Dynamic Impact Properties of Carbon-Fiber-Reinforced Phenolic Composites Containing Microfillers
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.1.1. Dispersion of Microfillers in the Resole Phenolic Resins
2.1.2. Fabrication of CFRP Composites
2.2. Characterization of Fabricated Materials
2.2.1. X-ray Diffraction (XRD)
2.2.2. Dynamic Impact Test
2.2.3. Microstructure Examination
3. Results and Discussion
3.1. XRD
3.2. Dynamic Impact Properties
3.2.1. Impact Properties Obtained at a Momentum of 15 kg m/s
3.2.2. Impact Properties Obtained at a Momentum of 28 kg m/s
3.3. Microstructural Examination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, R.; Li, C.; Xian, G. Water absorption and long-term thermal and mechanical properties of carbon/glass hybrid rod for bridge cable. Eng. Struct. 2023, 274, 115176. [Google Scholar] [CrossRef]
- Feng, B.; Wang, X.; Wu, Z.; Yang, Y.; Pan, Z. Performance of anchorage assemblies for CFRP cables under fatigue loads. Structures 2021, 29, 947–953. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y. Precursor infiltration and pyrolysis cycle-dependent mechanical and microwave absorption performances of continuous carbon fibers-reinforced boron-containing phenolic resins for low-density carbon-carbon composites. Ceram. Int. 2020, 46, 15167–15175. [Google Scholar] [CrossRef]
- Nashchokin, A.V.; Malakho, A.P.; Garadzha, N.V.; Rogozin, A.D. Evolution of the physicochemical properties of carbon—Carbon composites based on phenol—Formaldehyde resins and discrete carbon fibers. Fibre Chem. 2016, 47, 465–471. [Google Scholar] [CrossRef]
- Qanati, M.V.; Rasooli, A. Microstructural and main mechanical properties of novalac based carbon–carbon composites as the pyrolysis heating rate. Ceram. Int. 2021, 47, 26808–26821. [Google Scholar] [CrossRef]
- De Souza, W.O.; Garcia, K.; De Avila Von Dollinger, C.F.; Pardini, L.C. Electrical behavior of carbon fiber/phenolic composite during pyrolysis. Mater. Res. 2015, 18, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Guo, L.; Zhang, H.; Zhai, H.; Ren, H. Research status, industrial application demand and prospects of phenolic resin. RSC Adv. 2019, 9, 28924–28935. [Google Scholar] [CrossRef]
- Renda, C.G.; Bertholdo, R. Study of phenolic resin and their tendency for carbon graphitization. J. Polym. Res. 2018, 25, 241. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Bai, X.; Zhang, Y.; Wang, G.; Zhao, Y.; Li, X.; Zhu, J.; Rong, L.; Mi, C. Synthesis, characterization and properties of phthalonitrile-etherified resole resin. E-Polymers 2020, 20, 500–509. [Google Scholar] [CrossRef]
- Bhatnagar, A. Lightweight Ballistic Composites, Military and Law Enforcement Applications; Woodhead Publishing Limited: Cambridge UK, 2006. [Google Scholar]
- Duodu, E.A.; Gu, J.; Ding, W.; Shang, Z.; Tang, S. Comparison of Ballistic Impact Behavior of Carbon Fiber/Epoxy Composite and Steel Metal Structures. Iran. J. Sci. Technol.—Trans. Mech. Eng. 2018, 42, 13–22. [Google Scholar] [CrossRef]
- Borba, N.Z.; Körbelin, J.; Fiedler, B.; dos Santos, J.F.; Amancio-Filho, S.T. Low-velocity impact response of friction riveted joints for aircraft application. Mater. Des. 2020, 186, 108369. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, S.; Liu, Y.; Ma, Z.; Li, H. Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite. J. Mater. Sci. 2020, 55, 8553–8563. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.; Tian, Y.; Huang, J. Effects of SiC content on mechanical, thermal and ablative properties of carbon/phenolic composites. Ceram. Int. 2020, 46, 16151–16156. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.; Tian, Y. Effects of zirconium carbide content on thermal stability and ablation properties of carbon/phenolic composites. Ceram. Int. 2020, 46, 4307–4313. [Google Scholar] [CrossRef]
- Duan, L.; Zhao, X.; Wang, Y. Oxidation and ablation behaviors of carbon fiber/phenolic resin composites modified with borosilicate glass and polycarbosilane interface. J. Alloys Compd. 2020, 827, 154277. [Google Scholar] [CrossRef]
- Duan, L.; Luo, L.; Wang, Y. Oxidation and ablation behavior of a ceramizable resin matrix composite based on carbon fiber/phenolic resin. Mater. Today Commun. 2022, 33, 104901. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Yang, S.; Shi, M.; Li, J.; Shen, Q. Enhanced mechanical, thermal and ablation properties of carbon fiber/BPR composites modified by mica synergistic MoSi2 at 1500 °C. Ceram. Int. 2023, 49, 21213–21221. [Google Scholar] [CrossRef]
- Yang, T.; Dong, C.; Rong, Y.; Deng, Z.; Li, P.; Han, P.; Shi, M.; Huang, Z. Oxidation Behavior of Carbon Fibers in Ceramizable Phenolic Resin Matrix Composites at Elevated Temperatures. Polymers 2022, 14, 2785. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, K.C.; Rajanna, S.; Prakash, G.S.; Rajeshkumar, G. Improvement of mechanical and thermal properties of hybrid composites through addition of halloysite nanoclay for light weight structural applications. J. Ind. Text. 2022, 51, 4880S–4898S. [Google Scholar] [CrossRef]
- Lamorinière, S.; Jones, M.P.; Ho, K.; Kalinka, G.; Shaffer, M.S.P.; Bismarck, A. Carbon nanotube enhanced carbon Fibre-Poly(ether ether ketone) interfaces in model hierarchical composites. Compos. Sci. Technol. 2022, 221, 109327. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, G.; Shi, X.P.; Wang, X. Effects of carbon nanotubes on the interlaminar shear strength and fracture toughness of carbon fiber composite laminates: A review. J. Mater. Sci. 2022, 57, 2388–2410. [Google Scholar] [CrossRef]
- Tessema, A.; Mitchell, W.; Koohbor, B.; Ravindran, S.; Van Tooren, M.; Kidane, A. The Effect of Nano-Fillers on the In-Plane and Interlaminar Shear Properties of Carbon Fiber Reinforced Composite. J. Dyn. Behav. Mater. 2018, 4, 296–307. [Google Scholar] [CrossRef]
- Bilisik, K.; Erdogan, G.; Karaduman, N.; Sapanci, E. Developments of Multi-nanostitched 3D Carbon/epoxy Nanocomposites: Tensile/shear and Interlaminar Properties. Appl. Compos. Mater. 2022, 29, 3–26. [Google Scholar] [CrossRef]
- Kamae, T.; Drzal, L.T. Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase—Part II: Mechanical and electrical properties of carbon nanotube coated carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107023. [Google Scholar] [CrossRef]
- Lyu, H.; Jiang, N.; Li, Y.; Lee, H.P.; Zhang, D. Enhanced interfacial and mechanical properties of carbon fiber/PEEK composites by hydroxylated PEEK and carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106364. [Google Scholar] [CrossRef]
- Lyu, H.; Jiang, N.; Li, Y.; Zhang, D. Enhancing CF/PEEK interfacial adhesion by modified PEEK grafted with carbon nanotubes. Compos. Sci. Technol. 2021, 210, 108831. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Xiang, D.; Zhao, C.; Wang, B.; Li, H. Enhanced Electrical Conductivity and Interlaminar Fracture Toughness of CF/EP Composites via Interleaving Conductive Thermoplastic Films. Appl. Compos. Mater. 2021, 28, 17–37. [Google Scholar] [CrossRef]
- Kostagiannakopoulou, C.; Loutas, T.H.; Sotiriadis, G.; Kostopoulos, V. Effects of graphene geometrical characteristics to the interlaminar fracture toughness of CFRP laminates. Eng. Fract. Mech. 2021, 245, 107584. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Kuang, Y.; Zhao, Y.; Wang, M.; Wang, H.; Chen, X. Interlaminar properties of carbon nanotubes modified carbon fibre fabric reinforced polyimide composites. J. Compos. Mater. 2023, 57, 1277–1287. [Google Scholar] [CrossRef]
- Lertwassana, W.; Parnklang, T.; Mora, P.; Jubsilp, C.; Rimdusit, S. High performance aramid pulp/carbon fiber-reinforced polybenzoxazine composites as friction materials. Compos. Part B Eng. 2019, 177, 107280. [Google Scholar] [CrossRef]
- Lai, M.; Jiang, L.; Wang, X.; Zhou, H.; Huang, Z.; Zhou, H. Effects of multi-walled carbon nanotube/graphene oxide-based sizing on interfacial and tribological properties of continuous carbon fiber/poly(ether ether ketone) composites. Mater. Chem. Phys. 2022, 276, 125344. [Google Scholar] [CrossRef]
- Wenbin, L.; Jianfeng, H.; Jie, F.; Zhenhai, L.; Liyun, C.; Chunyan, Y. Effect of aramid pulp on improving mechanical and wet tribological properties of carbon fabric/phenolic composites. Tribol. Int. 2016, 104, 237–246. [Google Scholar] [CrossRef]
- Rao, G.R.; Srikanth, I.; Reddy, K.L. Effect of organo-modified montmorillonite nanoclay on mechanical, thermal and ablation behavior of carbon fiber/phenolic resin composites. Def. Technol. 2021, 17, 812–820. [Google Scholar] [CrossRef]
- Eslami, Z.; Yazdani, F.; Mirzapour, M.A. Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 2015, 72, 22–31. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, X.J.; Magniez, K.; Lamb, P.R.; Rubin De Celis Leal, D.; Fox, B.L.; Wang, X. Improving the mechanical properties of epoxy using multiwalled carbon nanotubes functionalized by a novel plasma treatment. Compos. Part A Appl. Sci. Manuf. 2013, 45, 145–152. [Google Scholar] [CrossRef]
- Feng, P.; Kong, Y.; Liu, M.; Peng, S.; Shuai, C. Dispersion strategies for low-dimensional nanomaterials and their application in biopolymer implants. Mater. Today Nano 2021, 15, 100127. [Google Scholar] [CrossRef]
- Shi, X.; Bai, S.; Li, Y.; Yu, X.; Naito, K.; Zhang, Q. Effect of polyethylene glycol surface modified nanodiamond on properties of polylactic acid nanocomposite films. Diam. Relat. Mater. 2020, 109, 108092. [Google Scholar] [CrossRef]
- Shin, G.J.; Kim, D.H.; Kim, J.W.; Kim, S.H.; Lee, J.H. Enhancing vertical thermal conductivity of carbon fiber reinforced polymer composites using cauliflower-shaped copper particles. Mater. Today Commun. 2023, 35, 105792. [Google Scholar] [CrossRef]
- Cha, J.; Jin, S.; Shim, J.H.; Park, C.S.; Ryu, H.J.; Hong, S.H. Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater. Des. 2016, 95, 1–8. [Google Scholar] [CrossRef]
- Ali, A.; Rahimian Koloor, S.S.; Alshehri, A.H.; Arockiarajan, A. Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures—A review. J. Mater. Res. Technol. 2023, 24, 6495–6521. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Mao, J.; Wang, S.; Zheng, Y. Quantitative evaluation of inclusion homogeneity in composites and the applications. J. Mater. Res. Technol. 2020, 9, 6790–6807. [Google Scholar] [CrossRef]
- Marinkovic, F.S.; Popovic, D.M.; Jovanovic, J.D.; Stankovic, B.S.; Adnadjevic, B.K. Methods for quantitative determination of filler weight fraction and filler dispersion degree in polymer composites: Example of low-density polyethylene and NaA zeolite composite. Appl. Phys. A Mater. Sci. Process. 2019, 125, 611. [Google Scholar] [CrossRef]
- Garrido-Regife, L.; Rivero-Antúnez, P.; Morales-Flórez, V. The dispersion of carbon nanotubes in composite materials studied by computer simulation of Small Angle Scattering. Phys. B Condens. Matter 2023, 649, 414450. [Google Scholar] [CrossRef]
- Batool, M.; Haider, M.N.; Javed, T. Applications of Spectroscopic Techniques for Characterization of Polymer Nanocomposite: A Review. J. Inorg. Organomet. Polym. Mater. 2022, 32, 4478–4503. [Google Scholar] [CrossRef]
- Zaman, A.C.; Kaya, F.; Kaya, C. A study on optimum surfactant to multiwalled carbon nanotube ratio in alcoholic stable suspensions via UV–Vis absorption spectroscopy and zeta potential analysis. Ceram. Int. 2020, 46, 29120–29129. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, P.; Dang, H.; Nie, H.; Guo, Z.; Zhang, C.; Li, Y. Effects of loading rate and loading direction on the compressive failure behavior of a 2D triaxially braided composite. Int. J. Impact Eng. 2021, 156, 103928. [Google Scholar] [CrossRef]
- Mohsin, M.A.A.; Iannucci, L.; Greenhalgh, E.S. On the dynamic tensile behaviour of thermoplastic composite carbon/polyamide 6.6 using split hopkinson pressure bar. Materials 2021, 14, 1653. [Google Scholar] [CrossRef]
- Rouf, K.; Suratkar, A.; Imbert-Boyd, J.; Wood, J.; Worswick, M.; Montesano, J. Effect of strain rate on the transverse tension and compression behavior of a unidirectional non-crimp fabric carbon fiber/snap-cure epoxy composite. Materials 2021, 14, 7314. [Google Scholar] [CrossRef]
- Lomakin, E.; Fedulov, B.; Fedorenko, A. Strain rate influence on hardening and damage characteristics of composite materials. Acta Mech. 2021, 232, 1875–1887. [Google Scholar] [CrossRef]
- Rouf, K.; Worswick, M.J.; Montesano, J. Experimentally verified dual-scale modelling framework for predicting the strain rate-dependent nonlinear anisotropic deformation response of unidirectional non-crimp fabric composites. Compos. Struct. 2023, 303, 116384. [Google Scholar] [CrossRef]
- Li, X.; Yan, Y.; Guo, L.; Xu, C. Effect of strain rate on the mechanical properties of carbon/epoxy composites under quasi-static and dynamic loadings. Polym. Test. 2016, 52, 254–264. [Google Scholar] [CrossRef]
- Chihi, M.; Tarfaoui, M.; Qureshi, Y.; Bouraoui, C.; Benyahia, H. Effect of carbon nanotubes on the in-plane dynamic behavior of a carbon/epoxy composite under high strain rate compression using SHPB. Smart Mater. Struct. 2020, 29, 085012. [Google Scholar] [CrossRef]
- Abdulganiyu, I.A.; Oguocha, I.N.A.; Odeshi, A.G. Influence of microfillers addition on the flexural properties of carbon fiber reinforced phenolic composites. Compos. Mater. 2021, 55, 3973–3988. [Google Scholar] [CrossRef]
- Lee, Y.S.; Wetzel, E.D.; Wagner, N.J. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 2003, 38, 2825–2833. [Google Scholar] [CrossRef]
- Khan, M.M.; Iqbal, M.A. Design, development, and calibration of split Hopkinson pressure bar system for Dynamic material characterization of concrete. Int. J. Prot. Struct. 2023, 1–29. [Google Scholar] [CrossRef]
- Wang, M.; Cai, X.; Lu, Y.; Noori, A.; Chen, F.; Chen, L.; Jiang, X. Mechanical behavior and failure modes of bamboo scrimber under quasi-static and dynamic compressive loads. Eng. Fail. Anal. 2023, 146, 107006. [Google Scholar] [CrossRef]
- Ramesh, K.T. High Rates and Impact Experiments. In Springer Handbook of Experimental Solid Mechanics; Sharpe, J., William, N., Eds.; Springer: New York, NY, USA, 2008; pp. 929–959. [Google Scholar]
- Foti, G. Silicon carbide: From amorphous to crystalline material. Appl. Surf. Sci. 2001, 184, 20–26. [Google Scholar] [CrossRef]
- Muranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. Superconductivity in carrier-doped silicon carbide. Sci. Technol. Adv. Mater. 2008, 9, 044204. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Handbook of Mineralogy, Mineralogical Society of America; Mineral Data Publishing: Chantilly, VA, USA, 1995. [Google Scholar]
- Munasir; Triwikantoro; Zainuri, M. Darminto Synthesis of SiO2 nanopowders containing quartz and cristobalite phases from silica sands. Mater. Sci. Pol. 2015, 33, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Jeon, D.; Yum, W.S.; Song, H.; Yoon, S.; Bae, Y.; Oh, J.E. Use of coal bottom ash and cao-cacl2-activated ggbfs binder in the manufacturing of artificial fine aggregates through cold-bonded pelletization. Materials 2020, 13, 5598. [Google Scholar] [CrossRef]
- Sekhar, N.C.; Varghese, L.A. Mechanical, thermal, and rheological studies of phenolic resin modified with intercalated graphite prepared via liquid phase intercalation. Polym. Test. 2019, 79, 106010. [Google Scholar] [CrossRef]
- Ki Park, S.; Nakhanivej, P.; Seok Yeon, J.; Ho Shin, K.; Dose, W.M.; De Volder, M.; Bae Lee, J.; Jin Kim, H.; Park, H.S. Electrochemical and structural evolution of structured V2O5 microspheres during Li-ion intercalation. J. Energy Chem. 2021, 55, 108–113. [Google Scholar] [CrossRef]
Characteristics | HRJ-15881 | SP-6877 |
---|---|---|
Solids (%) | 76.09 | 76.09 |
Phenol (%) | 13.61 | 13.61 |
pH | 8.1 | 8.1 |
Viscosity Brookfield (cP) | 906 | 53.1 |
Gel Time (min.) | 12.5 | 12.5 |
Formaldehyde (HCHO, (%)) | 0.5 | 1.3 |
Momentum | Filler Content | Did Fracture Occur? | |
---|---|---|---|
HRJ-15881 | SP-6877 | ||
15 kg m/s | None | No | No |
28 kg m/s | Yes | Yes | |
15 kg m/s | 0.5 wt.% SiC | No | No |
1.0 wt.% SiC | No | No | |
1.5 wt.% SiC | No | No | |
2.0 wt.% SiC | No | No | |
28 kg m/s | 0.5 wt.% SiC | Yes | Yes |
1.0 wt.% SiC | Yes | Yes | |
1.5 wt.% SiC | No | No | |
2.0 wt.% SiC | No | No | |
15 kg m/s | 0.5 wt.% CS | No | No |
1.0 wt.% CS | No | No | |
1.5 wt.% CS | No | No | |
2.0 wt.% CS | No | No | |
28 kg m/s | 0.5 wt.% CS | No | No |
1.0 wt.% CS | No | No | |
1.5 wt.% CS | No | No | |
2.0 wt.% CS | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulganiyu, I.A.; Adesola, O.E.; Oguocha, I.N.A.; Odeshi, A.G. Dynamic Impact Properties of Carbon-Fiber-Reinforced Phenolic Composites Containing Microfillers. Polymers 2023, 15, 3038. https://doi.org/10.3390/polym15143038
Abdulganiyu IA, Adesola OE, Oguocha INA, Odeshi AG. Dynamic Impact Properties of Carbon-Fiber-Reinforced Phenolic Composites Containing Microfillers. Polymers. 2023; 15(14):3038. https://doi.org/10.3390/polym15143038
Chicago/Turabian StyleAbdulganiyu, Ibraheem A., Oluwasegun. E. Adesola, Ikechukwuka N. A. Oguocha, and Akindele G. Odeshi. 2023. "Dynamic Impact Properties of Carbon-Fiber-Reinforced Phenolic Composites Containing Microfillers" Polymers 15, no. 14: 3038. https://doi.org/10.3390/polym15143038
APA StyleAbdulganiyu, I. A., Adesola, O. E., Oguocha, I. N. A., & Odeshi, A. G. (2023). Dynamic Impact Properties of Carbon-Fiber-Reinforced Phenolic Composites Containing Microfillers. Polymers, 15(14), 3038. https://doi.org/10.3390/polym15143038