Matrix and Filler Recycling of Carbon and Glass Fiber-Reinforced Polymer Composites: A Review
Abstract
1. Introduction
2. Overview of Recent Research on FRP Composites
3. Research on the Recycling of Matrix and Fiber Phase of FRP Composites
3.1. Matrix and Fiber Recycling of Thermoplastic FRP Composites
3.2. Full Recycling of Thermoset FRP Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile Butadiene Styrene |
BER | Bond Exchange Reaction |
CAN | Covalent Adaptable Network |
CCF | Continuous Carbon Fiber |
CF | Carbon Fiber |
CFRP | Carbon Fiber-Reinforced Polymer |
DGEBA | Diglycidyl Ether Bisphenol A |
E | Elastic Modulus |
εmax | Elongation At Break |
EoL | End-Of-Life |
FDM | Fused Deposition Modeling |
FM | Flexural Modulus |
FRP | Fiber Reinforced Polymer |
FS | Flexural Strength |
GF | Glass Fiber |
GFRP | Glass Fiber-Reinforced Polymer |
HDPE | High Density Polyethylene |
IS | Impact Strength |
PA | Polyamide |
PBT | Polybutylene Terephthalate |
PLA | Polylactide |
PMMA | Poly Methyl Methacrylate |
PP | Polypropylene |
Tg | Glass Transition Temperature |
Tm | Melting Temperature |
TPFRP | Thermoplastic Fiber-Reinforced Polymer |
Trec | Recycling Temperature |
TS | Tensile Strength |
TSFRP | Thermoset Fiber-Reinforced Polymer |
References
- Boudenne, A.; Ibos, L.; Candau, Y.; Thomas, S. Handbook of Multiphase Polymer Systems; Wiley: Hoboken, NJ, USA, 2011; Volume 1, ISBN 9780470714201. [Google Scholar]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. Perspect. Civ. Eng. Commem. 150th Anniv. Am. Soc. Civ. Eng. 2003, 6, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [Green Version]
- Jayan, J.S.; Appukuttan, S.; Wilson, R.; Joseph, K.; George, G.; Oksman, K. An introduction to Fiber Reinforced Composite Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; ISBN 9780128210901. [Google Scholar]
- Effing, M. Expert insights in Europe’s booming composites market. Reinf. Plast. 2018, 62, 219–223. [Google Scholar] [CrossRef]
- Gutierrez, E.; Bono, F. Review of industrial manufacturing capacity for fibre-reinforced polymers as prospective structural components in Shipping Containers. In JRC Scientific and Policy Reports; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Prashanth, S.; Subbaya, K.M.; Nithin, K.; Sachhidananda, S. Fiber Reinforced Composites—A Review. J. Mater. Sci. Eng. 2017, 6, 1000341. [Google Scholar] [CrossRef] [Green Version]
- Irving, P.E.; Soutis, C. Polymer Composites in the Aerospace Industry; Woodhead Publishing Ltd.: Sawston, UK, 2019; ISBN 9780857095237. [Google Scholar]
- Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, G. Graphene/polymer composites for energy applications. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 231–253. [Google Scholar] [CrossRef]
- Hollaway, L.C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 2010, 24, 2419–2445. [Google Scholar] [CrossRef]
- Job, S.; Leeke, G.; Mativenga, P.T.; Oliveux, G.; Pickering, S.; Shuaib, N.A. Composites Recycling: Where are we now? Composites UK: Berkhamsted, UK, 2016; p. 11. [Google Scholar]
- Tapper, R.J.; Longana, M.L.; Yu, H.; Hamerton, I.; Potter, K.D. Development of a closed-loop recycling process for discontinuous carbon fibre polypropylene composites. Compos. Part B Eng. 2018, 146, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- Karuppannan Gopalraj, S.; Kärki, T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis. SN Appl. Sci. 2020, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.; Pinheiro, I.; de Souza, S.; Mei, L.; Lona, L. Polymer Composites Reinforced with Natural Fibers and Nanocellulose in the Automotive Industry: A Short Review. J. Compos. Sci. 2019, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Farnsworth, M.; Tiwari, A. A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda. J. Clean. Prod. 2017, 140, 1775–1781. [Google Scholar] [CrossRef] [Green Version]
- Amaechi, C.V.; Agbomerie, C.O.; Orok, E.O.; Ye, J. Economic Aspects of Fiber Reinforced Polymer Composite Recycling. In Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 377–397. [Google Scholar]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef] [Green Version]
- Cousins, D.S.; Suzuki, Y.; Murray, R.E.; Samaniuk, J.R.; Stebner, A.P. Recycling glass fiber thermoplastic composites from wind turbine blades. J. Clean. Prod. 2019, 209, 1252–1263. [Google Scholar] [CrossRef]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.-H. Current status of carbon fibre and carbon fibre composites recycling. Compos. Part B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal COM(2019) 640 Final; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Ellen MacArthur Foundation. Towards the Circular Economy; Ellen MacArthur Foundation: Cowes, UK, 2013; pp. 1–99. Available online: https://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/sustainability/pdfs/towards_the_circular_economy.ashx (accessed on 9 May 2021).
- Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the Future of Plastics; Ellen MacArthur Foundation: Cowes, UK, 2016; pp. 1–120. Available online: https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 9 May 2021).
- Recycling Thermoset Composites of the SST, EURECOMP Grant Agreement ID: 218609, EU CORDIS Website. Available online: https://cordis.europa.eu/project/id/218609 (accessed on 9 May 2021).
- Improving Recyclability of Thermoset Composite Materials through a Greener Recycling Technology Based on Reversible Biobased Bonding Materials, Vibes Grant Agreement ID: 101023190, EU CORDIS Website. Available online: https://cordis.europa.eu/project/id/101023190 (accessed on 8 May 2021).
- Bio-Based Recyclable, Reshapable and Repairable (3R) Fibre-Reinforced EpOXY Composites for Automotive and Construction Sectors, ECOXY Grant Agreement ID: 744311, EU CORDIS Website. Available online: https://cordis.europa.eu/project/id/744311 (accessed on 8 May 2021).
- Karsli, N.G.; Aytac, A. Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Compos. Part B Eng. 2013, 51, 270–275. [Google Scholar] [CrossRef]
- Li, M.; Wan, Y.; Gao, Z.; Xiong, G.; Wang, X.; Wan, C.; Luo, H. Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers. Mater. Des. 2013, 51, 257–261. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A. Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Compos. Part B Eng. 2015, 72, 116–129. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Lauke, B.; Mäder, E.; Yue, C.-Y.; Hu, X. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; Duty, C.E.; Love, L.J.; Naskar, A.K.; Blue, C.A.; Ozcan, S. Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Dickson, A.N.; Barry, J.N.; McDonnell, K.A.; Dowling, D.P. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit. Manuf. 2017, 16, 146–152. [Google Scholar] [CrossRef]
- Hinchcliffe, S.A.; Hess, K.M.; Srubar, W.V. Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Compos. Part B Eng. 2016, 95, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Karaduman, Y.; Sayeed, M.M.A.; Onal, L.; Rawal, A. Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites. Compos. Part B Eng. 2014, 67, 111–118. [Google Scholar] [CrossRef]
- Sayeed, M.M.A.; Rawal, A.; Onal, L.; Karaduman, Y. Mechanical properties of surface modified jute fiber/polypropylene nonwoven composites. Polym. Compos. 2014, 35, 1044–1050. [Google Scholar] [CrossRef]
- Uawongsuwan, P.; Yang, Y.; Hamada, H. Long jute fiber-reinforced polypropylene composite: Effects of jute fiber bundle and glass fiber hybridization. J. Appl. Polym. Sci. 2015, 132, 1–13. [Google Scholar] [CrossRef]
- Chandekar, H.; Chaudhari, V.; Waigaonkar, S.; Mascarenhas, A. Effect of chemical treatment on mechanical properties and water diffusion characteristics of jute-polypropylene composites. Polym. Compos. 2020, 41, 1447–1461. [Google Scholar] [CrossRef]
- Pérez-Fonseca, A.A.; Robledo-Ortíz, J.R.; Ramirez-Arreola, D.E.; Ortega-Gudiño, P.; Rodrigue, D.; González-Núñez, R. Effect of hybridization on the physical and mechanical properties of high density polyethylene-(pine/agave) composites. Mater. Des. 2014, 64, 35–43. [Google Scholar] [CrossRef]
- Spiridon, I.; Darie, R.N.; Kangas, H. Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Compos. Part B Eng. 2016, 92, 19–27. [Google Scholar] [CrossRef]
- Duc, F.; Bourban, P.E.; Plummer, C.J.G.; Månson, J.A.E. Damping of thermoset and thermoplastic flax fibre composites. Compos. Part A Appl. Sci. Manuf. 2014, 64, 115–123. [Google Scholar] [CrossRef]
- Liao, G.; Li, Z.; Cheng, Y.; Xu, D.; Zhu, D.; Jiang, S.; Guo, J.; Chen, X.; Xu, G.; Zhu, Y. Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Mater. Des. 2018, 139, 283–292. [Google Scholar] [CrossRef]
- Ma, Y.; Ueda, M.; Yokozeki, T.; Sugahara, T.; Yang, Y.; Hamada, H. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Compos. Struct. 2017, 160, 89–99. [Google Scholar] [CrossRef]
- Sharma, M.; Rao, I.M.; Bijwe, J. Influence of orientation of long fibers in carbon fiber-polyetherimide composites on mechanical and tribological properties. Wear 2009, 267, 839–845. [Google Scholar] [CrossRef]
- Köpplmayr, T.; Milosavljevic, I.; Aigner, M.; Hasslacher, R.; Plank, B.; Salaberger, D.; Miethlinger, J. Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene. Polym. Test. 2013, 32, 535–544. [Google Scholar] [CrossRef]
- Yan, X.; Cao, S. Structure and interfacial shear strength of polypropylene-glass fiber/carbon fiber hybrid composites fabricated by direct fiber feeding injection molding. Compos. Struct. 2018, 185, 362–372. [Google Scholar] [CrossRef]
- Karsli, N.G.; Ozkan, C.; Aytac, A.; Deniz, V. Effects of sizing materials on the properties of carbon fiber-reinforced polyamide 6,6 composites. Polym. Compos. 2013, 34, 1583–1590. [Google Scholar] [CrossRef]
- Lin, J.H.; Huang, C.L.; Liu, C.F.; Chen, C.K.; Lin, Z.I.; Lou, C.W. Polypropylene/short glass fibers composites: Effects of coupling agents on mechanical properties, thermal behaviors and morphology. Materials 2015, 8, 8279–8291. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G. Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites. Compos. Part B Eng. 2017, 111, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Balla, V.K.; Kate, K.H.; Satyavolu, J.; Singh, P.; Tadimeti, J.G.D. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos. Part B Eng. 2019, 174, 106956. [Google Scholar] [CrossRef]
- Goh, G.D.; Yap, Y.L.; Agarwala, S.; Yeong, W.Y. Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite. Adv. Mater. Technol. 2019, 4, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T.K.; Asahara, H.; Horiguchi, K.; Nakamura, T.; Todoroki, A.; Hirano, Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Tian, X.; Liu, T.; Wang, Q.; Dilmurat, A.; Li, D.; Ziegmann, G. Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J. Clean. Prod. 2017, 142, 1609–1618. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Malkapuram, R.; Kumar, V.; Singh Negi, Y. Recent development in natural fiber reinforced polypropylene composites. J. Reinf. Plast. Compos. 2009, 28, 1169–1189. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Review: Raw Natural Fiber-Based Polymer Composites. Int. J. Polym. Anal. Charact. 2014, 19, 256–271. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef] [Green Version]
- Biron, M. Thermoplastics and Thermoplastic Composites; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9781856174787. [Google Scholar]
- Reis, J.P.; de Moura, M.; Samborski, S. Thermoplastic composites and their promising applications in joining and repair composites structures: A review. Materials 2020, 13, 5832. [Google Scholar] [CrossRef]
- Colucci, G.; Ostrovskaya, O.; Frache, A.; Martorana, B.; Badini, C. The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers. J. Appl. Polym. Sci. 2015, 132, 1–9. [Google Scholar] [CrossRef]
- Kiss, P.; Stadlbauer, W.; Burgstaller, C.; Stadler, H.; Fehringer, S.; Haeuserer, F.; Archodoulaki, V.-M. In-house recycling of carbon- and glass fibre-reinforced thermoplastic composite laminate waste into high-performance sheet materials. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106110. [Google Scholar] [CrossRef]
- Pietroluongo, M.; Padovano, E.; Frache, A.; Badini, C. Mechanical recycling of an end-of-life automotive composite component. Sustain. Mater. Technol. 2020, 23, e00143. [Google Scholar] [CrossRef]
- Tapper, R.J.; Longana, M.L.; Hamerton, I.; Potter, K.D. A closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites. Compos. Part B Eng. 2019, 179, 107418. [Google Scholar] [CrossRef]
- Knappich, F.; Klotz, M.; Schlummer, M.; Wölling, J.; Mäurer, A. Recycling process for carbon fiber reinforced plastics with polyamide 6, polyurethane and epoxy matrix by gentle solvent treatment. Waste Manag. 2019, 85, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, M.; Manolakis, I.; Chatterjee, A.; Kalinka, G.; Deubener, J.; Pfnür, H.; Chakraborty, S.; Meiners, D. Reducing the raw material usage for room temperature infusible and polymerisable thermoplastic CFRPs through reuse of recycled waste matrix material. Compos. Part B Eng. 2021, 216, 108877. [Google Scholar] [CrossRef]
- Chawla, K.K. Composite Materials; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-28982-9. [Google Scholar]
- Nairn, J.A. On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 1997, 26, 63–80. [Google Scholar] [CrossRef]
- Yu, H.; Potter, K.D.; Wisnom, M.R. A novel manufacturing method for aligned discontinuous fibre composites (High Performance-Discontinuous Fibre method). Compos. Part A Appl. Sci. Manuf. 2014, 65, 175–185. [Google Scholar] [CrossRef]
- Utekar, S.; Suriya, V.K.; More, N.; Rao, A. Comprehensive study of recycling of thermosetting polymer composites—Driving force, challenges and methods. Compos. Part B Eng. 2021, 207, 108596. [Google Scholar] [CrossRef]
- Okajima, I.; Hiramatsu, M.; Shimamura, Y.; Awaya, T.; Sako, T. Chemical recycling of carbon fiber reinforced plastic using supercritical methanol. J. Supercrit. Fluids 2014, 91, 68–76. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Ge, H.; Yang, Y.; Wang, Y.; Zhang, C.; Li, J.; Deng, T.; Qin, Z.; Hou, X. Chemical Recycling of Carbon Fiber Reinforced Epoxy Resin Composites via Selective Cleavage of the Carbon–Nitrogen Bond. ACS Sustain. Chem. Eng. 2015, 3, 3332–3337. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Guo, X.; Liu, C.; Liu, T.; Xin, J.; Zhang, J. Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin. Polym. Degrad. Stab. 2017, 139, 20–27. [Google Scholar] [CrossRef]
- Das, M.; Chacko, R.; Varughese, S. An Efficient Method of Recycling of CFRP Waste Using Peracetic Acid. ACS Sustain. Chem. Eng. 2018, 6, 1564–1571. [Google Scholar] [CrossRef]
- Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horizons 2016, 3, 241–247. [Google Scholar] [CrossRef]
- Si, H.; Zhou, L.; Wu, Y.; Song, L.; Kang, M.; Zhao, X.; Chen, M. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos. Part B Eng. 2020, 199, 108278. [Google Scholar] [CrossRef]
- Yu, K.; Shi, Q.; Dunn, M.L.; Wang, T.; Qi, H.J. Carbon Fiber Reinforced Thermoset Composite with Near 100% Recyclability. Adv. Funct. Mater. 2016, 26, 6098–6106. [Google Scholar] [CrossRef]
- Kuang, X.; Zhou, Y.; Shi, Q.; Wang, T.; Qi, H.J. Recycling of Epoxy Thermoset and Composites via Good Solvent Assisted and Small Molecules Participated Exchange Reactions. ACS Sustain. Chem. Eng. 2018, 6, 9189–9197. [Google Scholar] [CrossRef]
- Wang, S.; Xing, X.; Zhang, X.; Wang, X.; Jing, X. Room-temperature fully recyclable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds. J. Mater. Chem. A 2018, 6, 10868–10878. [Google Scholar] [CrossRef]
- Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H.J.; Zhang, W. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Adv. Mater. 2016, 28, 2904–2909. [Google Scholar] [CrossRef]
- Wang, S.; Ma, S.; Li, Q.; Xu, X.; Wang, B.; Yuan, W.; Zhou, S.; You, S.; Zhu, J. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chem. 2019, 21, 1484–1497. [Google Scholar] [CrossRef]
- Wang, S.; Ma, S.; Li, Q.; Yuan, W.; Wang, B.; Zhu, J. Robust, Fire-Safe, Monomer-Recovery, Highly Malleable Thermosets from Renewable Bioresources. Macromolecules 2018, 51, 8001–8012. [Google Scholar] [CrossRef]
- Ma, S.; Wei, J.; Jia, Z.; Yu, T.; Yuan, W.; Li, Q.; Wang, S.; You, S.; Liu, R.; Zhu, J. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J. Mater. Chem. A 2019, 7, 1233–1243. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Banatao, D.R.; Pastine, S.J.; Latteri, A.; Cicala, G. Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment. Compos. Part B Eng. 2016, 104, 17–25. [Google Scholar] [CrossRef]
- Cicala, G.; Pergolizzi, E.; Piscopo, F.; Carbone, D.; Recca, G. Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin. Compos. Part B Eng. 2018, 132, 69–76. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, Y.; Yan, S.; Zhao, J.; Liu, S.; Zhang, M.; Zheng, X.; Jia, L. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites. Nat. Commun. 2017, 8, 14657. [Google Scholar] [CrossRef]
- Cui, C.; Chen, X.; Ma, L.; Zhong, Q.; Li, Z.; Mariappan, A.; Zhang, Q.; Cheng, Y.; He, G.; Chen, X.; et al. Polythiourethane Covalent Adaptable Networks for Strong and Reworkable Adhesives and Fully Recyclable Carbon Fiber-Reinforced Composites. ACS Appl. Mater. Interfaces 2020, 12, 47975–47983. [Google Scholar] [CrossRef] [PubMed]
- Kloxin, C.J.; Scott, T.F.; Adzima, B.J.; Bowman, C.N. Covalent adaptable networks (CANs): A unique paradigm in cross-linked polymers. Macromolecules 2010, 43, 2643–2653. [Google Scholar] [CrossRef] [Green Version]
- Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Shi, Q.; Zhou, Y.; Zhao, Z.; Wang, T.; Qi, H.J. Dissolution of epoxy thermosets via mild alcoholysis: The mechanism and kinetics study. RSC Adv. 2018, 8, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.M.; Jones, G.O.; Virwani, K.; McCloskey, B.D.; Boday, D.J.; ter Huurne, G.M.; Horn, H.W.; Coady, D.J.; Bintaleb, A.M.; Alabdulrahman, A.M.S.; et al. Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines. Science 2014, 344, 732–735. [Google Scholar] [CrossRef] [PubMed]
Topic | Fiber | Matrix | E, MPa | TS, MPa | Ref |
---|---|---|---|---|---|
Fundamental Research | Carbon | PA | 1600 | 86 | [29] |
Glass Carbon | PA | 18,000 21,000 | 92 100 | [30] | |
Glass | PBT PA | 8500 7000 | 110 125 | [31] | |
Glass Carbon | PP | 8800 15,000 | 50 60 | [32] | |
Additive Manufacturing | Carbon | ABS | 1400 | 68 | [33] |
Carbon | ABS | 2500 | 42 | [34] | |
Carbon Glass Kevlar | PA | 7700 3750 4370 | 216 206 164 | [35] | |
Natural Fibers and Additive Manufacturing | Jute + Flax | PLA | 3450 | 56 | [36] |
Natural Fibers | Jute | PP | 2500 | 27 | [37,38] |
Jute | PP | 6800 | 44 | [39] | |
Jute | PP | 3000 | 28 | [40] | |
Pine + Agave | HDPE | 650 | 27 | [41] | |
Cellulose | PLA | 3700 | 51 | [42] | |
Flax | PP PLA | 17,400 18,300 | 215 240 | [43] |
System (Matrix/Fiber) | Recycling Mechanism | Trec (°C) | Chemicals for Recycling | ♲ | Notes on Fibers after Recycling | Notes on Recycled Polymers and Composites | Ref |
---|---|---|---|---|---|---|---|
PLA/CCF (3D printed) | Mechanical: melting + FDM extrusion | 240 | NA | 100% CCF 73% PLA | Higher tensile force due to better impregnation | Remanufactured composite retains mechanical properties | [56] |
PA66/CF | Mechanical: grinding + injection molding | 280 | NA | Entire composite | Shorter fibers, retain adhesion to matrix | Remanufactured composite retains mechanical properties | [67] |
PP/GF (Tepex® scraps, offcuts) PA6/CF (Tepex® scraps, offcuts) | Mechanical: grinding + compression molding | 220 260 | NA | Entire composite | Shorter fibers, random orientation in recycled composite | Recycled composites had poor properties, sandwich of virgin and recycled laminates showed properties comparable to virgin composites | [68] |
PA66/GF (10 y/o car scraps) | Mechanical: grinding + injection molding | 285 | NA | Entire composite | Shorter fibers | Recycled composites showed noticeably worse properties than reference composite | [69] |
PP/CF | Chemical: polymer dissolution of ground composite | ≈150 | Xylene Acetone | Entire composite | Shorter fibers, impregnated with PP, realigned by HiPerDiF | 2nd generation remanufactured composite showed improved tensile strength | [14] |
PA6/CF | Chemical: polymer dissolution of ground composite | 160 | Benzyl alcohol Acetone | Entire composite | Shorter fibers, realigned by HiPerDiF, agglomeration was observed | 2nd generation remanufactured composite showed 40% lower tensile strength and modulus | [70] |
PA6/CF | Chemical: polymer dissolution | 160 | Various CreaSolv® | Polymer is recovered | Clean, unchanged length, similar tensile strength | Remanufacturing of composite was not reported | [71] |
Elium®/GF (methacrylate) | Chemical: polymer dissolution | RT | Chloroform Methanol | Entire composite | Rovings were recovered, slight decrease in stiffness | Recovered polymer and ground composite were reused | [21] |
Elium®/CF (methacrylate) | Chemical: polymer dissolution | RT | Fresh monomer Acetone | Entire composite | Woven structure is retained | Recycled polymer can displace 7.5 wt % of virgin polymer for manufacturing of composite | [72] |
System (Polymers, Composites, Recyclates) | Tm (°C) | Td (°C) | E (GPa) | TS (MPa) | εmax (%) | FM (GPa) | FS (MPa) | IS (kJ/m2) | Ref |
---|---|---|---|---|---|---|---|---|---|
PLA/CCF (3D printed) | 20.6 | 256 | 14.5 | 210 | 34.5 | [56] | |||
Recycled (3D printed) | 20.6 | 262 | 13.3 | 263 | 38.7 | ||||
PA66/CF pristine | 266 | 378 | 23.5 | 236 | 1.7 | [67] | |||
Aged composite | 266 | 385 | 20.2 | 198 | 2.0 | ||||
Recycled composite | 266 | 381 | 20.5 | 188 | 1.7 | ||||
Recycled PP/GF b | ≈9.5 | ≈50 | ≈8 | ≈100 | ≈13 | [68] | |||
Recycled PP/GF sandwich c | ≈14 | ≈200 | ≈17.5 | ≈380 | ≈120 | ||||
Recycled PA6/CF b | ≈18 | ≈100 | ≈15 | ≈200 | ≈20 | ||||
Recycled PA6/CF sandwich c | ≈33 | ≈400 | ≈43 | ≈700 | ≈43 | ||||
Injection molded recycled PP/GF | ≈16.3 | ≈90 | |||||||
Recycled PA66/GF (3 times) | 252 | 351 | 6.7 | 100 | 4.2 | [69] | |||
PP/CF | 166 a | 44.0 | 285 | 0.69 | [14] | ||||
Recycled composite (2 times) | 165 a | 42.8 | 396 | 0.99 | |||||
PA6/CF | 218 a | 60.2 | 695 | 1.16 | [70] | ||||
Recycled composite (2 times) | 218 a | 36.3 | 414 | 1.12 | |||||
Ground Elium®/GF + recycled Elium® + PMMA | 12.1 | 150 | [21] | ||||||
7.5 wt % recycled Elium®/CF | ≈14 | ≈500 | [72] |
System (Matrix/Fiber) | Recycling Mechanism | TRec (°C) | Time (h) | Main Chemicals Used for Recycling | ♲ | Notes on Recovered Fibers | Notes on Recycled Polymers and Composites | Ref |
---|---|---|---|---|---|---|---|---|
Anhydride-cured DGEBA/CF | Supercritical methanol degradation | 285 | 1.3 | Methanol | Entire composite | Retain structure and strength | 20 wt % recycled thermoset showed comparable properties | [77] |
Amine-cured DGEBA/CF | Lewis-acid catalyzed cleavage of C-N bonds in acidic solution | 180 | 6 | Acetic acid AlCl3 | Fibers | Retain fiber tensile strength Loss of structure | NR | [78] |
Amine-cured epoxy/CF (Boeing waste) | Lewis-acid catalyzed cleavage of C-N bonds in alcohol | 190 | 5 | Ethanol ZnCl2 | Entire composite | Retain surface properties | 15 wt % recycled thermoset showed same properties as reference material | [79] |
Aerospace CFRP waste | Peracetic acid mediated cleavage of C-N bonds | 65 | 4 | Acetic acid H2O2 | Entire composite | Loss of structure | 2 wt % recycled thermoset showed reference properties | [80] |
Disulfide-cured DGEBA/CF | Cleavage of S-S bonds by thiol-disulfide exchange with solvent Mechanical recycling | RT | 24 | 2-Mercapto- ethanol DMF | Fibers | Partial loss of structure | NR | [81] |
Mechanical recycling | 210 | Entire composite | Shorter fibers, loss of structure | Recycled composite sheets were obtained | ||||
Disulfide-cured disulfide epoxy/CF Matrix only | Cleavage of S-S bonds by solvent activated thiol-disulfide exchange Mechanical recycling | 90 180 | <0.5 1 | DMF Dithiothreitol | Virgin matrix only | Retain structure and mechanical properties | Virgin polymer was recycled by grinding and hot pressing, retaining its mechanical properties | [82] |
Fatty acid-cured DGEBA/CF | Transesterification of ester bonds mediated by metal catalyst in alcohol | 180 | 4 | Ethylene glycol Zn(Ac)2 | Entire composite | Retain tensile properties and structure | 4th generation recycled composites showed unchanged properties | [83] |
Anhydride-cured DGEBA/CF | Transesterification of ester bonds mediated by organic catalyst in alcohol/solvent | 180 | 1.5 | Ethylene glycol NMP TBD | Entire composite | Retain structure and mechanical properties | 20 wt % recycled epoxy resin showed same mechanical properties as reference | [84] |
Phenylboronic acid-cured novolac/CF | Transesterification of boronate linkages | RT | 12 | Ethanol | Entire composite | Retain overall properties | Recycled composites showed mostly unchanged properties | [85] |
Triamine-cured polyimine/CF | Transimination reaction of imine bonds in the presence of excess aminic solvent | RT | NR | Diethylenetri- amine | Entire composite | Retain structure and mechanical properties | 33 wt % recycled polymer added to fresh resin had same properties as the reference | [86] |
Imine-bearing epoxy/CF | Hydrolysis of imine bonds in acidic solvent solution | RT | 15 | HCl methanol | Entire composite | Retain structure and mechanical properties | Monomers can be recovered from degradation solution (separate works) | [87,88] |
Spiro diacetal epoxy/CF | Cleavage of acetal linkages in acidic solution | 50 | 0.5 | Acetone HCl | Fibers | Retain structure and mechanical properties | NR | [89] |
Recyclamine®-cured Super- Sap® epoxy/CF Similar/CF and/or flax | Cleavage of acetal linkages in acidic solution | 80 | 1.5 | Acetic acid | Entire composite | Retain surface properties | Recovered polymer with good tensile properties | [90] |
Cleavage of acetal linkages in acidic solution | 80 | 1.5 | Acetic acid | Entire composite | Retain surface properties | Recovered thermoplastic suitable for composites preparation and FDM | [91] | |
Polyhexahydro- triazine/CF | Hydrolysis of the triazine structure in acidic solution | RT | 36 | HCl THF | Entire composite | Retain structure and mechanical properties | 3rd generation recycled composites showed unchanged properties | [92] |
Thiocarbamate poythiourethane/CF | Dynamic exchange reaction at thiocarbamate functions | 80 | 5 | Trimethylolpropane tris(3-mercapto-propionate) | Entire composite | Retain structure and properties | Composite can be fully recycled, retains ILSS | [93] |
System (Polymers, Composites, Recycled Systems) | Tg (°C) | Td (°C) | E (GPa) | TS (MPa) | εmax (%) | FM (GPa) | FS (MPa) | IS (kJ/m2) | Ref |
---|---|---|---|---|---|---|---|---|---|
Amine-cured epoxy/CF | 210 | [79] | |||||||
15 wt % recycled epoxy | 169 | 7 | 80 | 3.2 | 2.4 | 102 | |||
Disulfide-cured DGEBA | 130 | 300 | 2.6 (E’) | 88 | 7.1 | 557 a | 159 a | [81] | |
Disulfide-cured DGEBA/CF | 595 b | 194 b | |||||||
Dual disulfide epoxy/CF | 131 | ≈275 | ≈7 | 334 | ≈8.0 | [82] | |||
Recycled-CF composite | 126 | ≈7 | 321 | ≈7.5 | |||||
Fatty acid-cured DGEBA/CF and 4th generation recycled composite | ≈30 | ≈1.8 | ≈88 | ≈5.0 | [83] | ||||
Anhydride-cured DGEBA/CF | 157 | ≈4.0 | ≈80 | ≈3.5 | [84] | ||||
PBA-cured novolac/CF | 200 | 24.2 | 411 | [85] | |||||
3rd generation recycled composite | 202 | 20.1 | 381 | ||||||
1-ply polyimine/CF | 55 | 14.2 | 399 | 3.3 | [86] | ||||
2-ply polyimine/CF | 55 | 12.2 | 309 | 3.8 | |||||
1-ply polyimine/CF | 135 | 15.5 | 148 | 1.0 | |||||
2-ply polyimine/CF | 135 | 12.2 | 198 | 1.6 | |||||
Pristine polyimine | 55 | 1.8 | 45 | 4.2 | |||||
33 wt % recycled polyimine | 1.3 | 42 | 6.1 | ||||||
Imine-bearing epoxy/CF | 172 | 323 | 35.3 | 763 | 3.0 | [87] | |||
Spiro diacetal epoxy | 169 | 278 | 3.13 | 85.0 | 5.10 | [89] | |||
Spiro diacetal DGEBA | 132 | 2.53 | 74.0 | 14.2 | |||||
Spiro diacetal epoxy/CF | 40.0 | 731 | 2.90 | ||||||
Recyclamine®-cured Super- Sap® | 102 | 22.9 | 579 | 3.33 | [90] | ||||
epoxy/CF laminates | |||||||||
Recovered thermoplastic | 79.5 | 2.40 | 55.0 | ||||||
Similar/FF c laminates | 56.3 | 9.97 | 82.2 | 6.47 | 77.5 | [91] | |||
Similar/CF laminates | 51.5 | 23.7 | 519 | 31.2 | 193 | ||||
Similar/FCF d hybrid laminates | 55.6 | 16.3 | 310 | 6.26 | 90.2 | ||||
Similar/CFC e hybrid laminates | 59.8 | 25.6 | 301 | 35.2 | 214 | ||||
Recovered thermoplastic | 2.21 | 55.4 | |||||||
Recovered thermoplastic/KeF f | 2.84 | 58.9 | |||||||
Unidirectional CF/PHT composite | 199 | 384 | 142 | 1806 | 1.4 | 127 | 1241 | [92] | |
Cross-ply CF/PHT composite | 198 | 376 | 68.3 | 741 | 1.2 | 54.8 | 829 | ||
Recycled cross-ply CF/PHT | 54.8 | 829 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaffaro, R.; Di Bartolo, A.; Dintcheva, N.T. Matrix and Filler Recycling of Carbon and Glass Fiber-Reinforced Polymer Composites: A Review. Polymers 2021, 13, 3817. https://doi.org/10.3390/polym13213817
Scaffaro R, Di Bartolo A, Dintcheva NT. Matrix and Filler Recycling of Carbon and Glass Fiber-Reinforced Polymer Composites: A Review. Polymers. 2021; 13(21):3817. https://doi.org/10.3390/polym13213817
Chicago/Turabian StyleScaffaro, Roberto, Alberto Di Bartolo, and Nadka Tz. Dintcheva. 2021. "Matrix and Filler Recycling of Carbon and Glass Fiber-Reinforced Polymer Composites: A Review" Polymers 13, no. 21: 3817. https://doi.org/10.3390/polym13213817
APA StyleScaffaro, R., Di Bartolo, A., & Dintcheva, N. T. (2021). Matrix and Filler Recycling of Carbon and Glass Fiber-Reinforced Polymer Composites: A Review. Polymers, 13(21), 3817. https://doi.org/10.3390/polym13213817