Effects of Rotating Rice with Upland Crops and Adding Organic Amendments, and of Related Soil Quality on Rice Yield in the Vietnamese Mekong Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Treatments and Experimental Design
2.3. Sampling and Analysis of Compost and Soil during the Experiment
2.3.1. Compost Analysis
2.3.2. Soil Sampling and Analysis
2.3.3. Grain Yield, Above-Ground Biomass, and Yield Components
2.3.4. Soil Quality Index
2.4. Statistical Analysis
3. Results
3.1. Yield Components
3.2. Grain Yield and Above-Ground Biomass
3.3. Yield vs. Soil Properties
3.4. Rice Yield vs. SQI
4. Discussion
4.1. Soil Amendment and Crop Rotation Effects on Rice Growth
4.2. Soil Quality Index as a Predictor of Rice Yield
4.3. Rice Yield as Affected by the Cumulative Effects of Soil Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [PubMed]
- Anh, D.T.; Tinh, T.V.; Vang, N.N. The domestic rice value chain in the Mekong Delta. In While Gold: The Commercialization of Rice Farming in the Lower Mekong Basin; Cramb, R., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 375–394. [Google Scholar]
- Linh, T.B.; Guong, V.T.; Tran, V.T.T.; Khoa, L.V.; Olk, D.; Cornelis, W.M. Effects of crop rotation on properties of a Vietnam clay soil under rice-based cropping systems in small-scale farmers’ fields. Soil Res. 2016, 55, 162–171. [Google Scholar] [CrossRef]
- Linh, T.B.; Cornelis, W.; Elsacker, S.V.; Khoa, L.V. Socio-economic evaluation on how crop rotations on clayey soils affect rice yield and farmers’ income in the Mekong Delta, Vietnam. Int. J. Environ. Rural Dev. 2013, 4, 62–68. [Google Scholar]
- Hoa, N.M.; Janssen, B.H.; Oenema, O.; Dobermann, A. Comparison of partial and complete soil K budgets under intensive rice cropping in the Mekong Delta, Vietnam. Agric. Ecosyst. Environ. 2006, 116, 121–131. [Google Scholar] [CrossRef]
- Linh, T.B.; Sleutel, S.; Elsacker, S.V.; Guong, V.T.; Khoa, L.V.; Cornelis, W.M. Inclusion of upland crops in rice-based rotations affects chemical properties of clay soil. Soil Use Manag. 2015, 31, 313–320. [Google Scholar] [CrossRef]
- Linh, T.B.; Khoa, L.V.; Elsacker, S.V.; Cornelis, W.M. Effect of cropping system on physical properties of clay soil under intensive rice cultivation. Land Degrad. Dev. 2016, 27, 973–982. [Google Scholar]
- Cassman, K.G.; De Datta, S.K.; Olk, D.C.; Alcantara, J.; Samson, M.; Descalsota, J.; Dizon, M. Yield decline and nitrogen economy of long-term experiments on continuous, irrigated rice systems in the tropics. In Soil Management: Experimental Basis for Sustainability and Environmental Quality, 1st ed.; Lal, R., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 181–222. [Google Scholar]
- Flinn, J.C.; De Datta, S.K.; Labadan, E. An analysis of long-term rice yields in a wetland soil. Field Crop. Res. 1982, 5, 201–216. [Google Scholar] [CrossRef]
- Peng, S.; Huang, J.; Cassman, K.G.; Laza, R.C.; Misperas, R.M.; Khush, G.S. The importance of maintenance breeding: A case study of the first miracle rice varitety-IR8. Field Crop. Res. 2010, 119, 342–347. [Google Scholar] [CrossRef]
- Dawe, D.; Dobermann, A.; Moya, P.; Abdulrachman, S.; Singh, B.; Lal, P.; Li, S.Y.; Lin, B.; Panaullah, G.; Sariam, O.; et al. How widespread are yield declines in long-term rice experiments in Asia? Field Crop. Res. 2000, 66, 175–193. [Google Scholar] [CrossRef]
- Espe, M.B.; Hill, J.E.; Leinfelder-Miles, M.; Espino, L.A.; Mutters, R.; Mackill, D.; van Kessel, C.; Linquist, B.A. Rice yield improvements through plant breeding are offset by inherent yield declines over time. Field Crop. Res. 2018, 222, 59–65. [Google Scholar] [CrossRef]
- Ladha, J.K.; Radanielson, A.M.; Rutkoski, J.E.; Buresh, R.J.; Dobermann, A.; Angeles, O.; Pabuayon, I.L.B.; Santos-Madellín, C.; Fritsche-Neto, R.; Chivenge, P.; et al. Steady agronomic and genetic interventions are essential for sustaining productivity in intensive rice cropping. Proc. Natl. Acad. Sci. USA 2021, 118, e2110807118. [Google Scholar] [CrossRef]
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 2918. [Google Scholar] [CrossRef]
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012, 3, 1293. [Google Scholar] [CrossRef] [PubMed]
- Van, N.P.H.; Nga, T.T.; Arai, H.; Hosen, Y.; Chiem, N.H.; Inubushi, K. Rice straw management by farmers in a triple rice production system in the Mekong delta, Vietnam. Trop. Agric. Dev. 2014, 58, 155–162. [Google Scholar]
- Yadvinder-Singh; Bijay-Singh; Timsina, J. Crop residue management for nutrient cycling and improving soil productivity rice-based cropping systems in the tropics. Adv. Agron. 2005, 85, 269–407. [Google Scholar]
- Chivenge, P.; Sharma, S.; Bunquin, M.A.; Hellin, J. Improving nitrogen use efficiency—A key for sustainable rice production systems. Front. Sustain. Food Syst. 2021, 5, 737412. [Google Scholar] [CrossRef]
- Soong, J. Soil Fertility and Changes in Fertilizer Use for Intensive Rice Cultivation in the Red River Delta and Mekong Delta of Vietnam; Independent Study Project (ISP) Collection. 340; School for International Training: Brattleboro, VT, USA, 2006; Available online: https://digitalcollections.sit.edu/isp_collection/340/ (accessed on 1 May 2023).
- Fageria, N.K.; Carvalho, G.D.; Santos, A.B.; Ferreira, E.P.B.; Knupp, A.M. Chemistry of lowland rice soils and nutrient availability. Commun. Soil Sci. Plant Anal. 2011, 42, 1913–1933. [Google Scholar] [CrossRef]
- Brye, K.R.; Rogers, C.W.; Smartt, A.D.; Norman, R.J.; Hardke, J.T.; Gbur, E.E. Methane emissions as affected by crop rotation and rice cultivar in the Lower Mississippi River Valley, USA. Geoderma Reg. 2017, 11, 8–17. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, X.; Wang, D.; Chen, L.; Xu, C.; Zhang, X. Effect of long-term paddy-upland yearly rotations on rice (Oryza sativa) yield, soil properties, and bacteria community diversity. Sci. World J. 2012, 2012, 279641. [Google Scholar] [CrossRef]
- Linh, T.B.; Sleutel, S.; Guong, V.T.; Khoa, L.V.; Cornelis, W.M. Deeper tillage and root growth in annual rice-upland cropping systems result in improved rice yield and economic profit relative to rice monoculture. Soil Tillage Res. 2015, 154, 44–52. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Hue, N.V.; Silva, J.A. Organic soil amendments for sustainable agriculture: Organic sources of nitrogen, phosphorus, and potassium. In Plan Nutrient Management in Hawaii’s Soils: Approaches for Tropical and Subtropical Agriculture; Silva, J.A., Uchida, R., Eds.; University of Hawaii, College of Tropical Agriculture and Human Resources: Honolulu, HI, USA, 2000; pp. 133–144. [Google Scholar]
- Watanabe, T.; Man, L.H.; Vien, D.M.; Khang, V.T.; Ha, N.N.; Lin, T.B.; Ito, O. Effects of continuous rice straw compost application on rice yield and soil properties in the Mekong delta. Soil Sci. Plant Nutr. 2009, 55, 754–763. [Google Scholar] [CrossRef]
- Watanabe, T.; Luu, H.M.; Inubushi, K. Effects of the continuous application of rice straw compost and chemical fertilizer on soil carbon and available silicon under a double rice cropping system in the Mekong delta, Vietnam. Jpn. Agric. Res. Q. 2017, 51, 233–239. [Google Scholar] [CrossRef]
- Witt, C.; Cassmann, K.G.; Olk, D.C.; Biker, U.; Liboon, S.P.; Samson, M.I.; Ottow, J.C.G. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 2000, 225, 263–278. [Google Scholar] [CrossRef]
- Cass, A.; Gusli, S.; MacLeod, D.A. Sustainability of soil structure quality in rice paddy soya-bean cropping systems. Soil Tillage Res. 1994, 31, 339–352. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and nature application on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Sta Cruz, P.C.; Gines, G.C.; Samson, M.I.; Descalsota, J.P.; Alcantara, J.M.; Dizon, M.A.; Olk, D.C. Soil organic matter and the indigenous nitrogen supply of intensive irrigated rice systems in the tropics. Plant Soil 1996, 182, 267–278. [Google Scholar] [CrossRef]
- Linh, T.B.; Guong, V.T.; Dien, B.N.; Hung, N.N. Improvement of soil fertility and rice yield on old alluvial soil at Moc Hoa district, Long An province. Can Tho Uni. J. Sci. 2013, 26, 43–49. (In Vietnamese) [Google Scholar]
- Nghi, N.T.; Romasanta, R.R.; Hieu, N.V.; Vinh, L.Q.; Du, N.X.; Ngan, N.V.C.; Chivenge, P.; Hung, N.V. Rice straw-based composting. In Sustainable Rice Straw Management; Gummert, M., Hung, N.V., Chivenge, P., Douthwaite, B., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 33–41. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Soil Science Division Staff. Soil Survey Manual; Agriculture Handbook, No.18; United States Department of Agriculture: Washington, DC, USA, 2017; pp. 83–200. [Google Scholar]
- Landon, J.B. Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics; Longman; Booker Agriculture International Ltd.: London, UK; New York, NY, USA, 1984; pp. 106–156. [Google Scholar]
- Metson, A.J. Methods of Chemical Analysis for Soil Survey Samples. Soil Sci. 1957, 83, s245. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Son: Hoboken, NJ, USA, 1984; pp. 441–457. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Houba, V.J.G. Soil testing and fertilizer recommendation. In Proceedings of the 25th International Course on Vegetation Production: Selected Topics in Vegetation Production, Wageningen, The Netherlands, 13 August–18 November 1995. [Google Scholar]
- Walinga, I.; Van Vark, W.; Houba, V.J.G.; Van de Lee, J.J. Soi and Plant Analysis. Part 7. In Plant Analysis Procedures; Department of Soil Science and Plant Nutrition, Wageningen Agricultural University: Wageningen, The Netherlands, 1989; pp. 13–16. [Google Scholar]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil and Analysis, Part 4 Physical Methods, Soil Science Society of America Book Series; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; Volume 5, pp. 255–293. [Google Scholar]
- Yolcubal, I.; Brusseau, M.L.; Artiola, J.F.; Wierenga, P.; Wilson, L.G. Environmental physical properties and processes. In Environmental Monitoring and Characterization; Artiola, J.F., Pepper, I.L., Brusseau, M.L., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2004; pp. 207–239. [Google Scholar]
- Blake, G.R. Particle density. In Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series; Chesworth, W., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 504–505. [Google Scholar]
- Reynolds, W.D.; Bowman, B.T.; Drury, C.F.; Tan, C.S.; Lu, X. Indicators of good soil physical quality: Density and storage parameters. Geoderma 2002, 110, 131–146. [Google Scholar] [CrossRef]
- METER Group AG. KSAT Operation Manual; UMS GmbH: Munich, Germany, 2013; p. 34. [Google Scholar]
- Pertassek, T.; Peters, A.; Durner, W. HYPROP-FIT Software User’s Manual, V.3.0; METER Group AG: München, Germany, 2015; p. 66. [Google Scholar]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Brewer, R. Fabric and Mineral Analysis of Soils; John Wiley & Sons, Inc.: New York, NY, USA, 1964; p. 470. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis Part I, Physical and Mineralogical Methods, Agronomy Monograph No 9, 2nd ed.; Klute, A., Ed.; American Society of Agronomy—Soil Science Society of America: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis, Part 3 Chemical Methods. Number 5 in the Soil Science Society of America Book Series; Bartels, J.M., Bigham, J.M., Eds.; Soil Science Society of America, Inc.: Madison, Wisconsin, USA, 1996; pp. 1201–1229. [Google Scholar]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, G.; Camerlynck, R. Chemical Analysis of Plants and Soils; RUG. Laboratory of Analytical Agrochemistry, State University: Ghent, Belgium, 1982; p. 63. [Google Scholar]
- Dobermann, A.; Dawe, D.; Roetter, R.P.; Cassman, K.G. Reversal of rice yield decline in a long-term continuous cropping experiment. Agron. J. 2000, 92, 633–643. [Google Scholar] [CrossRef]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981; pp. 235–239. [Google Scholar]
- Linh, T.B. Soil-Improving Cropping Systems for Sustainable Rice Production in the Vietnamese Mekong Delta. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2016. [Google Scholar]
- Lima, A.C.R.; Brussaard, L.; Totola, M.R.; Hoogmoed, W.B.; de Goede, R.G.M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 2013, 64, 194–200. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Lima, A.C.R. Soil Quality Assessment in Rice Production Systems. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 7 November 2007. [Google Scholar]
- Vasu, D.; Singh, S.K.; Ray, S.K.; Duraisami, V.P.; Tiwary, P.; Chandran, P.; Nimkar, A.M.; Anantwar, S.G. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma 2016, 282, 70–79. [Google Scholar] [CrossRef]
- Askari, M.S.; Holden, N.M. Indices for qualitative evaluation of soil quality under grassland management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Shahid, M.; Nayak, A.K.; Shukla, A.K.; Tripathi, R.; Kumar, A.; Mohanty, S. Long-term effects of fertilizer and manure applications on soil quality and yields in a sub-humid tropical rice-rice system. Soil Use Manag. 2013, 29, 322–332. [Google Scholar] [CrossRef]
- Cornelis, W.M.; Akodi, D.; Komutunga, E.; Agaba, C.; Ahumuza, E.; Oratungye, K. Exploring visual soil evaluation and examination methods on highly-weathered tropical soil. Soil Tillage Res. 2019, 195, 104360. [Google Scholar] [CrossRef]
- Popat, R.; Banakara, K. Doebioresearch: Analysis of Design of Experiments for Biological Research. 2020. Available online: https://CRAN.R-project.org/package=doebioresearch (accessed on 1 May 2023).
- Haque, M.M.; Datta, J.; Ahmed, T.; Ehsanullah, M.; Karim, M.N.; Akter, M.S.; Iqbal, M.A.; Baazeem, A.; Hadifa, A.; Ahmed, S.; et al. Organic amendments boost soil fertility and rice productivity and reduce methane emissions from paddy fields under sub-tropical conditions. Sustainability 2021, 13, 3103. [Google Scholar] [CrossRef]
- Kwesiga, J.; Grotelüschen, K.; Senthilkumar, K.; Neuhoff, D.; Döring, T.F.; Becker, M. Effect of organic amendments on the productivity of rainfed lowland rice in the Kilombero floodplain of Tanzania. Agronomy 2020, 10, 1280. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic manure coupled with inorganic fertilizer: An approach for sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef]
- De Datta, S.K. Principles and Practices of Rice Production; John Wiley & Sons, Inc.: New York, NY, USA, 1981; pp. 221–258. [Google Scholar]
- Liu, M.; Hu, F.; Chen, X.; Huang, Q.; Jiao, J.; Zhang, B.; Li, H. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments. Appl. Soil Ecol. 2009, 42, 166–175. [Google Scholar] [CrossRef]
- Litardo, R.C.M.; Bendezú, S.J.G.; Zenteno, M.D.C.; Pérez-Almeida, I.B.; Parismoreno, L.L.; García, E.D.L. Effect of mineral and organic amendments on rice growth and yield in saline soils. J. Saudi Soc. Agric. Sci. 2022, 21, 29–37. [Google Scholar]
- Wang, M.; Feng, X.; Ma, H.; Wang, D.; Chen, S. Changes in soil C and N stocks and their effects on rice yield under long-term upland-paddy rotations. Agronomy 2023, 13, 1028. [Google Scholar] [CrossRef]
- Dengiz, O. Soil quality index for paddy fields based on standard scoring functions and weight allocation method. Arch. Agron. Soil Sci. 2019, 66, 301–315. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Li, S.; He, P.; Liang, G.; Lv, J.; Jin, H. Assessing soil quality of gleyed paddy soils with different productivities in subtropical China. Catena 2015, 133, 293–302. [Google Scholar] [CrossRef]
- Biswas, S.; Hazra, G.C.; Purakayastha, T.J.; Saha, N.; Mitran, T.; Roy, S.S.; Basak, N.; Mandal, B. Establishment of critical limits of soil indicators and indices of soil quality in rice—Rice cropping systems under different soil orders. Geoderma 2017, 292, 34–48. [Google Scholar] [CrossRef]
- Lenka, N.K.; Meena, B.P.; Lal, R.; Khandagle, A.; Lenka, S.; Shirale, A.O. Comparing four indexing approaches to define soil quality in an intensively cropped region of Northern India. Front. Environ. Sci. 2022, 10, 865473. [Google Scholar] [CrossRef]
- Hemmati, S.; Yaghmaeian, N.; Farhangi, M.B.; Sabouri, A. Soil quality assessment of paddy fields (in Northern Iran) with different productivities: Establishing the critical limits of minimum data set indicators. Environ. Sci. Pollut. Res. 2023, 30, 10286–10296. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, M.; Painuli, D.K.; Misra, A.K.; Ghosh, P.K. Soil quality effects of tillage and residue under rice–wheat cropping on a Vertisol in Inida. Soil Tillage Res. 2007, 92, 243–250. [Google Scholar] [CrossRef]
- Rezaee, L.; Moosavi, A.A.; Davatgar, N.; Sepaskhah, A.R. Soil quality indices of paddy soils in Guilan province of northern Iran: Spatial variability and their influential parameters. Ecol. Indic. 2020, 17, 106566. [Google Scholar] [CrossRef]
- Sys, C.; Van Ranst, E.; Debaveye, J.; Beernaert, F. Land Evaluation. Part III: Crop Requirements. Agricultural Publications, No. 7; General Administration for Development Cooporation: Brussels, Belgium, 1993; pp. 117–124. [Google Scholar]
- Fairhurst, T.; Witt, C.; Dobermann, A.; Quijano-Guerta, C.; Balasubramanian, V. Mineral deficiencies and toxicities. In Rice: A Practical Guide to Nutrient Management, 2nd ed.; Fairhurst, T., Witt, C., Buresh, R., Dobermann, A., Eds.; International Rice Research Institute: Los Baños, Philippines; International Plant Nutrient Institute; International Potash Institute: Singapore, 2007; pp. 46–85. [Google Scholar]
- Schaller, J.; Wu, B.; Amelung, W.; Hu, Z.; Stein, M.; Lehndorff, E.; Obst, M. Silicon as a potential limiting factor for phosphorus availability in paddy soils. Sci. Rep. 2022, 12, 16329. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Shen, J.; Sun, M.; Hu, Y.; Jiang, W.; Wang, J.; Li, Y.; Wu, J. Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere 2021, 31, 103–115. [Google Scholar] [CrossRef]
- Hoque, M.M.; Kobata, T. Effect of soil compaction on grain yield of rice (Oryza sativa L.) under water-deficit stress during the reproductive stage. Plant Prod. Sci. 2000, 3, 316–322. [Google Scholar] [CrossRef]
- Nwite, J.C.; Obalum, S.E.; Igwe, C.A.; Wakatsuki, T. Soil physical properties and grain yields of lowland rice in response to sawah preparation intensities and soil amendment types. Biol. Agric. Hortic. 2016, 32, 192–205. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Yang, X.M. Temporal effects of food waste compost on soil physical quality and productivity. Can. J. Soil Sci. 2015, 95, 251–268. [Google Scholar] [CrossRef]
- Kirchmann, H.; Gerzabek, M.H. Relationship between soil organic matter and micropores in a long-term experiment at Ultuna, Sweden. J. Plant Nutr. Soil Sci. 1999, 162, 493–498. [Google Scholar] [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S. Hydraulic properties of soil under warming climate. In Climate Change and Soil Interactions, 1st ed.; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 473–508. [Google Scholar]
- Kar, S.; Ghildyal, B.P. Rice root growth in relation to size, quantity and rigidity of pores. Plant Soil 1975, 43, 627–637. [Google Scholar] [CrossRef]
- Gu, D.; Zhen, F.; Hannaway, D.B.; Zhu, Y.; Liu, L.; Cao, W.; Tang, L. Quantitative classification of rice (Oryza sativa L.) root length and diameter using image analysis. PLoS ONE 2017, 12, e0169968. [Google Scholar] [CrossRef] [PubMed]
- Chunmei, X.; Liping, C.; Song, C.; Guang, C.; Danying, W.; Xiufu, Z. Rhizosphere aeration improves nitrogen transformation in soil, and nitrogen absorption and accumulation in rice plants. Rice Sci. 2020, 27, 162–174. [Google Scholar] [CrossRef]
- Dossou-Yovo, E.R.; Kouadio, S.A.K.; Saito, K. Effects of mid-season drainage on iron toxicity, rice yield, and water productivity in irrigated systems in the derived savannah agroecological zone of West Africa. Field Crops Res. 2003, 296, 108901. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, S.; Jin, Q. Effects of aerated irrigation on leaf senescence at late growth stage and gran yield of rice. Rice Sci. 2012, 19, 44–48. [Google Scholar] [CrossRef]
- Linh, T.B.; Ghyselinck, T.; Khanh, T.H.; Dung, T.V.; Guong, V.T.; Khoa, L.V.; Cornelis, W. Temporal variation of hydro-physical properties of paddy clay soil under different rice-based cropping systems. Land Degrad. Dev. 2017, 28, 1752–1762. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Peng, X.; Wang, L.L.; Zhao, Q.G.; Lin, H. Temporal changes in shrinkage behavior of two paddy soils under alternative flooding and drying cycles and its consequence on percolation. Geoderma 2013, 192, 12–20. [Google Scholar] [CrossRef]
- Fine, A.K.; van Es, H.M.; Schindelbeck, R.R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 2017, 81, 589–601. [Google Scholar] [CrossRef]
- Narayanaswamy, C.; Prakash, N.B. Calibration and categorization of plant available silicon in rice soils of South India. J. Plant Nutr. 2009, 32, 1237–1254. [Google Scholar] [CrossRef]
Soil Properties | Depth Interval | |||
---|---|---|---|---|
0–15 cm | 15–45 cm | 45–100 cm | 100–180 cm | |
pHH2O (1:2.5) | 4.63 | 5.71 | 5.22 | 5.80 |
pHKCl (1:2.5) | 3.0 | 4.23 | 4.21 | 4.03 |
H+ (meq 100 g−1) | 0.24 | 0.01 | 0.01 | 0.02 |
K+ (meq 100 g−1) | 0.23 | 0.25 | 0.32 | 0.47 |
Na+ (meq 100 g−1) | 1.17 | 1.10 | 1.22 | 1.87 |
Ca2+ (meq 100 g−1) | 7.46 | 9.06 | 8.46 | 6.80 |
Mg2+ (meq 100 g−1) | 3.83 | 6.21 | 6.86 | 7.66 |
CEC (meq 100 g−1) | 12.93 | 16.63 | 16.87 | 16.82 |
Organic matter (g kg−1) | 55.2 | 6.0 | 6.0 | 9.4 |
Sand (g kg−1) | 14 | 9 | 11 | 11 |
Silt (g kg−1) | 535 | 484 | 457 | 453 |
Clay (g kg−1) | 451 | 507 | 532 | 536 |
Texture | Silty clay | Silty clay | Silty clay | Silty clay |
Bulk density (g cm−3) | 1.04 | 1.43 | 1.36 | 1.27 |
Parameters | RS+CM j | SGC |
---|---|---|
Organic matter (g kg−1) a | 546 | 307 |
pHH2O (1:2.5) b | 8.0 | 5.0 |
ECH2O (1:2.5) (mS cm−1) c | 3.1 | – |
N (g kg−1) d | 24.1 | 22.9 |
P (g kg−1) e | 10.0 | 15.6 |
K (g kg−1) f | 23.9 | 18.2 |
Ca (g kg−1) g | 17.5 | 76.1 |
Mg (g kg−1) h | 12.1 | 0.8 |
C:N ratio i | 11.8 | 6.7 |
Cropping System | Amendment | Grain Yield (t ha−1) | Above-Ground Biomass (t ha−1) |
---|---|---|---|
R–R–R | NO-AM | 6.55 ± 0.11 | 10.40 ± 0.35 |
RS+CM | 7.25 ± 0.04 | 11.48 ± 0.18 | |
SGC | 7.00 ± 0.26 | 11.51 ± 0.42 | |
Se–R–R | NO-AM | 6.86 ± 0.15 | 11.71 ± 0.82 |
RS+CM | 6.87 ± 0.93 | 11.33 ± 1.54 | |
SGC | 7.30 ± 0.46 | 12.38 ± 1.15 | |
So–R–R | NO-AM | 6.77 ± 0.40 | 11.65 ± 0.11 |
RS+CM | 7.08 ± 0.14 | 11.50 ± 0.31 | |
SGC | 7.11 ± 0.41 | 11.76 ± 0.46 | |
Cropping system | |||
R–R–R | 6.93 | 11.13 | |
Se–R–R | 7.01 | 11.81 | |
So–R–R | 6.99 | 11.64 | |
Amendment | |||
NO-AM | 6.73 b | 11.25 b | |
RS+CM | 7.07 a | 11.44 ab | |
SGC | 7.14 a | 11.88 a | |
LSD0.05 | |||
Cropping system | ns | ns | |
Amendment | 0.29 * | 0.49 * | |
Cropping system × Amendment | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qui, N.V.; Khoa, L.V.; Phuong, N.M.; Vien, D.M.; Dung, T.V.; Linh, T.B.; Khanh, T.H.; Thuong, B.T.; Tran, V.T.T.; Nghia, N.K.; et al. Effects of Rotating Rice with Upland Crops and Adding Organic Amendments, and of Related Soil Quality on Rice Yield in the Vietnamese Mekong Delta. Agronomy 2024, 14, 1185. https://doi.org/10.3390/agronomy14061185
Qui NV, Khoa LV, Phuong NM, Vien DM, Dung TV, Linh TB, Khanh TH, Thuong BT, Tran VTT, Nghia NK, et al. Effects of Rotating Rice with Upland Crops and Adding Organic Amendments, and of Related Soil Quality on Rice Yield in the Vietnamese Mekong Delta. Agronomy. 2024; 14(6):1185. https://doi.org/10.3390/agronomy14061185
Chicago/Turabian StyleQui, Nguyen Van, Le Van Khoa, Nguyen Minh Phuong, Duong Minh Vien, Tran Van Dung, Tran Ba Linh, Tran Huynh Khanh, Bui Trieu Thuong, Vo Thi Thu Tran, Nguyen Khoi Nghia, and et al. 2024. "Effects of Rotating Rice with Upland Crops and Adding Organic Amendments, and of Related Soil Quality on Rice Yield in the Vietnamese Mekong Delta" Agronomy 14, no. 6: 1185. https://doi.org/10.3390/agronomy14061185
APA StyleQui, N. V., Khoa, L. V., Phuong, N. M., Vien, D. M., Dung, T. V., Linh, T. B., Khanh, T. H., Thuong, B. T., Tran, V. T. T., Nghia, N. K., Tien, T. M., Abatih, E., Verdoodt, A., Sleutel, S., & Cornelis, W. (2024). Effects of Rotating Rice with Upland Crops and Adding Organic Amendments, and of Related Soil Quality on Rice Yield in the Vietnamese Mekong Delta. Agronomy, 14(6), 1185. https://doi.org/10.3390/agronomy14061185