Cr3+ Doping Effects on Structural, Optical, and Morphological Characteristics of BaTiO3 Nanoparticles and Their Bioactive Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pure and Cr3+-Doped BaTiO3 Synthesis
2.3. Characterization
2.4. Antioxidant Activity
2.5. Antibacterial Activity Assay
3. Results and Discussion
3.1. Thermal Analysis
3.2. X-Ray Diffraction
3.3. Raman Spectroscopy
3.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3.5. UV–Visible Spectroscopy
3.6. Photoluminescence Spectroscopy
3.7. Transmission Electron Microscopy
3.8. DPPH Radical Antioxidant Activity
3.9. Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, A.; Kumar, A.; Gupta, N.; Kumar, K. Advancements and challenges in BaTiO3-Based materials for enhanced energy storage. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Masekela, D.; Hintsho-Mbita, N.C.; Sam, S.; Yusuf, T.L.; Mabuba, N. Application of BaTiO3-based catalysts for piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants and bacterial disinfection in wastewater: A comprehensive review. Arab. J. Chem. 2023, 16, 104473. [Google Scholar] [CrossRef]
- Sood, A.; Desseigne, M.; Dev, A.; Maurizi, L.; Kumar, A.; Millot, N.; Han, S.S. A Comprehensive Review on Barium Titanate Nanoparticles as a Persuasive Piezoelectric Material for Biomedical Applications: Prospects and Challenges. Small 2023, 19, e2206401. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.Y.; Jiang, Q. Size and interface effects on Curie temperature of perovskite ferroelectric nanosolids. J. Nanopart. Res. 2007, 9, 595–603. [Google Scholar] [CrossRef]
- Jiang, Q.; Cui, X.F.; Zhao, M. Size effects on Curie temperature of ferroelectric particles. Appl. Phys. A Mater. Sci. Process. 2004, 78, 703–704. [Google Scholar] [CrossRef]
- Wada, S.; Hoshina, T.; Yasuno, H.; Ohishi, M.; Kakemoto, H.; Tsurumi, T.; Yashima, M. Size Effect of Dielectric Properties for Barium Titanate Particles and Its Model. Key Eng. Mater. 2006, 301, 27–30. [Google Scholar] [CrossRef]
- Shen, Z.-Y.; Li, J.-F. Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure. J. Ceram. Soc. Jpn. 2010, 118, 940–943. [Google Scholar] [CrossRef]
- Lu, W.; Quilitz, M.; Schmidt, H. Nanoscaled BaTiO3 powders with a large surface area synthesized by precipitation from aqueous solutions: Preparation, characterization and sintering. J. Eur. Ceram. Soc. 2007, 27, 3149–3159. [Google Scholar] [CrossRef]
- Ashiri, R. On the solid-state formation of BaTiO3 nanocrystals from mechanically activated BaCO3 and TiO2 powders: Innovative mechanochemical processing, the mechanism involved, and phase and nanostructure evolutions. RSC Adv. 2016, 6, 17138–17150. [Google Scholar] [CrossRef]
- Suherman, B.; Nurosyid, F.; Khairuddin; Sandi, D.K.; Irian, Y. Impacts of low sintering temperature on microstructure, atomic bonds, and dielectric constant of barium titanate (BaTiO3) prepared by co-precipitation technique. J. Phys. Conf. Ser. 2022, 2190, 12006. [Google Scholar] [CrossRef]
- Hayashi, H.; Hakuta, Y. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water. Materials 2010, 3, 3794–3817. [Google Scholar] [CrossRef] [PubMed]
- Khort, A.A.; Podbolotov, K.B. Preparation of BaTiO3 nanopowders by the solution combustion method. Ceram. Int. 2016, 42, 15343–15348. [Google Scholar] [CrossRef]
- Choi, G.J.; Kim, H.S.; Cho, Y.S. BaTiO3 particles prepared by microwave-assisted hydrothermal reaction using titanium acylate precursors. Mater. Lett. 1999, 41, 122–127. [Google Scholar] [CrossRef]
- Kavian, R.; Saidi, A. Sol–gel derived BaTiO3 nanopowders. J. Alloys Compd. 2009, 468, 528–532. [Google Scholar] [CrossRef]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef]
- Borlaf, M.; Moreno, R. Colloidal sol-gel: A powerful low-temperature aqueous synthesis route of nanosized powders and suspensions. Open Ceram. 2021, 8, 100200. [Google Scholar] [CrossRef]
- Rahman, M.A. Understanding of doping sites and versatile applications of heteroatom modified BaTiO3 ceramic. J. Asian Ceram. Soc. 2023, 11, 215–224. [Google Scholar] [CrossRef]
- Issam, D.; Achehboune, M.; Boukhoubza, I.; Hatel, R.; El Adnani, Z.; Rezzouk, A. Investigation of the crystal structure, electronic and optical properties of Cr-doped BaTiO3 on the Ti site using first principles calculations. J. Phys. Chem. Solids 2023, 175, 111209. [Google Scholar] [CrossRef]
- Derkaoui, I.; Achehboune, M.; Boukhoubza, I.; El Adnani, Z.; Rezzouk, A. Improved first-principles electronic band structure for cubic (Pm 3− m) and tetragonal (P4mm, P4/mmm) phases of BaTiO3 using the Hubbard U correction. Comput. Mater. Sci. 2023, 217, 111913. [Google Scholar] [CrossRef]
- Buscaglia, V.; Buscaglia, M.T.; Canu, G. BaTiO3-Based Ceramics: Fundamentals, Properties and Applications. Encyclopedia of Materials: Technical Ceramics and Glasses; Elsevier: Amsterdam, The Netherlands, 2021; pp. 311–344. ISBN 9780128222331. [Google Scholar]
- Amaechi, I.C.; Kolhatkar, G.; Youssef, A.H.; Rawach, D.; Sun, S.; Ruediger, A. B-site modified photoferroic Cr3+-doped barium titanate nanoparticles: Microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties. RSC Adv. 2019, 9, 20806–20817. [Google Scholar] [CrossRef]
- Ramakanth, S.; James Raju, K.C. Band gap narrowing in BaTiO3 nanoparticles facilitated by multiple mechanisms. J. Appl. Phys. 2014, 115, 173507. [Google Scholar] [CrossRef]
- Srilakshmi, C.; Saraf, R.; Prashanth, V.; Rao, G.M.; Shivakumara, C. Structure and Catalytic Activity of Cr-Doped BaTiO3 Nanocatalysts Synthesized by Conventional Oxalate and Microwave Assisted Hydrothermal Methods. Inorg. Chem. 2016, 55, 4795–4805. [Google Scholar] [CrossRef] [PubMed]
- Tewatia, K.; Sharma, A.; Sharma, M.; Kumar, A. Factors affecting morphological and electrical properties of Barium Titanate: A brief review. Mater. Today Proc. 2021, 44, 4548–4556. [Google Scholar] [CrossRef]
- Ray, S.K.; Cho, J.; Hur, J. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J. Environ. Manag. 2021, 290, 112679. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gori, Y.; Kumar, A.; Meena, C.S.; Dutt, N. (Eds.) Advanced Materials for Biomedical Applications, 1st ed.; Taylor and Francis: Boca Raton, FL, USA, 2023; ISBN 9781032356068. [Google Scholar]
- Lay, R.; Deijs, G.S.; Malmström, J. The intrinsic piezoelectric properties of materials—A review with a focus on biological materials. RSC Adv. 2021, 11, 30657–30673. [Google Scholar] [CrossRef]
- Tiburcio, J.; Sacari, E.; Chacaltana, J.; Medina, J.; Gamarra, F.; Polo, C.; Mamani, E.; Quispe, A. Influence of Cr Doping on Structural, Optical, and Photovoltaic Properties of BiFeO3 Synthesized by Sol-Gel Method. Energies 2023, 16, 786. [Google Scholar] [CrossRef]
- Anjos, P.d.; Pereira, E.C.; Gobato, Y.G. Study of the structure and optical properties of rare-earth-doped aluminate particles prepared by an amorphous citrate sol–gel process. J. Alloys Compd. 2005, 391, 277–283. [Google Scholar] [CrossRef]
- Kao, C.-F.; Yang, W.-D. Preparation of barium strontium titanate powder from citrate precursor. Appl. Organometal. Chem. 1999, 13, 383–397. [Google Scholar] [CrossRef]
- Pérez-Maqueda, L.A.; Diánez, M.J.; Gotor, F.J.; Sayagués, M.J.; Real, C.; Criado, J.M. Synthesis of needle-like BaTiO3 particles from the thermal decomposition of a citrate precursor under sample controlled reaction temperature conditions. J. Mater. Chem. 2003, 13, 2234–2241. [Google Scholar] [CrossRef]
- Benyoussef, M.; Mura, T.; Saitzek, S.; Azrour, F.; Blach, J.-F.; Lahmar, A.; Gagou, Y.; El Marssi, M.; Sayede, A.; Jouiad, M. Nanostructured BaTi1−xSnxO3 ferroelectric materials for electrocaloric applications and energy performance. Curr. Appl. Phys. 2022, 38, 59–66. [Google Scholar] [CrossRef]
- Sugawara, K.; Sakusabe, H.; Nishino, T.; Sugawara, T.; Ogiwara, K.; Dranoff, J.S. Thermal decomposition of barium titanate precursor prepared by a wet chemical method. AIChE J. 1997, 43, 2837–2843. [Google Scholar] [CrossRef]
- Elmehdi, H.M.; Ramachandran, K.; Chidambaram, S.; Mani, G.T.; Pandiaraj, S.; Alqarni, S.A.; Daoudi, K.; Gaidi, M. Diode characteristics, piezo-photocatalytic antibiotic degradation and hydrogen production of Ce3+ doped ZnO nanostructures. Chemosphere 2024, 350, 141015. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Bi, X. Microstructure and grain size dependence of ferroelectric properties of BaTiO3 thin films on LaNiO3 buffered Si. J. Eur. Ceram. Soc. 2009, 29, 1995–2001. [Google Scholar] [CrossRef]
- Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012, 40, D420-7. [Google Scholar] [CrossRef]
- Silva, R.S.; Cunha, F.; Barrozo, P. Raman spectroscopy of the Al-doping induced structural phase transition in LaCrO3 perovskite. Solid State Commun. 2021, 333, 114346. [Google Scholar] [CrossRef]
- Buscaglia, M.T.; Buscaglia, V.; Viviani, M.; Nanni, P.; Hanuskova, M. Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 2000, 20, 1997–2007. [Google Scholar] [CrossRef]
- Khedhri, M.H.; Abdelmoula, N.; Khemakhem, H.; Douali, R.; Dubois, F. Structural, spectroscopic and dielectric properties of Ca-doped BaTiO3. Appl. Phys. A Mater. Sci. Process. 2019, 125, 193. [Google Scholar] [CrossRef]
- El Ghandouri, A.; Sayouri, S.; Lamcharfi, T.; Elbasset, A. Structural, microstructural and dielectric properties of Ba1−xLax Ti(1−x/4)O3 prepared by sol gel method. J. Adv. Dielect. 2019, 9, 1950026. [Google Scholar] [CrossRef]
- Da Lu, Y.; Han, D.D.; Liu, Q.L.; Wang, Y.D.; Sun, X.Y. Structure and Dielectric Properties of Ce and Ca Co-Doped BaTiO3 Ceramics. Key Eng. Mater. 2016, 680, 184–188. [Google Scholar] [CrossRef]
- Ren, P.; Wang, Q.; Wang, X.; Wang, L.; Wang, J.; Fan, H.; Zhao, G. Effects of doping sites on electrical properties of yttrium doped BaTiO3. Mater. Lett. 2016, 174, 197–200. [Google Scholar] [CrossRef]
- Rached, A.; Wederni, M.A.; Belkahla, A.; Dhahri, J.; Khirouni, K.; Alaya, S.; Martín-Palma, R.J. Effect of doping in the physico-chemical properties of BaTiO3 ceramics. Phys. B Condens. Matter 2020, 596, 412343. [Google Scholar] [CrossRef]
- Yen, F.-S.; Hsiang, H.-I.; Chang, Y.-H. Cubic to Tetragonal Phase Transformation of Ultrafine BaTiO3 Crystallites at Room Temperature. Jpn. J. Appl. Phys. 1995, 34, 6149. [Google Scholar] [CrossRef]
- Hayashi, H.; Nakamura, T.; Ebina, T. In-situ Raman spectroscopy of BaTiO3 particles for tetragonal–cubic transformation. J. Phys. Chem. Solids 2013, 74, 957–962. [Google Scholar] [CrossRef]
- He, Q.; Tang, X.; Zhang, J.; Wu, M. Raman study for BaTiO3 system doped with various concentrations and treated at different temperatures. Nanostructured Mater. 1999, 11, 287–293. [Google Scholar] [CrossRef]
- Yu, J.; Meng, X.J.; Sun, J.L.; Wang, G.S.; Chu, J.H. Phase transformation and Raman spectra in BaTiO3 nanocrystals. MRS Proc. 2002, 718, D10-7. [Google Scholar] [CrossRef]
- Shu, C.; Reed, D.; Button, T.W. A phase diagram of Ba1−xCaxTiO3 (x = 0–0.30) piezoceramics by Raman spectroscopy. J. Am. Ceram. Soc. 2018, 101, 2589–2593. [Google Scholar] [CrossRef]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Del López, M.C.B.; Fourlaris, G.; Rand, B.; Riley, F.L. Characterization of Barium Titanate Powders: Barium Carbonate Identification. J. Am. Ceram. Soc. 1999, 82, 1777–1786. [Google Scholar] [CrossRef]
- Ravanamma, R.; Muralidhara Reddy, K.; Venkata Krishnaiah, K.; Ravi, N. Structure and morphology of yttrium doped barium titanate ceramics for multi-layer capacitor applications. Mater. Today Proc. 2021, 46, 259–262. [Google Scholar] [CrossRef]
- Lin, F.; Jiang, D.; Ma, X.; Shi, W. Influence of doping concentration on room-temperature ferromagnetism for Fe-doped BaTiO3 ceramics. J. Magn. Magn. Mater. 2008, 320, 691–694. [Google Scholar] [CrossRef]
- Jin, X.; Sun, D.; Zhang, M.; Zhu, Y.; Qian, J. Investigation on FTIR spectra of barium calcium titanate ceramics. J. Electroceram 2009, 22, 285–290. [Google Scholar] [CrossRef]
- Yang, F.; Yang, L.; Ai, C.; Xie, P.; Lin, S.; Wang, C.-Z.; Lu, X. Tailoring Bandgap of Perovskite BaTiO₃ by Transition Metals Co-Doping for Visible-Light Photoelectrical Applications: A First-Principles Study. Nanomaterials 2018, 8, 455. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Han, A.; Ma, S.; Zhu, X.; Ye, M.; Chen, X. Preparation of Cr-doped BaTiO3 near infrared reflection pigment powder and its anti-aging performance for acrylonitrile-styrene-acrylate. Powder Technol. 2021, 378, 182–190. [Google Scholar] [CrossRef]
- Eden, S.; Kapphan, S.; Hesse, H.; Trepakov, V.; Vikhnin, V.; Gregora, I.; Jastrabik, L.; Seglins, J. Observations of the absorption, infra-red emission, and excitation spectra of Cr in. J. Phys. Condens. Matter 1998, 10, 10775–10786. [Google Scholar] [CrossRef]
- Orhan, E.; Pontes, F.M.; Pinheiro, C.D.; Longo, E.; Pizani, P.S.; Varela, J.A.; Leite, E.R.; Boschi, T.M.; Beltrán, A.; Andrés, J. Theoretical and experimental study of the relation between photoluminescence and structural disorder in barium and strontium titanate thin films. J. Eur. Ceram. Soc. 2005, 25, 2337–2340. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Zhang, Q.; Ren, Y.; Cui, K.; Cheng, C.; Wu, K. Effects of La-N Co-Doping of BaTiO3 on Its Electron-Optical Properties for Photocatalysis: A DFT Study. Molecules 2024, 29, 2250. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasan, Z.; Islam, J.; Das, D.K.; Chowdhury, F.I.; Khandaker, M.U.; Zabed, H.M.; Bradley, D.A.; Osman, H.; Ullah, M.H. Tailoring the Properties of Bulk BaTiO3 Based Perovskites by Heteroatom-Doping towards Multifunctional Applications: A Review. ECS J. Solid State Sci. Technol. 2023, 12, 103015. [Google Scholar] [CrossRef]
- Perovskite Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 9780323995290.
- Hsiang, H.-I.; Yen, F.-S.; Chang, Y.-H. Effects of doping with La and Mn on the crystallite growth and phase transition of BaTiO3 powders. J. Mater. Sci. 1996, 31, 2417–2424. [Google Scholar] [CrossRef]
- Li, L.; Guo, R.; Gao, J.; Liu, J.; Zhao, Z.; Sheng, X.; Fan, J.; Cui, F. Insight into mechanochemical destruction of PFOA by BaTiO3: An electron-dominated reduction process. J. Hazard. Mater. 2023, 450, 131028. [Google Scholar] [CrossRef]
- Sanaullah, I.; Khan, H.N.; Sajjad, A.; Khan, S.; Sabri, A.N.; Naseem, S.; Riaz, S. Improved osteointegration response using high strength perovskite BaTiO3 coatings prepared by chemical bath deposition. J. Mech. Behav. Biomed. Mater. 2023, 138, 105635. [Google Scholar] [CrossRef]
- Boschetto, F.; Doan, H.N.; Phong Vo, P.; Zanocco, M.; Yamamoto, K.; Zhu, W.; Adachi, T.; Kinashi, K.; Marin, E.; Pezzotti, G. Bacteriostatic Behavior of PLA-BaTiO3 Composite Fibers Synthesized by Centrifugal Spinning and Subjected to Aging Test. Molecules 2021, 26, 2918. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, S.; Prajapat, M.; Prakash, C. Magnetodielectric properties of Cr3+ ions doped BaTiO3 multiferroic ceramic. In Proceedings of the Nanoforum 2014, Rome, Italy, 22–25 September 2014; AIP Publishing LLC.: Melville, NY, USA, 2015; p. 140008. [Google Scholar]
- Hossain, K.M.; Ahmad, S.; Mitro, S.K. Physical properties of chromium-doped barium titanate: Effects of chromium incorporation. Phys. B Condens. Matter 2022, 626, 413494. [Google Scholar] [CrossRef]
Structural Parameter | Sample | |||||
---|---|---|---|---|---|---|
BaTiO3 | BaTiO3-0.3%Cr3+ | BaTiO3-0.5%Cr3+ | BaTiO3-1%Cr3+ | BaTiO3-3%Cr3+ | BaTiO3-5%Cr3+ | |
Crystal system | Cubic | Tetragonal | Tetragonal | Tetragonal | Tetragonal | Tetragonal |
Space group | Pm-3m | P4mm | P4mm | P4mm | P4mm | P4mm |
A = b (Å) | 4.00785 | 4.00698 | 4.00554 | 4.00599 | 4.00476 | 4.00379 |
c (Å) | 4.00785 | 4.01477 | 4.01602 | 4.01555 | 4.01558 | 4.01699 |
α = β = γ (°) | 90 | 90 | 90 | 90 | 90 | 90 |
ρ(g/cm3) | 6.01 | 6.01 | 6.01 | 6 | 6.01 | 6.01 |
D (nm) | 63.27 | 55.29 | 54.49 | 54.61 | 57.71 | 58.27 |
Micro strain (%) | 0.097 | 0.063 | 0.056 | 0.062 | 0.053 | 0.046 |
Rexp (%) | 2.25336 | 2.37418 | 2.386 | 3.25221 | 2.36559 | 2.34574 |
Rp (%) | 2.82395 | 3.21306 | 4.25722 | 3.53244 | 3.24347 | 3.31153 |
Rwp (%) | 4.08684 | 4.30687 | 6.03794 | 4.50786 | 4.29443 | 4.37974 |
GOF | 1.81367 | 1.81405 | 2.53057 | 1.38609 | 1.81537 | 1.8671 |
Element | Sample | |||||
---|---|---|---|---|---|---|
BaTiO3 | BaTiO3-0.3%Cr3+ | BaTiO3-0.5%Cr3+ | BaTiO3-1%Cr3+ | BaTiO3-3%Cr3+ | BaTiO3-5%Cr3+ | |
Ba (Atom %) | 18.06 | 14.81 | 16.35 | 16.91 | 17.62 | 13.34 |
Ti (Atom %) | 18.13 | 15.39 | 17.67 | 17.57 | 18.87 | 14.92 |
O (Atom %) | 58.53 | 52.66 | 51.17 | 50.16 | 47.08 | 53.61 |
Cr (Atom %) | - | 0.46 | 0.57 | 0.97 | 1.32 | 1.64 |
C (Atom%) | 5.28 | 16.68 | 14.24 | 14.39 | 15.11 | 16.49 |
Total (%) | 100 | 100 | 100 | 100 | 100 | 100 |
Source of Variation | Degrees of Freedom | Sum of Squares | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Sample | 5 | 362.76 | 72.552 | 47.45 | <0.001 |
Concentration | 3 | 269.28 | 89.76 | 58.7 | <0.001 |
Sample × Concentration | 15 | 550.23 | 36.682 | 23.99 | <0.001 |
Residuals | 48 | 73.41 | 1.529 |
Zone of Inhibition (mm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Concentration (mg/mL) | 0.5 | SD | 1 | SD | 1.5 | SD | 2 | SD | 4 | SD |
BaTiO3 | 9.602 | 0.318 | 9.886 | 0.323 | 9.707 | 0.273 | 8.988 | 0.328 | 9.407 | 0.122 |
BaTiO3-0.3%Cr3+ | 9.506 | 0.092 | 8.181 | 0.119 | 8.319 | 0.143 | 8.893 | 0.293 | 9.899 | 0.309 |
BaTiO3-0.5%Cr3+ | 9.525 | 0.348 | 9.815 | 0.145 | 10.569 | 0.194 | 9.309 | 0.344 | 10.510 | 0.219 |
BaTiO3-1%Cr3+ | 8.296 | 0.137 | 8.267 | 0.131 | 8.864 | 0.298 | 9.721 | 0.079 | 8.384 | 0.267 |
BaTiO3-3%Cr3+ | 8.870 | 0.307 | 8.745 | 0.147 | 9.123 | 0.299 | 9.582 | 0.101 | 8.940 | 0.073 |
BaTiO3-5%Cr3+ | 6.892 | 0.127 | 7.250 | 0.148 | 7.802 | 0.238 | 8.404 | 0.143 | 8.992 | 0.185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamani Flores, E.; Vera Barrios, B.S.; Huillca Huillca, J.C.; Chacaltana García, J.A.; Polo Bravo, C.A.; Nina Mendoza, H.E.; Quispe Cohaila, A.B.; Gamarra Gómez, F.; Tamayo Calderón, R.M.; Fora Quispe, G.d.L.; et al. Cr3+ Doping Effects on Structural, Optical, and Morphological Characteristics of BaTiO3 Nanoparticles and Their Bioactive Behavior. Crystals 2024, 14, 998. https://doi.org/10.3390/cryst14110998
Mamani Flores E, Vera Barrios BS, Huillca Huillca JC, Chacaltana García JA, Polo Bravo CA, Nina Mendoza HE, Quispe Cohaila AB, Gamarra Gómez F, Tamayo Calderón RM, Fora Quispe GdL, et al. Cr3+ Doping Effects on Structural, Optical, and Morphological Characteristics of BaTiO3 Nanoparticles and Their Bioactive Behavior. Crystals. 2024; 14(11):998. https://doi.org/10.3390/cryst14110998
Chicago/Turabian StyleMamani Flores, Efracio, Bertha Silvana Vera Barrios, Julio César Huillca Huillca, Jesús Alfredo Chacaltana García, Carlos Armando Polo Bravo, Henry Edgardo Nina Mendoza, Alberto Bacilio Quispe Cohaila, Francisco Gamarra Gómez, Rocío María Tamayo Calderón, Gabriela de Lourdes Fora Quispe, and et al. 2024. "Cr3+ Doping Effects on Structural, Optical, and Morphological Characteristics of BaTiO3 Nanoparticles and Their Bioactive Behavior" Crystals 14, no. 11: 998. https://doi.org/10.3390/cryst14110998
APA StyleMamani Flores, E., Vera Barrios, B. S., Huillca Huillca, J. C., Chacaltana García, J. A., Polo Bravo, C. A., Nina Mendoza, H. E., Quispe Cohaila, A. B., Gamarra Gómez, F., Tamayo Calderón, R. M., Fora Quispe, G. d. L., & Sacari Sacari, E. J. (2024). Cr3+ Doping Effects on Structural, Optical, and Morphological Characteristics of BaTiO3 Nanoparticles and Their Bioactive Behavior. Crystals, 14(11), 998. https://doi.org/10.3390/cryst14110998