The Study of Radioactive Fallout Source of Low-Equivalent Nuclear Bursts Based on Nuclear Cloud Simulation Using the CFD-DPM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets and Processing
2.1.1. Datasets of Historical U.S. Nuclear Weapons Tests
2.1.2. Data Processing of U.S. Standard Atmosphere
2.2. Researching Methodology
2.3. Numerical Methods and Solver Development
2.3.1. Governing Equations of Gas Flow (Eulerian Method)
2.3.2. Governing Equations of Particles Flow (Lagrangian Method)
2.3.3. Numerical Solution Method of CFD-DPM
- First, the Eulerian scheme reads the initial and boundary conditions as well as the initial information of particles for calculating the fluid phase interaction with the initial particles, and then transmits the momentum information to the Lagrangian system;
- Second, the gas forces (drag, buoyancy, etc.) acting on particles are obtained by the Lagrangian scheme, and then calculates the discrete phase (particle) momentum and position driven by the carrier gas;
- Third, the interaction force information for particles advances to the next time step and is adopted to renew the particle momentum and position of the Lagrangian scheme;
- Next, the latest particle information is communicated to the Eulerian scheme and is used to calculate the particle–fluid momentum interaction for the next time step of the Eulerian calculation;
- Finally, the loop between the Eulerian–Lagrangian framework continues until the termination time set by the customers, the particle positions are stored in the Eulerian grid cells of each time step and comprise the trajectories of particles.
2.4. Initialization of the Numerical Model
2.4.1. Construction of Stable Atmosphere Stratification
- First, the atmosphere is adiabatic;
- Second, the acceleration of the vertical motion of the atmosphere is far less than the acceleration of gravity, leading to the neglect of the acceleration term in the momentum equation [49];
- Third, the viscous force is neglected.
2.4.2. Construction of the Equilibrium Fireball of Nuclear Explosions
2.4.3. Construction of Radioactive Particles
3. Test Cases of the Gas-Particle Nuclear Cloud
3.1. Numerical Discretization of Computational Cases
3.1.1. Numerical Schemes
3.1.2. Mesh and Boundary Conditions
3.2. Validation of Atmospheric Stratification
3.3. Validation and Analysis of Nuclear Cloud Rising
3.4. Analysis of Stabilization Nuclear Cloud Activity Distribution
3.4.1. Activity Calculation of Stabilization Cloud
3.4.2. Validation of the Activity Distribution
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Liu, W.; Li, X.; Yang, M.; Li, P.; Wu, Y.; Chen, X. Prediction and Analysis of Nuclear Explosion Radioactive Pollutant Diffusion Model. Pollutants 2023, 3, 43–56. [Google Scholar] [CrossRef]
- Kanarska, Y.; Lomov, I.; Glenn, L.; Antoun, T. Numerical Simulation of Cloud Rise Phenomena Associated with Nuclear Bursts. Ann. Nucl. Energy 2009, 36, 1475–1483. [Google Scholar] [CrossRef]
- Li, F.; Liu, W. Important Role of Turbulence on the Distribution of Particle Radioactivity in the Nuclear Explosions. J. Environ. Radioact. 2024, 272, 107329. [Google Scholar] [CrossRef] [PubMed]
- Lundquist, K.A.; Arthur, R.S.; Neuscamman, S.; Morris, J.P.; Scullard, C.R.; Cook, A.W.; Wimer, N.G.; Goldstein, P.; Spriggs, G.D.; Glascoe, L.G.; et al. Examining the Effects of Soil Entrainment during Nuclear Cloud Rise on Fallout Predictions Using a Multiscale Atmospheric Modeling Framework. J. Environ. Radioact. 2023, 270, 107299. [Google Scholar] [CrossRef]
- Norment, H.G. DELFIC: Department of Defense Fallout Prediction System, Vol. I. Fundamentals; ADA 088-367; Atmospheric Science Associates: Bedford, MA, USA, 1979. [Google Scholar]
- Harvey, T.; Serduke, F.; Edwards, L. KDFOC3: A Nuclear Fallout Assessment Capability; UCRL-TM-222788; LLNL: Livermore, CA, USA, 1992. [Google Scholar]
- Glasstone, S.; Dolan, P.J. The Effects of Nuclear Weapons; U.S. Department of Defense: Washington, DC, USA, 1977. [Google Scholar]
- Kanarska, Y.; Dunn, T.; Glascoe, L.; Lundquist, K.; Noble, C. Semi-Implicit Method to Solve Compressible Multiphase Fluid Flows without Acoustic Time Step Restrictions. Comput. Fluids 2020, 210, 104651. [Google Scholar] [CrossRef]
- Won, S.; Lee, C. Simulation of the Mushroom Cloud Generated from a High-Energy Explosion Using Large-Eddy Simulation. J. Mech. Sci. Technol. 2020, 34, 2443–2453. [Google Scholar] [CrossRef]
- Khazins, V.M.; Shuvalov, V.V.; Soloviev, S.P. Numerical Modeling of Formation and Rise of Gas and Dust Cloud from Large Scale Commercial Blasting. Atmosphere 2020, 11, 1112. [Google Scholar] [CrossRef]
- Hao, H.; Liu, W.; Yi, Z.; Liu, Q.; Zhang, K.; Zhao, F. Simularion of Explosive Cloud Diffusion Based on OpenFOAM. Nulcear Electron. Detect. Technol. 2022, 42, 739–744. [Google Scholar]
- Heffter, J.L. ARL Fallout Prediction Technique; ERLTM-ARL 13; NOAA/Air Resources Laboratory: Silver Spring, MD, USA, 1969. [Google Scholar]
- Norment, H.G. SIMFIC: A Simple, Efficient Fallout Prediction Model. Final Report, 16 January–31 December 1979; AD-A-089187; Atmospheric Science Associates: Bedford, MA, USA, 1979. Available online: https://www.osti.gov/biblio/6342836 (accessed on 7 November 2024).
- Kristensen, H.M. The B61 Life-Extension Program: Increasing NATO Nuclear Capability and Precision Low-Yield Strikes; Federation of American Scientists: Washington, DC, USA, 2011; Available online: https://www.jstor.org/stable/resrep18629 (accessed on 8 November 2024).
- OpenFOAM: API Guide: OpenFOAM®: Open Source CFD: API. Available online: https://www.openfoam.com/documentation/guides/latest/api/index.html (accessed on 15 April 2024).
- Hawthorne, H.A. Compilation of Local Fallout Data from Test Detonations 1945–1962 Extracted from DASA 1251. Volume I. Continental US Tests; General Electric Co.: Santa Barbara, CA, USA, 1979. [Google Scholar]
- Krupcale, M. Initial Overview, Description, and Assessment of the DELFIC Atmospheric Transport Model; ORNL/TM--2022/2602, 2001403; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2023. [Google Scholar] [CrossRef]
- NOAA-S/T 76-1562; U.S. Standard Atmosphere, 1976. NOAA/Nation Ocean and Atmosphere Administration: Washington, DC, USA, 1976.
- Rolph, G.D.; Ngan, F.; Draxler, R.R. Modeling the Fallout from Stabilized Nuclear Clouds Using the HYSPLIT Atmospheric Dispersion Model. J. Environ. Radioact. 2014, 136, 41–55. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Perić, M.; Street, R.L. Computational Methods for Fluid Dynamics; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Rhie, C.M.; Chow, W.L. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. AIAA J. 1983, 21, 1525–1532. [Google Scholar] [CrossRef]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab; Fluid Mechanics and Its Applications; Springer International Publishing: Cham, Switzerland, 2016; Volume 113. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.; Pearson Education Ltd.: Harlow, UK; New York, NY, USA, 2007. [Google Scholar]
- Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the Development of a Reynolds-Stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. Paper 8—The Numerical Computation of Turbulent Flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion; Patankar, S.V., Pollard, A., Singhal, A.K., Vanka, S.P., Eds.; Pergamon: Oxford, UK, 1983; pp. 96–116. [Google Scholar] [CrossRef]
- Tahry, S.H.E. K-Epsilon Equation for Compressible Reciprocating Engine Flows. J. Energy 1983, 7, 345–353. [Google Scholar] [CrossRef]
- Islas, A.; Rodríguez-Fernández, A.; Betegón, C.; Martínez-Pañeda, E.; Pandal, A. CFD Simulations of Turbulent Dust Dispersion in the 20 L Vessel Using OpenFOAM. Powder Technol. 2022, 397, 117033. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete Particle Simulation of Particulate Systems: Theoretical Developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Amsden, A.A.; O’Rourke, P.J.; Butler, T.D. KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays; LA-11560-MS, 6228444; Los Alamos National Lab.: Los Alamos, NM, USA, 1989. [Google Scholar] [CrossRef]
- Putnam, A. Integratable Form of Droplet Drag Coefficient. Ars J. 1961, 31, 1467–1468. [Google Scholar]
- Shiller, L.; Naumann, A. A Drag Coefficient Correlation. Z. Ver. Dtsch. Ingenieure 1935, 77, 318–320. [Google Scholar]
- Crowe, C.T.; Schwarzkopf, J.D.; Sommerfeld, M.; Tsuji, Y. (Eds.) Multiphase Flows with Droplets and Particles, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Fernandes, C.; Semyonov, D.; Ferrás, L.L.; Nóbrega, J.M. Validation of the CFD-DPM Solver DPMFoam in OpenFOAM through Analytical, Numerical and Experimental Comparisons. Granul. Matter 2018, 20, 64. [Google Scholar] [CrossRef]
- Lessani, B.; Papalexandris, M.V. Time-Accurate Calculation of Variable Density Flows with Strong Temperature Gradients and Combustion. J. Comput. Phys. 2006, 212, 218–246. [Google Scholar] [CrossRef]
- Kumar, R.; Dewan, A. URANS Computations with Buoyancy Corrected Turbulence Models for Turbulent Thermal Plume. Int. J. Heat Mass Transf. 2014, 72, 680–689. [Google Scholar] [CrossRef]
- Kumar, R.; Dewan, A. Partially-Averaged Navier–Stokes Method for Turbulent Thermal Plume. Heat Mass Transf. 2015, 51, 1655–1667. [Google Scholar] [CrossRef]
- Demirdžić, I.; Lilek, Ž.; Perić, M. A Collocated Finite Volume Method for Predicting Flows at All Speeds. Int. J. Numer. Methods Fluids 1993, 16, 1029–1050. [Google Scholar] [CrossRef]
- Oliveira, J.; Raad, I.; Issa, P. An improved PISO algorithm for the computation of buoyancy-driven flows. Numer. Heat Transf. Part B Fundam. 2001, 40, 473–493. [Google Scholar] [CrossRef]
- Hay, W.A. A Low-Mach Number Solver for Variable Density Flows; Chalmers University of Technology: Gothenburg, Sweden, 2018. [Google Scholar]
- Hærvig, J. On the Adhesive Behaviour of Micron-Sized Particles in Turbulent Flow; Aalborg University: Aalborg, Denmark, 2017. [Google Scholar]
- Peters, B. Measurements and Application of a Discrete Particle Model (DPM) to Simulate Combustion of a Packed Bed of Individual Fuel Particles. Combust. Flame 2002, 131, 132–146. [Google Scholar] [CrossRef]
- Xu, B.H.; Yu, A.B. Numerical Simulation of the Gas-Solid Flow in a Fluidized Bed by Combining Discrete Particle Method with Computational Fluid Dynamics. Chem. Eng. Sci. 1997, 52, 2785–2809. [Google Scholar] [CrossRef]
- Elghobashi, S. On Predicting Particle-Laden Turbulent Flows. Appl. Sci. Res. 1994, 52, 309–329. [Google Scholar] [CrossRef]
- Brown, B.; Krispin, J.; Potts, M.; Technologies, K. Projection Methods for Incompressible Multiphase Cloud-Rise Phenomena. In Proceedings of the 14th Computational Fluid Dynamics Conference, Norfolk, VA, USA, 1–5 November 1999. [Google Scholar]
- Collins, J.P.; Ferguson, R.E.; Chien, K.; Kuhl, A.L. Simulation of Shock-Induced Dusty Gas Flows Using Various Models. In Proceedings of the AIAA, Fluid Dynamics Conference, Colorado Springs, CO, USA, 20–23 June 1994. [Google Scholar]
- Li, W. Atmospheric Physics: Fundamentals of Thermodynamics and Radiation; Peking University Press: Beijing, China, 2010. [Google Scholar]
- Norment, H.G. DELFIC: Department of Defense Fallout Prediction System, Vol. II. Fundamentals; ADA 088-512; Atmospheric Science Associates: Bedford, MA, USA, 1979. [Google Scholar]
- Guo, H.L.; Liu, Y.D.; Dong, Y. The Hydrostatic Adjustment In Different Patterns of the Atmosphere. Chin. J. Geophys. Chin. 2018, 61, 52–64. [Google Scholar]
- Andrews, D.G. An Introduction to Atmospheric Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Arthur, R.S. Simulating Nuclear Cloud Rise within a Realistic Atmosphere Using the Weather Research and Forecasting Model. Atmos. Environ. 2021, 254, 118363. [Google Scholar] [CrossRef]
- Liu, W.; Yi, Z.; Li, Q. Research on Early Warning Model of Fallout of Nuclear Explosion. Nulcear Electron. Detect. Technol. 2021, 41, 459–464. [Google Scholar]
- Nathans, M.W.; Thews, R.; Holland, W.D.; Benson, P.A. Particle Size Distribution in Clouds from Nuclear Airbursts. J. Geophys. Res. 1970, 75, 7559–7572. [Google Scholar] [CrossRef]
- Spriggs, G.; Ray-Maitra, A. Particle-Size-Distribution of Nevada Test Site Soils; UCRL-TR-234937; LLNL: Berkeley, CA, USA, 2007. [Google Scholar]
- Qiao, D. Handbook of Nuclear Explosion Effects Parameters; Northwest Institute of Nuclear Technology: Xi’an, China, 1981. [Google Scholar]
- Iii, B.E.O. Estimation of Weapon Yield from Inversion of Dose Rate Contours; Air Force Institute of Technology: Dayton, OH, USA, 2009. [Google Scholar]
- Bridgman, C.J.; Bigelow, W.S. A New Fallout Prediction Model. Health Phys. 1982, 43, 205–218. [Google Scholar] [CrossRef]
- Pico, P.; Ratkovich, N.; Muñoz, F.; Dufaud, O. CFD-DPM and Experimental Study of the Dynamics of Wheat Starch Powder/Pyrolysis Gases Hybrid Mixtures in the 20-L Sphere. Powder Technol. 2020, 372, 638–658. [Google Scholar] [CrossRef]
- Jodoin, V.J. Nuclear Cloud Rise and Growth; Air Force Institute of Technology: Dayton, OH, USA, 1994. [Google Scholar]
- Way, K.; Wigner, E.P. The Rate of Decay of Fission Products. Phys. Rev. 1948, 73, 1318–1330. [Google Scholar] [CrossRef]
Name | Burst Center Altitude (ASL *, m) | Height of Burst (AGL *, m) | Equivalent (kt) | Stabilization Cloud Upper (Bottom)-Edge Height (m) |
---|---|---|---|---|
RANGER-Able | 957 | 323 | 1 | 4224 (2841) |
BUSTER-JANGLE-Sugar | 1285 | 1 | 1.2 | 4572 (3353) |
Median Particle Diameter/μm | Number Concentration of Particles/cm−3 | Median Particle Diameter/μm | Number Concentration of Particles/cm−3 |
---|---|---|---|
0.1 | 2.56 × 108 (2.00 × 104) | 250 | 4.23 × 105 (0) |
0.5 | 6.62 × 108 (4.88 × 104) | 500 | 2.74 × 103 (0) |
1 | 3.00 × 108 (2.74 × 103) | 1000 | 221.56 (0) |
4 | 3.43 × 108 (222.79) | 1500 | 12.10 (0) |
50 | 8.11 × 107 (0.078) | 2800 | 2.43 (0) |
Median Particle Diameter/μm | Activity Percentage /% | Median Particle Diameter/μm | Activity Percentage /% |
---|---|---|---|
0.1 | 0 (1.04) | 250 | 36.41 (0) |
0.5 | 0.14 (44.23) | 500 | 11.11 (0) |
1 | 0.41 (34.53) | 1000 | 6.68 (0) |
4 | 4.03 (19.92) | 1500 | 2.20 (0) |
50 | 36.35 (0.28) | 2800 | 1.75 (0) |
Parameters | Value |
---|---|
Max Aspect Ratio | 1 |
Avg. Non-orthogonality | 0 |
Max Skewness | 7.07493 × 10−14 |
Boundary Patches | 4 |
Cells | 102,400 |
Overall Domain Bounding Box (m) | (−8000 −25 0), (8000 25 16,000) |
Median Particle Diameter (μm) | P1 | P2 | P3 | P4 | Total | |
---|---|---|---|---|---|---|
Layers | Height (AGL, m) | 0.1 μm | 0.5 μm | 1 μm | 4 μm | |
1 | 3919~4508 | 1891 (0.176) | 4468 (7.2705) | 248 (5.6191) | 19 (3.0523) | 6626 (16.1179) |
2 | 3329~3919 | 2239 (0.2084) | 5535 (9.0068) | 304 (6.8879) | 25 (4.0161) | 8103 (20.1192) |
3 | 2739~3329 | 7041 (0.6555) | 17,178 (27.9527) | 972 (22.0231) | 80 (12.8516) | 25,271 (63.4829) |
4 | 0~2739 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Total | 11,171 (1.04) | 27,181 (44.23) | 1524 (34.53) | 124 (19.92) | 4 × 104 (99.72) |
Median Particle Diameter (μm) | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | Total | |
---|---|---|---|---|---|---|---|---|---|---|
Layers | Height (AGL, m) | 1 μm | 4 μm | 50 μm | 250 μm | 500 μm | 1000 μm | 1500 μm | 2800 μm | |
1 | 3401~4081 | 0 (0) | 0 (0) | 1209 (4.39) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1209 (4.39) |
2 | 2721~3401 | 682 (0.03) | 690 (0.28) | 919 (3.34) | 694 (2.53) | 314 (0.35) | 194 (0.13) | 21 (0.01) | 1 (0) | 3515 (6.66) |
3 | 2041~2721 | 3081 (0.13) | 3163 (1.27) | 2435 (8.85) | 672 (2.45) | 713 (0.79) | 398 (0.27) | 46 (0.02) | 0 (0) | 10,508 (13.78) |
4 | 1361~2041 | 6237 (0.26) | 6147 (2.48) | 1859 (6.76) | 358 (1.3) | 143 (0.16) | 140 (0.09) | 24 (0.01) | 1 (0) | 14,909 (11.06) |
5 | 681~1361 | 0 (0) | 0 (0) | 169 (0.61) | 0 (0) | 0 (0) | 46 (0.03) | 13 (0.01) | 0 (0) | 228 (0.65) |
6 | 10~681 | 0 (0) | 0 (0) | 132 (0.48) | 0 (0) | 0 (0) | 24 (0.02) | 38 (0.02) | 0 (0) | 194 (0.51) |
7 | 0~10 | 0 (0) | 0 (0) | 3277 (11.91) | 8276 (30.13) | 8830 (9.81) | 9198 (6.14) | 4858 (2.14) | 4998 (1.75) | 39,437 (61.89) |
Total | 10,000 (0.41) | 10,000 (4.03) | 10,000 (36.35) | 10,000 (36.41) | 10,000 (11.11) | 10,000 (6.68) | 5000 (2.2) | 5000 (1.75) | 7 × 104 (98.94) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, Q.; Liu, W.; Xian, W.; Li, F.; Zhang, K. The Study of Radioactive Fallout Source of Low-Equivalent Nuclear Bursts Based on Nuclear Cloud Simulation Using the CFD-DPM. Atmosphere 2024, 15, 1421. https://doi.org/10.3390/atmos15121421
Li Y, Liu Q, Liu W, Xian W, Li F, Zhang K. The Study of Radioactive Fallout Source of Low-Equivalent Nuclear Bursts Based on Nuclear Cloud Simulation Using the CFD-DPM. Atmosphere. 2024; 15(12):1421. https://doi.org/10.3390/atmos15121421
Chicago/Turabian StyleLi, Yangchao, Qiang Liu, Wei Liu, Wenshuang Xian, Feifei Li, and Kai Zhang. 2024. "The Study of Radioactive Fallout Source of Low-Equivalent Nuclear Bursts Based on Nuclear Cloud Simulation Using the CFD-DPM" Atmosphere 15, no. 12: 1421. https://doi.org/10.3390/atmos15121421
APA StyleLi, Y., Liu, Q., Liu, W., Xian, W., Li, F., & Zhang, K. (2024). The Study of Radioactive Fallout Source of Low-Equivalent Nuclear Bursts Based on Nuclear Cloud Simulation Using the CFD-DPM. Atmosphere, 15(12), 1421. https://doi.org/10.3390/atmos15121421