K.; Chen, Y.; Zhou, Q.; Zhang, Q.; et al. HSF1 Facilitates the Multistep Process of Lymphatic Metastasis in Bladder Cancer via a Novel PRMT5-WDR5-Dependent Transcriptional Program. Cancer Commun. 2022, 42, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Björk, J.K.; Åkerfelt, M.; Joutsen, J.; Puustinen, M.C.; Cheng, F.; Sistonen, L.; Nees, M. Heat-Shock Factor 2 Is a Suppressor of Prostate Cancer Invasion. Oncogene 2016, 35, 1770–1784. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.S.; Takagishi, S.R.; Amici, D.R.; Metz, K.; Gayatri, S.; Alasady, M.J.; Wu, Y.; Brockway, S.; Taiberg, S.L.; Khalatyan, N.; et al. HSF2 Cooperates with HSF1 to Drive a Transcriptional Program Critical for the Malignant State. Sci. Adv. 2022, 8, eabj6526. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, G.; Hattori, M.; Takamatsu, K.; Tsukada, T.; Ninomiya, Y.; Benjamin, I.; Sassone-Corsi, P.; Ozawa, T.; Tamaru, T. Cooperative Interaction among BMAL1, HSF1, and P53 Protects Mammalian Cells from UV Stress. Commun. Biol. 2018, 1, 204. [Google Scholar] [CrossRef]
- Blagosklonny, M.V.; Toretsky, J.; Bohen, S.; Neckers, L. Mutant Conformation of P53 Translated in Vitro or in Vivo Requires Functional HSP90. Proc. Natl. Acad. Sci. USA 1996, 93, 8379–8383. [Google Scholar] [CrossRef]
- Walerych, D.; Olszewski, M.B.; Gutkowska, M.; Helwak, A.; Zylicz, M.; Zylicz, A. Hsp70 Molecular Chaperones Are Required to Support P53 Tumor Suppressor Activity under Stress Conditions. Oncogene 2009, 28, 4284–4294. [Google Scholar] [CrossRef]
- King, F.W.; Wawrzynow, A.; Höhfeld, J.; Zylicz, M. Co-Chaperones Bag-1, Hop and Hsp40 Regulate Hsc70 and Hsp90 Interactions with Wild-Type or Mutant P53. EMBO J. 2001, 20, 6297–6305. [Google Scholar] [CrossRef]
- Wiech, M.; Olszewski, M.B.; Tracz-Gaszewska, Z.; Wawrzynow, B.; Zylicz, M.; Zylicz, A. Molecular Mechanism of Mutant P53 Stabilization: The Role of HSP70 and MDM2. PLoS ONE 2012, 7, e51426. [Google Scholar] [CrossRef]
- Isermann, T.; Şener, Ö.Ç.; Stender, A.; Klemke, L.; Winkler, N.; Neesse, A.; Li, J.; Wegwitz, F.; Moll, U.M.; Schulz-Heddergott, R. Suppression of HSF1 Activity by Wildtype P53 Creates a Driving Force for P53 Loss-of-Heterozygosity. Nat. Commun. 2021, 12, 4019. [Google Scholar] [CrossRef]
- Li, D.; Yallowitz, A.; Ozog, L.; Marchenko, N. A Gain-of-Function Mutant P53-HSF1 Feed Forward Circuit Governs Adaptation of Cancer Cells to Proteotoxic Stress. Cell Death Dis. 2014, 5, e1194. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Lang, B.J.; Chai, R.C.C.; Vieusseux, J.L.; Kouspou, M.M.; Price, J.T. Heat-Shock Factor 1 Both Positively and Negatively Affects Cellular Clonogenic Growth Depending on P53 Status. Biochem. J. 2013, 452, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, K.; Das, A.; Walsh, C.T. Hsp90 Chaperonins Possess ATPase Activity and Bind Heat Shock Transcription Factors and Peptidyl Prolyl Isomerases. J. Biol. Chem. 1993, 268, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, A.E.; Sharp, S.Y.; Chessum, N.E.A.; Hayes, A.; Pellegrino, L.; Tucker, M.J.; Miah, A.; Wilding, B.; Evans, L.E.; Rye, C.S.; et al. HSF1 Pathway Inhibitor Clinical Candidate (CCT361814/NXP800) Developed from a Phenotypic Screen as a Potential Treatment for Refractory Ovarian Cancer and Other Malignancies. J. Med. Chem. 2023, 66, 5907–5936. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Srinivasan, S.R.; Connarn, J.; Ahmad, A.; Young, Z.T.; Kabza, A.M.; Zuiderweg, E.R.P.; Sun, D.; Gestwicki, J.E. Analogues of the Allosteric Heat Shock Protein 70 (Hsp70) Inhibitor, MKT-077, as Anti-Cancer Agents. ACS Med. Chem. Lett. 2013, 4, 1042–1047. [Google Scholar] [CrossRef]
- Sverchinsky, D.V.; Alhasan, B.A.; Mikeladze, M.A.; Lazarev, V.F.; Kuznetcova, L.S.; Morshneva, A.V.; Nikotina, A.D.; Ziewanah, A.; Koludarova, L.V.; Starkova, T.Y.; et al. Autocrine Regulation of Tumor Cell Repopulation by Hsp70-HMGB1 Alarmin Complex. J. Exp. Clin. Cancer Res. 2023, 42, 279. [Google Scholar] [CrossRef]
- Li, Z.N.; Luo, Y. HSP90 Inhibitors and Cancer: Prospects for Use in Targeted Therapies (Review). Oncol. Rep. 2023, 49, 6. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Loo, A.; Jaeger, S.; Bagdasarian, L.; Yu, J.; Chung, F.; Korn, J.; Ruddy, D.; Guo, R.; et al. Targeting HSF1 Sensitizes Cancer Cells to HSP90 Inhibition. Oncotarget 2013, 4, 816–829. [Google Scholar] [CrossRef]
- Kudryavtsev, V.A.; Khokhlova, A.V.; Mosina, V.A.; Selivanova, E.I.; Kabakov, A.E. Induction of Hsp70 in Tumor Cells Treated with Inhibitors of the Hsp90 Activity: A Predictive Marker and Promising Target for Radiosensitization. PLoS ONE 2017, 12, e0173640. [Google Scholar] [CrossRef]
- Do, K.; Speranza, G.; Chang, L.C.; Polley, E.C.; Bishop, R.; Zhu, W.; Trepel, J.B.; Lee, S.; Lee, M.J.; Kinders, R.J.; et al. Phase I Study of the Heat Shock Protein 90 (Hsp90) Inhibitor Onalespib (AT13387) Administered on a Daily for 2 Consecutive Days per Week Dosing Schedule in Patients with Advanced Solid Tumors. Investig. New Drugs 2015, 33, 921–930. [Google Scholar] [CrossRef]
- Pesonen, L.; Svartsjö, S.; Bäck, V.; de Thonel, A.; Mezger, V.; Sabéran-Djoneidi, D.; Roos-Mattjus, P. Gambogic Acid and Gambogenic Acid Induce a Thiol-Dependent Heat Shock Response and Disrupt the Interaction between HSP90 and HSF1 or HSF2. Cell Stress Chaperones 2021, 26, 819–833. [Google Scholar] [CrossRef]
- Rastogi, S.; Joshi, A.; Sato, N.; Lee, S.; Lee, M.J.; Trepel, J.B.; Neckers, L. An Update on the Status of HSP90 Inhibitors in Cancer Clinical Trials. Cell Stress Chaperones 2024, 29, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zou, J.; Wang, J.; Liu, M.; Liu, K.; Wang, N.; Wang, K. Aberrant HSF1 Signaling Activation Underlies Metformin Amelioration of Myocardial Infarction in Mice. Mol. Ther. Nucleic Acids 2022, 29, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.D.; Yin, B.; Li, Z.; Yuan, W.; Zhang, Q.; Xie, X.; Tan, Y.; Wong, N.; Zhang, K.; Bian, L. Mechanical Manipulation of Cancer Cell Tumorigenicity via Heat Shock Protein Signaling. Sci. Adv. 2023, 9, eadg9593. [Google Scholar] [CrossRef] [PubMed]
- Timofeev, O.; Giron, P.; Lawo, S.; Pichler, M.; Noeparast, M. ERK Pathway Agonism for Cancer Therapy: Evidence, Insights, and a Target Discovery Framework. NPJ Precis. Oncol. 2024, 8, 70. [Google Scholar] [CrossRef]
- Satoh, R.; Hagihara, K.; Matsuura, K.; Manse, Y.; Kita, A.; Kunoh, T.; Masuko, T.; Moriyama, M.; Moriyama, H.; Tanabe, G.; et al. Identification of ACA-28, a 1′-Acetoxychavicol Acetate Analogue Compound, as a Novel Modulator of ERK MAPK Signaling, Which Preferentially Kills Human Melanoma Cells. Genes Cells 2017, 22, 608–618. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladimirova, S.A.; Kokoreva, N.E.; Guzhova, I.V.; Alhasan, B.A.; Margulis, B.A.; Nikotina, A.D. Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer. Cancers 2024, 16, 4030. https://doi.org/10.3390/cancers16234030
Vladimirova SA, Kokoreva NE, Guzhova IV, Alhasan BA, Margulis BA, Nikotina AD. Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer. Cancers. 2024; 16(23):4030. https://doi.org/10.3390/cancers16234030
Chicago/Turabian StyleVladimirova, Snezhana A., Nadezhda E. Kokoreva, Irina V. Guzhova, Bashar A. Alhasan, Boris A. Margulis, and Alina D. Nikotina. 2024. "Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer" Cancers 16, no. 23: 4030. https://doi.org/10.3390/cancers16234030
APA StyleVladimirova, S. A., Kokoreva, N. E., Guzhova, I. V., Alhasan, B. A., Margulis, B. A., & Nikotina, A. D. (2024). Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer. Cancers, 16(23), 4030. https://doi.org/10.3390/cancers16234030