Anion Doping of Tungsten Oxide with Nitrogen: Reactive Magnetron Synthesis, Crystal Structure, Valence Composition, and Optical Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Scanning Electron Microscopy and X-ray Diffraction (XRD) Analysis
3.2. X-ray Photoelectron Spectroscopy
3.3. Spectrophotometric Measurements
3.4. Spectroscopical Ellipsometry
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier: Amsterdam, The Netherlands, 2002; 663p. [Google Scholar]
- Monk, P.M.S.; Mortimer, R.J.; Rosseinsky, D.R. Electrochromism and Electrochromic Devices; Cambridge University Press: Cambridge, UK, 2007; 483p. [Google Scholar]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156. [Google Scholar] [CrossRef]
- He, T.; Yao, J. Photochromic materials based on tungsten oxide. J. Mater. Chem. 2007, 17, 4547. [Google Scholar] [CrossRef]
- Gillaspie, D.T.; Tenent, R.C.; Dillon, A.C. Metal-oxide films for electrochromic applications: Present technology and future directions. J. Mater. Chem. 2010, 20, 9585–9592. [Google Scholar] [CrossRef]
- Ma, D.; Wang, J. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Sci. China Chem. 2017, 60, 54–62. [Google Scholar] [CrossRef]
- Maiorov, V.A. Electrochromic glasses with separate regulation of transmission of visible light and near-infrared radiation (Review). Opt. Spectrosc. 2019, 126, 412–430. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Zhao, L.; Chen, Y.; Li, J.; Yan, W. Efficient electrochromic efficiency and stability of amorphous/crystalline tungsten oxide film. J. Alloys Comp. 2023, 930, 167405. [Google Scholar] [CrossRef]
- Deb, S.K. A novel electrophotographic system. Appl. Opt. 1969, 8, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Granqvist, C.G.; Lansaker, P.C.; Mlyuka, N.R.; Niklasson, G.A.; Avendano, E. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices. Sol. Energy Mater. Sol. Cells 2009, 93, 2032–2039. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Green, S.; Niklasson, G.A.; Mlyuka, N.R.; Kraemer, S.; Georen, P. Advances in chromogenic materials and devices. Thin Solid Films 2010, 518, 3046–3053. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromics and thermochromics: Towards a new paradigm for energy efficient buildings. Mater. Today Proc. 2016, 3, S2–S11. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Tugolukov, E.N.; Shchegolkov, A.V. Overview of electrochromic materials and devices: Scope and development prospects. Adv. Mater. Technol. 2020, N2, 66–73. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Hopmann, E.; Elezzabi, A.Y. Nanostructured inorganic electrochromic materials for light applications. Nanophotonics 2020, 10, 825–850. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Parfimovich, I.D.; Komarov, F.F.; Shchegolkov, A.-d.V.; Tugolukov, E.N. Optically adjustable nanocomposite electrochromic film WO3/rGO to control light transmission and protect from electromagnetic radiation. Inorg. Mater. Appl. Res. 2021, 12, 1547–1553. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Czarnecki, L.; Pisello, A.L.; Cabeza, L.F.; Granqvist, C.-G. (Eds.) Eco-Efficient Materials for Reducing Cooling Needs in Buildings and Construction. Design, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2021; 469p. [Google Scholar]
- Shchegolkov, A.V.; Jang, S.-H.; Shchegolkov, A.V.; Rodionov, Y.V.; Sukhova, A.O.; Lipkin, M.S. A brief overview of electrochromic materials and related devices: A nanostructured materials perspective. Nanomaterials 2021, 11, 2376. [Google Scholar] [CrossRef]
- Tang, X.; Hu, Z.; Wang, Z.; Chen, J.; Mu, X.; Song, G.; Sun, P.; Wen, Z.; Hao, J.; Cong, S.; et al. ITO/Cu multilayer electrodes for high-brightness electrochromic displays. eScience 2022, 2, 632–638. [Google Scholar] [CrossRef]
- Tandon, B.; Lu, H.-C.; Milliron, D.J. Dual-band electrochromism: Plasmonic and polaronic mechanisms. J. Phys. Chem. C 2022, 126, 9228–9238. [Google Scholar] [CrossRef]
- Guo, J.; Liang, Y.; Zhang, S.; Ma, D.; Yang, T.; Zhang, W.; Li, H.; Cao, S.; Zou, B. Recent progress in improving strategies of metal oxide-based electrochromic smart window. Green Energy Resour. 2023, 1, 100007. [Google Scholar] [CrossRef]
- Park, S.-I.; Quan, Y.-J.; Kim, S.-H.; Kim, H.; Kim, S.; Chun, D.-M.; Lee, C.S.; Taya, M.; Chu, W.S.; Ahn, S.-H. A review on fabrication processes for electrochromic devices. Int. J. Precis. Eng. Manuf.-GT 2016, 3, 397–421. [Google Scholar] [CrossRef]
- Jittiarporn, P.; Badilescu, S.; Al Sawafta, M.N.; Sikong, L.; Truong, V.-V. Electrochromic properties of sol-gel prepared hybrid transition metal oxides—A short review. J. Sci.-Adv. Mater. Dev. 2017, 2, 286–300. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Knyazev, L.G.; Shchegolkov, A.V.; Komarov, F.F.; Parfimovich, I.D. A Study of the WO3/GO electrochromic films obtained by the electrochemical deposition route: Optical and electromagnetic method. Russ. J. Gen. Chem. 2021, 91, 2660–2666. [Google Scholar] [CrossRef]
- Zeb, S.; Sun, G.; Nie, Y.; Xu, H.; Cui, Y.; Jiang, X. Advanced developments in nonstoichiometric tungsten oxides for electrochromic applications. Mater. Adv. 2021, 2, 6839–6884. [Google Scholar] [CrossRef]
- Lucy, T.E.; St. Clair, T.P.; Oyama, S.T. Synthesis, characterization, and reactivity of tungsten oxynitride. J. Mater. Res. 1998, 13, 2321–2327. [Google Scholar] [CrossRef]
- Shen, Y.G.; Mai, Y.W. Reactively sputtered WOxNy films. J. Mater. Res. 2000, 15, 2437–2445. [Google Scholar] [CrossRef]
- Parreira, N.M.G.; Carvalho, N.J.M.; Cavaleiro, A. On the structural evaluation of unbiased W-O-N sputtered coatings. Mater. Sci. Forum 2006, 514–516, 825–832. [Google Scholar] [CrossRef]
- Mohamed, S.H.; Anders, A. Structural, optical, and electrical properties of WOx(Ny) films deposited by reactive dual magnetron sputtering. Surf. Coat. Technol. 2006, 201, 2977–2983. [Google Scholar] [CrossRef]
- Mohamed, S.H.; Anders, A.; Montero, I.; Galan, L. Structural and optical evaluation of WOxNy films deposited by reactive magnetron sputtering. J. Phys. Chem. Solids 2007, 68, 2227–2232. [Google Scholar] [CrossRef]
- Parreira, N.M.G.; Polcar, T.; Martin, N.; Banakh, O.; Cavaleiro, A. Optical and electrical properties of W-O-N coatings deposited by DC reactive sputtering. Plasma Proc. Polym. 2007, 4, S69–S75. [Google Scholar] [CrossRef]
- Louro, C.; Oliveira, J.C.; Cavaleiro, A.A. Effects of O addition on the thermal behaviour of hard W–N sputtered coatings. Vacuum 2009, 83, 1224–1227. [Google Scholar] [CrossRef]
- Mohamed, S.H.; Shaaban, E.R. Investigation of the refractive index and dispersion parameters of tungsten oxynitride thin films. Mater. Chem. Phys. 2010, 121, 249–253. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Cao, H. Electrochromic properties of N-doped tungsten oxide thin films prepared by reactive DC-pulsed sputtering. Thin Solid Films 2011, 519, 3032–3036. [Google Scholar] [CrossRef]
- Khamseh, S. Synthesis and characterization of tungsten oxynitride films deposited by reactive magnetron sputtering. J. Alloys Comp. 2014, 611, 249–252. [Google Scholar] [CrossRef]
- Esmaeili, A.; Yanilkin, I.V.; Gumarov, A.I.; Vakhitov, I.R.; Gabbasov, B.F.; Kiiamov, A.G.; Rogov, A.M.; Osin, Y.N.; Denisov, A.E.; Yusupov, R.V.; et al. Epitaxial growth of Pd1−xFex films on MgO single-crystal substrate. Thin Solid Films 2019, 669, 338–344. [Google Scholar] [CrossRef]
- Gumarov, A.I.; Yanilkin, I.V.; Yusupov, R.V.; Kiiamov, A.G.; Tagirov, L.R.; Khaibullin, R.I. Iron-implanted epitaxial palladium thin films: Structure, ferromagnetism and signatures of spinodal decomposition. Mater. Lett. 2021, 305, 130783. [Google Scholar] [CrossRef]
- Bouvard, O.; Krammer, A.; Schüler, A. In situ core-level and valence-band photoelectron spectroscopy of reactively sputtered tungsten oxide films. Surf. Interface Anal. 2016, 48, 660–663. [Google Scholar] [CrossRef]
- Yang, B.; Miao, P.; Cui, J. Characteristics of amorphous WO3 thin films as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2020, 31, 11071–11076. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Truong, T.H.; Nguyen, T.D.; Dang, V.T.; Vu, T.V.; Nguyen, S.T.; Cu, X.P.; Nguyen, T.T.O. Ni-doped WO3 flakes-based sensor for fast and selective detection of H2S. J. Mater. Sci. Mater. Electron. 2020, 31, 12783–12795. [Google Scholar] [CrossRef]
- Shirley, D.A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. 1972, 55, 4709–4714. [Google Scholar] [CrossRef]
- Végh, J. The Shirley-equivalent electron inelastic scattering cross-section function. Surf. Sci. 2004, 563, 183–190. [Google Scholar] [CrossRef]
- Walton, J.; Wincott, P.; Fairley, N.; Carrick, A. Peak Fitting with CasaXPS: A Casa Pocket Book; Accofyte Science: Knutsford, UK, 2010; ISBN 978-0954953317. [Google Scholar]
- Crystal Structure Data of Minerals (MINCRYST). Available online: http://database.iem.ac.ru/mincryst/s_carta.php?OXIDE_W+3412 (accessed on 26 December 2023).
- Lee, S.-H.; Cheong, H.M.; Tracy, C.E.; Mascarenhas, A.A.; Czanderna, W.; Deb, S.K. Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency. Appl. Phys. Lett. 1999, 75, 1541–1543. [Google Scholar] [CrossRef]
- Vernardou, D.; Parkin, I.P.; Drosos, C. Chemical vapor deposition of oxide materials at atmospheric pressure. In Handbook of Modern Coating Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 101–119. [Google Scholar] [CrossRef]
Sample # | Ar Flow Rate (sccm) | N2 Flow Rate (sccm) | O2 Flow Rate (sccm) | Sputtering Pressure (Pa) | Film Thickness (nm) a | Visible Transtmitttance (%) | Film Color |
---|---|---|---|---|---|---|---|
111 | 86 | 50 | 4 | 4 | 240 | 20.4 | brown |
092 | 84 | 50 | 6 | 4 | 210 | 74.2 | light beige |
091 | 83 | 50 | 7 | 4 | 160 | 78.2 | pale yellow |
082 | 80 | 50 | 10 | 4 | 120 | 80.6 | transp. blueish |
As Deposited (at.%) | Annealed (at.%) | |||||
---|---|---|---|---|---|---|
Sample # | W | O | N | W | O | N |
111 | 20.2 | 58.8 | 21.0 | 19.4 | 78 | 2.6 |
092 | 12.4 | 76.2 | 11.4 | 15.3 | 84.7 | - |
091 | 10.1 | 80.8 | 9.1 | 12.0 | 88.0 | - |
082 | 7.2 | 82.9 | 9.9 | 4.5 | 95.5 | - |
As Deposited | Annealed | |||
---|---|---|---|---|
Sample # | O 1s (530.7 eV) | O 1s (532.2 eV) | O 1s (530.8 eV) | O 1s (532.5 eV) |
111 | 53 | 47 | 68 | 32 |
092 | 61 | 39 | 72 | 28 |
091 | 62 | 38 | 70 | 30 |
082 | 72 | 28 | 62 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malikov, I.F.; Lyadov, N.M.; Salakhov, M.K.; Tagirov, L.R. Anion Doping of Tungsten Oxide with Nitrogen: Reactive Magnetron Synthesis, Crystal Structure, Valence Composition, and Optical Properties. Crystals 2024, 14, 109. https://doi.org/10.3390/cryst14020109
Malikov IF, Lyadov NM, Salakhov MK, Tagirov LR. Anion Doping of Tungsten Oxide with Nitrogen: Reactive Magnetron Synthesis, Crystal Structure, Valence Composition, and Optical Properties. Crystals. 2024; 14(2):109. https://doi.org/10.3390/cryst14020109
Chicago/Turabian StyleMalikov, Insaf F., Nikolay M. Lyadov, Myakzyum K. Salakhov, and Lenar R. Tagirov. 2024. "Anion Doping of Tungsten Oxide with Nitrogen: Reactive Magnetron Synthesis, Crystal Structure, Valence Composition, and Optical Properties" Crystals 14, no. 2: 109. https://doi.org/10.3390/cryst14020109
APA StyleMalikov, I. F., Lyadov, N. M., Salakhov, M. K., & Tagirov, L. R. (2024). Anion Doping of Tungsten Oxide with Nitrogen: Reactive Magnetron Synthesis, Crystal Structure, Valence Composition, and Optical Properties. Crystals, 14(2), 109. https://doi.org/10.3390/cryst14020109