Grafting with RAFT—gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Mesoporous Silica Nanoparticles (MSNs)
2.3. MSNs Amine Functionalization (MSN-NH2)
2.4. Surface Modification with a RAFT Chain Transfer Agent (MSN-CTA)
2.5. RAFT Polymerization of DAEM in Solution.
2.6. Polymer Grafting at the MSN Surface (MSN-pDAEM)
2.6.1. Grafting to Approach, gRAFT-to
2.6.2. Grafting from Approach, gRAFT-from
2.6.3. Hybrid Grafting Approach, gRAFT-hybrid
2.7. Methods
3. Results and Discussion
3.1. Grafting-to Approach, gRAFT-to
3.2. Grafting from Approach, gRAFT-from
3.3. Crosslink-grafting Approach (gRAFT-cross)
3.4. Hybrid Grafting Approach (gRAFT-hybrid)
3.5. RAFT-based Grafting for Polymer Incorporation onto Nanocarriers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ribeiro, T.; Coutinho, E.; Rodrigues, A.S.; Baleizão, C.; Farinha, J.P.S. Hybrid mesoporous silica nanocarriers with thermovalve-regulated controlled release. Nanoscale 2017, 9, 13485–13494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, J.; Crucho, C.; Alves, S.; Baleizão, C.; Farinha, J. Hybrid Mesoporous Nanoparticles for pH-Actuated Controlled Release. Nanomaterials 2019, 9, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alejo, T.; Uson, L.; Arruebo, M. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. J. Control. Release 2019, 314, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Jung, K.; Li, A.; Liu, J.; Boyer, C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog. Polym. Sci. 2019, 99, 101164. [Google Scholar] [CrossRef]
- Santos, A.C.; Santos, A.F.M.; Diogo, H.P.; Alves, S.P.C.; Farinha, J.P.S.; Correia, N.T.; Dionísio, M.; Viciosa, M.T. Bulk dynamics of the thermoresponsive random copolymer of di(ethylene glycol) methyl ether methacrylate (MEO2MA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Polymer. 2018, 148, 339–350. [Google Scholar] [CrossRef]
- Bi, J.; Zeng, X.; Tian, D.; Li, H. Temperature-Responsive Switch Constructed from an Anthracene-Functionalized Pillar[5]arene-Based Host−Guest System. Org. Lett. 2016, 18, 1092–1095. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Charreyre, M.T.; Favier, A.; Baleizão, C.; Farinha, J.P.S. Temperature-responsive copolymers without compositional drift by RAFT copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride and 2-(diethylamino)ethyl acrylate. Polym. Chem. 2019, 10, 2106–2116. [Google Scholar] [CrossRef]
- Sharpe, L.A.; Ramirez, J.E.V.; Haddadin, O.M.; Ross, K.A.; Narasimhan, B.; Peppas, N.A. pH-Responsive Microencapsulation Systems for the Oral Delivery of Polyanhydride Nanoparticles. Biomacromolecules 2018, 19, 793–802. [Google Scholar] [CrossRef]
- Yang, M.; Tan, L.; Wu, H.; Liu, C.; Zhuo, R. Dual-stimuli-responsive polymer-coated mesoporous silica nanoparticles used for controlled drug delivery. J. Appl. Polym. Sci. 2015, 132, 42395. [Google Scholar] [CrossRef]
- Hirayama, M.; Tsuruta, K.; Kawamura, A. Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems. J. Micromechanics Microengineering 2018, 28, 034002. [Google Scholar] [CrossRef]
- Li, H.; Zheng, H.; Tong, W.; Gao, C. Non-covalent assembly of poly(allylamine hydrochloride)/triethylamine microcapsules with ionic strength-responsiveness and auto-fluorescence. J. Colloid Interface Sci. 2017, 496, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.P.; Moura, L.; Fokkink, R.; Farinha, J.P.S. Preparation and Characterization of Low Dispersity Anionic Multiresponsive Core-Shell Polymer Nanoparticles. Langmuir 2012, 28, 5802–5809. [Google Scholar] [CrossRef]
- Alves, S.P.C.; Pinheiro, J.P.; Farinha, J.P.S.; Leermakers, F.A.M. Particles Decorated by an Ionizable Thermoresponsive Polymer Brush in Water: Experiments and Self-Consistent Field Modeling. J. Phys. Chem. B 2014, 118, 3192–3206. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.; Santos, C.; da Costa, A.P.; Silva, M.; Baleizão, C.; Farinha, J.P.S. Smart polymeric nanoparticles for boron scavenging. Chem. Eng. J. 2017, 319, 31–38. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, G.; Zhou, L.; Wang, D.; Zhong, N.; Cai, D.; Wu, Z. Fabrication of pH-Controlled-Release Ferrous Foliar Fertilizer with High Adhesion Capacity Based on Nanobiomaterial. ACS Sustain. Chem. Eng. 2016, 4, 6800–6808. [Google Scholar] [CrossRef]
- López-Rayo, S.; Imran, A.; Bruun Hansen, H.C.; Schjoerring, J.K.; Magid, J. Layered Double Hydroxides: Potential Release-on-Demand Fertilizers for Plant Zinc Nutrition. J. Agric. Food Chem. 2017, 65, 8779–8789. [Google Scholar] [CrossRef] [Green Version]
- Abrantes, D.; Riegel-vidotti, I.C.; Guerreiro, M.; Ferreira, S.; Eliana, C.; Marino, B. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection. Corros. Sci. 2017, 130, 56–63. [Google Scholar]
- Gibson, T.J.; Smyth, P.; Mcdaid, W.J.; Lavery, D.; Thom, J.; Cotton, G.; Scott, C.J.; Themistou, E. Single-Domain Antibody-Functionalized pH-Responsive Amphiphilic Block Copolymer Nanoparticles for Epidermal Growth Factor Receptor Targeted Cancer Therapy. ACS Macro Lett. 2018, 7, 1010–1015. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, H.; Zhang, S.; Huang, X.; Wang, Y.; Huang, G.; Sumer, B.D.; Gao, J. Multicolored {pH}-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic {pH} Stimuli. J. Am. Chem. Soc. 2012, 134, 7803–7811. [Google Scholar] [CrossRef] [Green Version]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Ribeiro, T.; Fernandes, F.; Farinha, J.P.S.; Baleizão, C. Intrinsically Fluorescent Silica Nanocontainers: A Promising Theranostic Platform. Microsc. Microanal. 2013, 19, 1216–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baleizão, C.; Farinha, J.P.S. Hybrid smart mesoporous silica nanoparticles for theranostics. Nanomedicine 2015, 10, 2311–2314. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Rodrigues, A.S.; Calderon, S.; Fidalgo, A.; Gonçalves, J.L.M.; André, V.; Duarte, M.T.; Ferreira, P.J.; Farinha, J.P.S.; Baleizão, C. Silica nanocarriers with user-defined precise diameters by controlled template self-assembly. J. Colloid Interface Sci. 2020, 561, 609–619. [Google Scholar] [CrossRef]
- Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862. [Google Scholar] [CrossRef]
- Calderon, S.V.; Ribeiro, T.; Farinha, J.P.S.; Baleizão, C.; Ferreira, P.J. On the Structure of Amorphous Mesoporous Silica Nanoparticles by Aberration-Corrected STEM. Small 2018, 1802180, 1–9. [Google Scholar] [CrossRef]
- Chiefari, J.; Chong, Y.K.B.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; et al. Living Free-Radical Polymerization by Reversible Addition - Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 9297, 5559–5562. [Google Scholar] [CrossRef]
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Moad, G. RAFT polymerization to form stimuli-responsive polymers. Polym. Chem. 2017, 8, 177–219. [Google Scholar] [CrossRef]
- Barner-Kowollik, C. Handbook of RAFT Polymerization; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Szwarc, M. “Living” polymers. Comput. Mater. Sci. 1956, 178, 1168–1169. [Google Scholar] [CrossRef]
- Hegazy, M.; Zhou, P.; Rahoui, N.; Wu, G.; Taloub, N.; Lin, Y.; Huang, X.; Huang, Y. A facile design of smart silica nanocarriers via surface-initiated RAFT polymerization as a dual-stimuli drug release platform. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 581, 123797. [Google Scholar] [CrossRef]
- Santiago, A.M.; Ribeiro, T.; Rodrigues, A.S.; Ribeiro, B.; Frade, R.F.M.; Baleizão, C.; Farinha, J.P.S. Multifunctional Hybrid Silica Nanoparticles with a Fluorescent Core and Active Targeting Shell for Fluorescence Imaging Biodiagnostic Applications. Eur. J. Inorg. Chem. 2015, 2015, 4579–4587. [Google Scholar] [CrossRef]
- Zhu, L.; Powell, S.; Boyes, S.G. Synthesis of tertiary amine-based pH-responsive polymers by RAFT Polymerization. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 1010–1022. [Google Scholar] [CrossRef]
- Skrabania, K.; Miasnikova, A.; Bivigou-Koumba, A.M.; Zehm, D.; Laschewsky, A. Examining the UV-vis absorption of RAFT chain transfer agents and their use for polymer analysis. Polym. Chem. 2011, 2, 2074. [Google Scholar] [CrossRef]
- Baleizão, C.; Farinha J., P.; Ribeiro, T.; Rodrigues, A.S. Process for the Production of Mesoporous Silica Nanoparticles with Diameters under 100 Nanometers and Precise Control of the Particle Size. PCT WO 2017, 2017, 131542. [Google Scholar]
- Crucho, C.I.C.; Baleizão, C.; Farinha, J.P.S. Functional Group Coverage and Conversion Quantification in Nanostructured Silica by 1 H NMR. Anal. Chem. 2017, 89, 681–687. [Google Scholar] [CrossRef]
- Li, C.; Benicewicz, B.C. Synthesis of Well-Defined Polymer Brushes Grafted onto Silica Nanoparticles via Surface Reversible Addition - Fragmentation Chain Transfer Polymerization. Macromolecules 2005, 38, 5929–5936. [Google Scholar] [CrossRef]
- Bhat, R.R.; Tomlinson, M.R.; Wu, T.; Genzer, J. Surface-grafted polymer gradients: Formation, characterization and applications. Adv. Polym. Sci. 2006, 198, 51–124. [Google Scholar]
- Favier, A.; Charreyre, M.-T. Experimental Requirements for an Efficient Control of Free-Radical Polymerizations via the Reversible Addition-Fragmentation Chain Transfer ({RAFT}) Process. Macromol. Rapid Commun. 2006, 27, 653–692. [Google Scholar] [CrossRef]
- Kutcherlapati, S.N.R.; Koyilapu, R. Glycopolymer-Grafted Nanoparticles: Synthesis Using RAFT Polymerization and Binding Study with Lectin. Macromolecules 2017, 50, 7309–7320. [Google Scholar] [CrossRef]
(kDa) | (kDa) | Polymer Incorporation (wt % MSN) | |
MSN-pDAEM15-to | 15 | 9 | 0.5 |
MSN-pDAEM47-to | 47 | 44 | 1.0 |
[DPAEM] (M) | Initiator:CTA Ratio | |
---|---|---|
1:5 | 1:10 | |
0.5 | 0.4 % | 0.8 % |
1.3 | 0.5 % | - |
2.0 | 0.8 % | 2.8 % |
[DPAEM] (M) | Initiator:CTA Ratio | |
1:5 | 1:10 | |
0.5 | 0.5% | 2.1% |
1.3 | 1.6% | - |
2.0 | 1.9% | 5.1% |
Polymer Incorporation (MSN, wt %) | |
---|---|
MSN-pDAEM-hybrid-1 | 1.4 |
MSN-pDAEM-hybrid-2 | 5.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
L. M. Gonçalves, J.; J. Castanheira, E.; P. C. Alves, S.; Baleizão, C.; Farinha, J.P. Grafting with RAFT—gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture. Polymers 2020, 12, 2175. https://doi.org/10.3390/polym12102175
L. M. Gonçalves J, J. Castanheira E, P. C. Alves S, Baleizão C, Farinha JP. Grafting with RAFT—gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture. Polymers. 2020; 12(10):2175. https://doi.org/10.3390/polym12102175
Chicago/Turabian StyleL. M. Gonçalves, José, Edgar J. Castanheira, Sérgio P. C. Alves, Carlos Baleizão, and José Paulo Farinha. 2020. "Grafting with RAFT—gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture" Polymers 12, no. 10: 2175. https://doi.org/10.3390/polym12102175
APA StyleL. M. Gonçalves, J., J. Castanheira, E., P. C. Alves, S., Baleizão, C., & Farinha, J. P. (2020). Grafting with RAFT—gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture. Polymers, 12(10), 2175. https://doi.org/10.3390/polym12102175