Understanding the Interface Characteristics Between TiB2(0001) and L12-Al3Zr(001): A First-Principles Investigation
Abstract
:1. Introduction
2. Calculation Method
3. Results and Discussion
3.1. Crystal Properties
3.2. Surface Convergence and Surface Energy
3.3. Interface Characteristics of TiB2(0001)/Al3Zr(001)
3.3.1. Atomic Structure of the Interface
3.3.2. Interface Adhesion Work
3.3.3. Interfacial Energy
3.4. Electron Structure
4. Conclusions
- (1)
- Simulation tests have demonstrated that a stable interface structure can be formed when a 9-layer TiB2(0001) surface is combined with a 7-layer ZrAl-terminated and a 9-layer Al-terminated Al3Zr(001) surface.
- (2)
- For interfaces with the same termination in TiB2/Al3Zr, the study identifies the bridge-site stacking (TAB) at the T/Al termination, hollow-site stacking (TZH) at the Ti/ZrAl termination, top-site stacking (BAT) at the B/A termination, and hollow-site stacking at the B/ZrAl termination as the optimal structures. Among these interfaces, the TAB interface has the strongest adhesion strength due to the highest adhesion work of 2.41 J/m2.
- (3)
- The interfacial energies of TAB, TZH, BAT, and BZH across the entire range of are, respectively, 1.730 to 4.430 J/m2, 1.848 to 5.509 J/m2, 6.118 to 2.455 J/m2, and 5.595 to 2.895 J/m2. Evidently, TAB exhibits the lowest surface energy and the highest interface stability.
- (4)
- Electronic structure analysis indicates that the TAB, TZH, and BZH interfaces primarily feature covalent bonding, while the BAT interface shows both ionic and covalent bonds. According to the analysis of the electronic structure, the stability order of the TiB2(0001) and Al3Zr(001) interfaces is as follows: TAB interface > BZH interface > TZH interface > BAT interface.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, W.; Liu, C.; Ge, Z. Optimizing the mechanical properties of Al–Si alloys through friction stir processing and rolling. Mater. Sci. Eng. A 2021, 804, 140786. [Google Scholar] [CrossRef]
- Jin, S.; Luo, Z.; An, X.; Liao, X.; Li, J.; Sha, G. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion. J. Mater. Sci. Technol. 2021, 68, 199–208. [Google Scholar] [CrossRef]
- Yin, J.; Li, Y.; Niu, Y.; Zhang, Z.; Song, D.; Chen, Y.; Liu, Y.; Zhong, Y. Effect of particle size on the microstructure and tensile property of the Al-28.5 Si alloy prepared by continuous powder extrusion. Mater. Res. Express 2021, 8, 026524. [Google Scholar] [CrossRef]
- Wang, F.; Qiu, D.; Liu, Z.-L.; Taylor, J.A.; Easton, M.A.; Zhang, M.-X. The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 2013, 61, 5636–5645. [Google Scholar] [CrossRef]
- Xu, J.-h.; Freeman, A. Bandfilling and structural stability of trialuminides: YAl3, ZrAl3, and NbAl3. J. Mater. Res. 1991, 6, 1188–1199. [Google Scholar] [CrossRef]
- Moon, K.I.; Kim, S.C.; Lee, K.S. A study on the microstructure of D023 Al3Zr and L12 (Al+ 12.5 at.% Cu) 3Zr intermetallic compounds synthesized by PBM and SPS. Intermetallics 2002, 10, 185–194. [Google Scholar] [CrossRef]
- Xu, J.-H.; Freeman, A. Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 precipitates. Phys. Rev. B 1990, 41, 12553. [Google Scholar] [CrossRef]
- Yang, Q.-B.; Deng, Y.-J.; Mou, Y.; Zhang, Z.-Q.; Li, W.-G.; Qing, L. Effect of Al3Zr particles on hot-compression behavior and processing map for Al-Cu-Li based alloys at elevated temperatures. Trans. Nonferrous Met. Soc. China 2020, 30, 872–882. [Google Scholar] [CrossRef]
- Li, Y.; Lu, B.; Yu, W.; Fu, J.; Xu, G.; Wang, Z. Two-stage homogenization of Al-Zn-Mg-Cu-Zr alloy processed by twin-roll casting to improve L12 Al3Zr precipitation, recrystallization resistance, and performance. J. Alloys Compd. 2021, 882, 160789. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Cao, L.; Tong, X.; Zou, Y.; Zhu, Q.; Tang, S.; Song, H.; Guo, M. Effect of Ag on aging precipitation behavior and mechanical properties of aluminum alloy 7075. Mater. Sci. Eng. A 2021, 804, 140515. [Google Scholar] [CrossRef]
- Yang, T.; Han, X.; Ding, Z.; Wang, Y.; Li, J. Electronic and structural properties of low-index L12–Al3Zr surfaces by first-principle calculations. Calphad 2019, 66, 101645. [Google Scholar] [CrossRef]
- Yang, T.; Wei, M.; Ding, Z.; Han, X.; Li, J. First-principle calculations on the Al/L12-Al3Zr heterogeneous nucleation interface. Calphad 2020, 69, 101768. [Google Scholar] [CrossRef]
- Yang, T.; Han, X.; Li, W.; Chen, X.; Liu, P. Angular dependent potential for Al-Zr binary system to study the initial heterogeneous nucleation behavior of liquid Al on L12-Al3Zr. Comput. Mater. Sci. 2023, 230, 112480. [Google Scholar] [CrossRef]
- Birol, Y. Effect of silicon content in grain refining hypoeutectic Al–Si foundry alloys with boron and titanium additions. Mater. Sci. Technol. 2012, 28, 385–389. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, C.; Zhou, L.; Hashimoto, T.; Zhou, X.; Ramasse, Q.; Fan, Z. Mechanism for Zr poisoning of Al-Ti-B based grain refiners. Acta Mater. 2019, 164, 428–439. [Google Scholar] [CrossRef]
- Mao, G.; Tong, G.; Gao, W.; Liu, S.; Zhong, L. The poisoning effect of Sc or Zr in grain refinement of Al-Si-Mg alloy with Al-Ti-B. Mater. Lett. 2021, 302, 130428. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.; Thompson, G.; Pennycook, T.; Hashimoto, T. Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Z.; Borbely, A.; Ji, G.; Zhong, S.; Schryvers, D.; Ji, V.; Wang, H. Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy. Mater. Charact. 2015, 102, 131–136. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Chen, S.; Liu, X.; Chen, Z.; Wang, M.; Zhu, H.; Wang, H. Interface alloying design to improve the dispersion of TiB2 nanoparticles in Al composites: A first-principles study. J. Phys. Chem. C 2021, 125, 5937–5946. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Z.; Cheng, X.; Zheng, Q.; Zhao, J.; Han, Q. On the supplementation of magnesium and usage of ultrasound stirring for fabricating in situ TiB 2/A356 composites with improved mechanical properties. Metall. Mater. Trans. A 2018, 49, 5585–5598. [Google Scholar] [CrossRef]
- Li, Y.; Hu, B.; Liu, B.; Nie, A.; Gu, Q.; Wang, J.; Li, Q. Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system. Acta Mater. 2020, 187, 51–65. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Hu, B.; Li, Q. Novel Al-Ti-Nb-B grain refiners with superior efficiency for Al-Si alloys. Scr. Mater. 2020, 187, 262–267. [Google Scholar] [CrossRef]
- Xiao, H.-Y.; Li, Y.-G.; Geng, J.-W.; Li, H.-P.; Wang, M.-L.; Dong, C.; Li, Z.-G.; Wang, H.-W. Effects of nano-sized TiB2 particles and Al3Zr dispersoids on microstructure and mechanical properties of Al–Zn–Mg–Cu based materials. Trans. Nonferrous Met. Soc. China 2021, 31, 2189–2207. [Google Scholar] [CrossRef]
- Liu, S.-D.; Zhang, X.-M.; Chen, M.-A.; You, J.-H.; Zhang, X.-Y. Effect of Zr content on quench sensitivity of AIZnMgCu alloys. Trans. Nonferrous Met. Soc. China 2007, 17, 787–792. [Google Scholar] [CrossRef]
- Pang, X.; Yang, L.; Yang, J.; Pang, M.; Xu, Z.; Li, A.; Wei, B.; Tang, H. Understanding the poisoning mechanisms of Si and Zr atoms on L12 Al3Ti (111) surface: A first-principles investigation. Vacuum 2023, 210, 111891. [Google Scholar] [CrossRef]
- Wu, J.; Ruan, Q.; Chen, S.; Meng, C.; Xu, Z.; Wei, C.; Tang, H.; Wang, J. Insights into poisoning mechanism of Zr by first principle calculation on adhesion work and adsorption energy between TiB2, Al3Ti, and Al3Zr. Metals 2022, 12, 286. [Google Scholar] [CrossRef]
- Huang, J.; Xiang, Z.; Tang, Y.; Li, J.; Shen, G.; Shi, G.; Ma, X. Precipitation behavior of D023, L12 type Al3zr and interfacial characteristics in Tib2 reinforced Al-Zn-Mg-Cu-Zr composite. SSRN. Available online: https://papers.ssrn.com/abstract_id=4100289 (accessed on 17 October 2024).
- Huang, J.; Xiang, Z.; Tang, Y.; Li, J.; Shen, G.; Shi, G.; Ma, X.; Chen, Y.; Chen, Z. Interfacial precipitation of the in-situ TiB2-reinforced Al–Zn–Mg–Cu–Zr composite. Mater. Chem. Phys. 2023, 301, 127561. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, M.; Wu, X.; Jia, Z.; Wang, R.; Li, W.; Liu, Q. The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al-Cu-Zr alloys: HRTEM observations and first-principles calculations. J. Alloys Compd. 2016, 681, 96–108. [Google Scholar] [CrossRef]
- Segall, M.; Lindan, P.J.; Probert, M.a.; Pickard, C.J.; Hasnip, P.J.; Clark, S.; Payne, M. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B 2006, 73, 235116. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Head, J.D.; Zerner, M.C. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, H.; Wang, D.; Wang, W. Mechanism of NbC heterogeneous nucleation on TiN in microalloyed steel: A first-principles study. Comput. Mater. Sci. 2018, 146, 126–133. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, C.; Yao, R.; Zhu, H.; Liu, X.; Wang, M.; Chen, Z.; Wang, H. First-principles study on the stability and work function of low-index surfaces of TiB2. Comput. Mater. Sci. 2020, 172, 109356. [Google Scholar] [CrossRef]
- Liu, R.; Yin, X.; Feng, K.; Xu, R. First-principles calculations on Mg/TiB2 interfaces. Comput. Mater. Sci. 2018, 149, 373–378. [Google Scholar] [CrossRef]
- Topor, L.; Kleppa, O. Enthalpies of formation of first-row transition-metal diborides by a new calorimetric method. J. Chem. Thermodyn. 1985, 17, 1003–1016. [Google Scholar] [CrossRef]
- Ghosh, G.; Vaynman, S.; Asta, M.; Fine, M. Stability and elastic properties of L12-(Al, Cu) 3 (Ti, Zr) phases: Ab initio calculations and experiments. Intermetallics 2007, 15, 44–54. [Google Scholar] [CrossRef]
- Desch, P.; Schwarz, R.; Nash, P. Formation of metastable L12 phases in Al3Zr and Al-12.5% X-25% Zr (X ≡ Li, Cr, Fe, Ni, Cu). J. Less Common Met. 1991, 168, 69–80. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Xiao, B.; Min, T.; Fan, Z.; Ma, S.; Yi, D. Theoretical study on the electronic properties and stabilities of low-index surfaces of WC polymorphs. Comput. Mater. Sci. 2011, 50, 939–948. [Google Scholar] [CrossRef]
- Rapcewicz, K.; Chen, B.; Yakobson, B.; Bernholc, J. Consistent methodology for calculating surface and interface energies. Phys. Rev. B 1998, 57, 7281. [Google Scholar] [CrossRef]
- Batyrev, I.; Alavi, A.; Finnis, M.W. Ab initio calculations on the Al2O3 (0001) surface. Faraday Discuss. 1999, 114, 33–43. [Google Scholar] [CrossRef]
- Song, M.; Huang, B.; Zhang, M.; Li, J. Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al–Ti–C elemental powders. Int. J. Refract. Met. Hard Mater. 2009, 27, 584–589. [Google Scholar] [CrossRef]
- Han, Y.; Dai, Y.; Shu, D.; Wang, J.; Sun, B. First-principles study of TiB2 (0001) surfaces. J. Phys. Condens. Matter 2006, 18, 4197. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Li, L.; Zhang, S.; Yang, H.; Gao, K.; Pang, X.; Volinsky, A.A. First principles calculations of interfacial properties and electronic structure of the AlN (0 0 0 1)/Ti (0 0 0 1) interface. Chem. Phys. Lett. 2018, 713, 153–159. [Google Scholar] [CrossRef]
- Pang, X.; Yang, J.; Pang, M.; He, J.; Yang, W.; Qin, H.; Zhan, Y. Theoretical understanding of atomic and electronic structures of the ZrC (111)/Cu (111) interface. J. Alloys Compd. 2019, 791, 431–437. [Google Scholar] [CrossRef]
- Xiong, H.; Liu, Z.; Zhang, H.; Du, Z.; Chen, C. First principles calculation of interfacial stability, energy and electronic properties of SiC/ZrB2 interface. J. Phys. Chem. Solids 2017, 107, 162–169. [Google Scholar] [CrossRef]
Phases | Method | Lattice Constant (Å) | |||
---|---|---|---|---|---|
a | b | c | |||
TiB2 | Present | 3.026 | 3.026 | 3.229 | −1.072 |
Calculation a | 3.034 | 3.034 | 3.224 | −1.079 | |
Calculation b | 3.030 | 3.030 | 3.221 | −1.085 | |
Experiment c | 3.032 | 3.032 | 3.229 | −1.134 | |
Al3Zr | Present | 4.082 | 4.082 | 4.082 | −0.487 |
Calculation d | 4.117 | 4.117 | 4.117 | −0.471 | |
Calculation e | 4.096 | 4.096 | 4.096 | −0.466 | |
Experiment f | 4.090 | 4.090 | 4.090 | - |
Surface | Termination | Interlayer | Slab Thickness, n | ||||
---|---|---|---|---|---|---|---|
3 | 5 | 7 | 9 | 11 | |||
TiB2(0001) | Ti | Δ12 | −6.96 | −7.69 | −7.54 | −7.73 | −7.63 |
Δ23 | −1.61 | −2.09 | −2.00 | −1.86 | |||
Δ34 | −1.98 | −2.51 | −2.29 | ||||
Δ45 | −2.72 | −2.14 | |||||
Δ56 | −2.73 | ||||||
B | Δ12 | −8.15 | −10.20 | −9.53 | −9.61 | −9.71 | |
Δ23 | 0.47 | 0.11 | −0.11 | 0.02 | |||
Δ34 | −2.31 | −2.24 | −2.40 | ||||
Δ45 | −3.16 | −2.69 | |||||
Δ56 | −2.71 | ||||||
Al3Zr(001) | Al | Δ12 | −1.45 | 3.02 | 1.33 | 0.63 | 0.91 |
Δ23 | −1.52 | −1.20 | 1.68 | 1.05 | |||
Δ34 | 0.65 | 2.89 | 2.62 | ||||
Δ45 | −0.81 | −0.46 | |||||
Δ56 | 0.67 | ||||||
Zr-Al | Δ12 | −15.33 | −18.17 | −16.38 | −16.68 | −16.92 | |
Δ23 | −4.95 | −5.10 | −4.43 | −4.73 | |||
Δ34 | 4.28 | 2.51 | 3.21 | ||||
Δ45 | 0.09 | −0.39 | |||||
Δ56 | 0.89 |
Layer | TiB2(0001) | Al3Zr(001) | ||
---|---|---|---|---|
Ti-Terminated | B-Terminated | ZrAl-Terminated | Al-Terminated | |
3 | 5.442 | 3.014 | 1.768 | 1.193 |
5 | 5.447 | 2.987 | 1.721 | 1.113 |
7 | 5.392 | 2.914 | 1.707 | 1.073 |
9 | 5.354 | 2.876 | 1.705 | 1.053 |
11 | 5.305 | 2.836 | 1.637 | 1.017 |
13 | 5.264 | 2.779 | 1.686 | 1.062 |
Terminations of TiB2(0001) | Terminations of Al3Zr(001) | Stacking Sequence | Interface Name | d0 (Å) | Wad (J/m2) |
---|---|---|---|---|---|
Ti | Al | TS | TAT | 2.32 | 2.37 |
BS | TAB | 2.34 | 2.41 | ||
HS | TAH | 2.18 | 2.40 | ||
Ti | Zr-Al | TS | TZT | 2.60 | 1.26 |
BS | TZB | 2.87 | 1.26 | ||
HS | TZH | 2.41 | 1.97 | ||
B | Al | TS | BAT | 2.07 | 1.92 |
BS | BAB | 1.98 | 1.87 | ||
HS | BAH | 1.92 | 1.88 | ||
B | Zr-Al | TS | BZT | 2.27 | 2.22 |
BS | BZB | 2.16 | 2.22 | ||
HS | BZH | 2.18 | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, X.; Yang, L.; Nong, H.; Pang, M.; Wang, G.; Li, J.; Chen, Z.; Zeng, W.; Xiao, Z.; Yang, Z.; et al. Understanding the Interface Characteristics Between TiB2(0001) and L12-Al3Zr(001): A First-Principles Investigation. Crystals 2024, 14, 979. https://doi.org/10.3390/cryst14110979
Pang X, Yang L, Nong H, Pang M, Wang G, Li J, Chen Z, Zeng W, Xiao Z, Yang Z, et al. Understanding the Interface Characteristics Between TiB2(0001) and L12-Al3Zr(001): A First-Principles Investigation. Crystals. 2024; 14(11):979. https://doi.org/10.3390/cryst14110979
Chicago/Turabian StylePang, Xingzhi, Loujiang Yang, Hang Nong, Mingjun Pang, Gaobao Wang, Jian Li, Zhenchao Chen, Wei Zeng, Zhihang Xiao, Zengxiang Yang, and et al. 2024. "Understanding the Interface Characteristics Between TiB2(0001) and L12-Al3Zr(001): A First-Principles Investigation" Crystals 14, no. 11: 979. https://doi.org/10.3390/cryst14110979
APA StylePang, X., Yang, L., Nong, H., Pang, M., Wang, G., Li, J., Chen, Z., Zeng, W., Xiao, Z., Yang, Z., & Tang, H. (2024). Understanding the Interface Characteristics Between TiB2(0001) and L12-Al3Zr(001): A First-Principles Investigation. Crystals, 14(11), 979. https://doi.org/10.3390/cryst14110979