Comparative Study οf the Frequencies οf Atmospheric Circulation Types at Different Geopotential Levels and Their Relationship with Precipitation in Southern Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: General Geographic and Climatic Features
2.2. Data and Methodology
3. Results
3.1. Frequencies of the Atmospheric Circulation Types
3.2. Correlation Coefficients between the Frequencies of Anticyclonic and Cyclonic Circulation Types at the Four Selected Geopotential Levels
3.3. Frequencies and Trends in Annual and Seasonal Precipiation Depending on Their Relation with the Circulation Types
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brisson, E.; Demuzere, M.; Kwakernaak, B.; Van Lipzig, N.P.M. Relations between atmospheric circulation and precipitation in Belgium. Meteorol. Atmos. Phys. 2011, 111, 27–39. [Google Scholar] [CrossRef]
- Trigo, R.M.; DaCamara, C.C. Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol. 2000, 20, 1559–1581. [Google Scholar] [CrossRef]
- Raziei, T.; Bordi, I.; Santos, J.A.; Mofidi, A. Atmospheric circulation types and winter daily precipitation in Iran. Int. J. Climatol. 2012, 33, 2232–2246. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Benjamin MSanderson, B.M. Precipitation variability increases in a warmer climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef] [PubMed]
- Jacobeit, J.; Homann, M.; Philipp, A.; Beck, C. Atmospheric circulation types and extreme areal precipitation in southern central Europe. Adv. Sci. Res. 2017, 14, 71–75. [Google Scholar] [CrossRef]
- López-Moreno, J.; Vicente-Serrano, S.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Kenawy, A.; Beniston, M. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Glob. Planet. Chang. 2011, 77, 62–76. [Google Scholar] [CrossRef]
- Baltacı, H.; Göktürk, O.M.; Kındap, T.; Ünal, A.; Karaca, M. Atmospheric circulation types in Marmara region (NW Turkey) and their influence on precipitation. Int. J. Climatol. 2015, 35, 1810–1820. [Google Scholar] [CrossRef]
- Putniković, S.; Tošić, I. Relationship between atmospheric circulation weather types and precipitation in Serbia. Meteorol. Atmos. Phys. 2018, 130, 393–403. [Google Scholar] [CrossRef]
- Iannuccilli, M.; Bartolini, G.; Betti, G.; Crisci, A.; Grifoni, D.; Gozzini, B.; Messeri, G. Extreme precipitation events and their relationships with circulation types in Italy. Int. J. Clim. 2021, 41, 4769–4793. [Google Scholar] [CrossRef]
- Silvestri, L.; Saraceni, M.; Bongioannini Cerlini, P. Links between precipitation, circulation weather types and orography in central Italy. Int. J. Climatol. 2022, 42, 5807–5825. [Google Scholar] [CrossRef]
- Busuioc, A.; Birsan, M.V.; Carbunaru, D.; Baciu, M.; Orzan, A. Changes in the large-scale thermodynamic instability and connection with rain shower frequency over Romania: Verification of the Clausius–Clapeyron scaling. Int. J. Climatol. 2016, 36, 2015–2034. [Google Scholar] [CrossRef]
- Marin, L.; Birsan, M.V.; Bojariu, R.; Dumitrescu, A.; Micu, D.M.; Manea, A. An Overview of Annual Climatic Changes in Romania: Trends in Air Temperature, Precipitation, Sunshine Hours, Cloud Cover, Relative Humidity and Wind Speed during the 1961–2013 Period. Carpathian J. Earth Environ. Sci. 2014, 9, 253–258. [Google Scholar]
- Dumitrescu, A.; Bojariu, R.; Birsan, M.V.; Marin, L.; Manea, A. Recent climatic changes in Romania from observational data (1961–2013). Theor. Appl. Clim. 2015, 122, 111–119. [Google Scholar] [CrossRef]
- Bîrsan, M.V.; Zaharia, L.; Chendeş, V.; Brănescu, E. Seasonal trends in Romanian streamflow. Hydrol. Process. 2014, 28, 4496–4505. [Google Scholar] [CrossRef]
- Bojariu, R.; Chițu, Z.; Dascălu, S.I.; Gothard, M.; Velea, L.F.; Burcea, R.; Dumitrescu, A.; Burcea, S.; Apostol, L.; Amihaesei, V.; et al. Schimbările Climatice—De la Bazele Fizice la Riscuri și Adaptare., Printech, 2021, 223 p. Available online: https://www.meteoromania.ro/clima/adaptarea-la-schimbarile-climatice/ (accessed on 22 April 2024).
- Zaharia, L.; Ioana-Toroimac, G.; Perju, E.R. Hydrological Impacts of Climate Changes in Romania. In Water Resources Management in Romania; Negm, A., Romanescu, G., Zeleňáková, M., Eds.; Springer Water: Cham, Switzerland, 2020; pp. 309–351. [Google Scholar] [CrossRef]
- Constantin, D.M.; Onțel, I.; Tișcovschi, A.A.; Irimescu, A.; Grigore, E.; Ilea, R.G.; Dîrloman, G. Observed Changes in the temperature and precipitation regime along the Lower Danube River. In The Lower Danube River. Earth and Environmental Sciences Library; Negm, A., Zaharia, L., Ioana-Toroimac, G., Eds.; Springer: Cham, Switzerland, 2022; pp. 273–297. [Google Scholar] [CrossRef]
- Constantin (Oprea), D.M.; Ionac, N.; Grigore, E.; Lüftner, G.D.; Ilea, R.G. The variability and influence of precipitation on the winter wheat in the Extra-Carpathian area of the Meridional and Curvature Carpathians (Romania). Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2023, 23, 181–186. [Google Scholar]
- Busuioc, A.; Dobrinescu, A.; Bîrsan, M.V.; Dumitrescu, A.; Orzan, A. Spatial and temporal variability of climate extremes in Romania and associated large-scale mechanisms. Int. J. Clim. 2015, 35, 1278–1300. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Piticar, A.; Burada, C.D. Changes in precipitation extremes in Romania. Quat. Int. 2016, 415, 325–335. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Chiotoroiu, B.-C.; Ivanova Todorova, V.; Torica, V. Changes in precipitation extremes on the Black Sea Western Coast. Glob. Planet. Chang. 2013, 102, 10–19. [Google Scholar] [CrossRef]
- Piticar, A.; Ristoiu, D. Spatial distribution and temporal variability of precipitation in northeastern Romania. Riscuri Și Catastr. 2013, 13, 35–46. [Google Scholar]
- Spinoni, J.; Szalai, S.; Szentimrey, T.; Lakatos, M.; Bihari, Z.; Nagy, A.; Németh, Á.; Kovács, T.; Mihic, D.; Dacic, M.; et al. Climate of the Carpathian Region in the period 1961–2010: Climatologies and trends of 10 variables. Int. J. Climatol. 2015, 35, 1322–1341. [Google Scholar] [CrossRef]
- Micu, D.M.; Dumitrescu Al Cheval, S.; Birsan, M.V. Climate of the Romanian Carpathians. Springer, Variability and Trends; Springer Atmospheric Sciences: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Micu, D.M.; Amihaesei, V.A.; Milian, N.; Cheval, S. Recent changes in temperature and precipitation indices in the Southern Carpathians, Romania (1961–2018). Theor. Appl. Clim. 2021, 144, 691–710. [Google Scholar] [CrossRef]
- Constantin (Oprea), D.M.; Lüftner, G.D.; Ilea, R.G.; Șandor, I.A.; Ioana-Toroimac, G. The observed changes in the precipitation regime in Romania—Constraints for river restoration. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar] [CrossRef]
- Busuioc, A.; von Storch, H. Changes in the winter precipitation in Romania and its relation to the large-scale circulation. Tellus 1996, 48A, 538–555. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Stefan, S.; Busuioc, A. Winter precipitation variability and large-scale circulation patterns in Romania. Theor. Appl. Climatol. 2005, 81, 193–201. [Google Scholar] [CrossRef]
- Caian, M.; Georgescu, F.; Pietrisi, M.; Catrina, O. Recent Changes in Storm Track over the Southeast Europe: A Mechanism for Changes in Extreme Cyclone Variability. Atmosphere 2021, 12, 1362. [Google Scholar] [CrossRef]
- Apostol, L. The Mediterranean cyclones–the role in ensuring water resources and their potential of climatic risk, in the east of Romania. Present. Environ. Sustain. Dev. 2008, 2, 143–163. [Google Scholar]
- Rimbu, N.; Stefan, S.; Busuioc, A.; Georgescu, F. Links between Blocking Circulation and Precipitation Extremes over Romania in Summer. Int. J. Climatol. 2015, 36, 369–376. [Google Scholar] [CrossRef]
- Dobri, R.V.; Sfica, L.; Ichimi, P.; Harpa, G.V. The distribution of the monthly 24-hour maximum amount of precipitation in Romania according to their synoptic cause. Geogr. Tech. 2017, 12, 62–72. [Google Scholar] [CrossRef]
- Tolika, K.; Traboulsi, M.; Anagnostopoulou, C.; Zaharia, L.; Tegoulias, I.; Constantin, D.M.; Maheras, P. On the Examination of the Relationship between Mean and Extreme Precipitation and Circulation Types over Southern Romania. Atmosphere 2023, 14, 1345. [Google Scholar] [CrossRef]
- Cheval, S.; Bulai, A.; Croitoru, A.E.; Dorondel, S.; Micu, D.; Mihaila, D.; Sfica, L.; Tiscovschi, A. Climate change perception in Romania. Theor. Appl. Clim. 2022, 149, 253–272. [Google Scholar] [CrossRef]
- Ion-Bordei, E. Rolul Lanțului Alpino-Carpatic în Evoluția Ciclonilor Mediteraneeni; Printech, Ed.; Editura Academiei Republicii Socialiste România: Bucharest, Romania, 2009; 138p. [Google Scholar]
- NMA (National Meteorological Administration). Clima României; Editura Academiei Române: București, Romania, 2008; 365p. [Google Scholar]
- Chelu, A.; Zaharia, L.; Dubreuil, V. Estimation of climatic and anthropogenic contributions to streamflow change in southern Romania. Hydrol. Sci. J. 2022, 67, 1598–1608. [Google Scholar] [CrossRef]
- Harpa, G.-V.; Croitoru, A.-E.; Djurdjevic, V.; Horvath, C. Future changes in five extreme precipitation indices in the lowlands of Romania. Int. J. Climatol. 2019, 39, 5720–5740. [Google Scholar] [CrossRef]
- Prăvălie, R.; Piticar, A.; Roșca, B.; Sfîcă, L.; Bandoc, G.; Tiscovschi, A.; Patriche, C. Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013. Catena 2019, 172, 295–312. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Tolika, K.; Maheras, P. Classification of circulation types: A new flexible automated approach applicable to NCEP and GCM datasets. Theor. Appl. Climatol. 2009, 96, 3–15. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Tolika, K.; Tegoulias, I.; Maheras, P. Links between the circulation types in different levels, a case study for Thessaloniki Greece. In Proceedings of the 14th COMECAP, Alexandroupoli, Greece, 15–17 October 2018. [Google Scholar]
- Traboulsi, M.; Tolika, K.; Anagnostopoulou Ch Tegoulias, I.; Maheras, P. Essai d’étude des types de circulation atmosphérique à différentes altitudes: l’exemple de Beyrouth. In Proceedings of the Actes du XXXVème colloque de l’Association Internationale de Climatologie, Toulouse, France, 6–9 July 2022; pp. 40–45. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Terry, P.W.; Greenwald, M.; Leboeuf, J.-N.; McKee, G.R.; Mikkelsen, D.R.; Nevins, W.M.; Newman, D.E.; Stotler, D.P.; Task Group on Verification and Validation; U.S. Burning Plasma Organization; et al. Validation in fusion research: Towards guidelines and best practices. Phys. Plasmas 2008, 15, 062503. [Google Scholar] [CrossRef]
- Maheras, P.; Flocas, H.A.; Patrikas, I. On the vertical structure of composite surface cyclones in the Mediterranean. Theor. Appl. Climatol. 2002, 71, 199–217. [Google Scholar] [CrossRef]
- Maheras, P.; Tolika, K.; Anagnostopoulou, C.H.; Vafiadis, M.; Patrikas, I.; Flocas, H.A. On the relationships between circulation types and changes in rainfall variability in Greece. Int. J. Climatol. 2004, 24, 1695–1712. [Google Scholar] [CrossRef]
- Maheras, P.; Anagnostopoulou, C. Circulation types and their influence on the interannual variability and precipitation changes in Greece. In Mediterranean Climate; Springer: Berlin-Heidelberg, Germany, 2003; pp. 215–239. [Google Scholar]
Station Name | Latitude * (North) | Longitude * (East) | Elevation (m above Sea Level, a.s.l. hereafter.) | Average Annual Precipitation ** (mm) | Average Annual Temperature *** (°C) |
---|---|---|---|---|---|
Constanța | 44:13:12 | 28:37:48 | 13 | 432.1 | 12.1 |
București–Băneasa | 44:31:00 | 26:04:59 | 90 | 622.2 | 10.5 |
Buzău | 45:07:59 | 26:51:00 | 97 | 527.4 | 11.2 |
Craiova | 44:13:48 | 23:52:12 | 192 | 607.6 | 11.1 |
Râmnicu Vâlcea | 45:06:00 | 24:22:12 | 239 | 710.7 | 10.8 |
Geopot. Level | 500 hPa | 700 hPa | 850 hPa | 1000 hPa | ||||
---|---|---|---|---|---|---|---|---|
Time period | Antic | Cyclo | Antic | Cyclo | Antic | Cyclo | Antic | Cyclo |
Winter | + * | − * | + * | − * | + * | − * | + | − |
38.7 | 61.3 | 36.2 | 63.8 | 37.2 | 62.8 | 38.1 | 61.9 | |
Spring | + * | − * | + * | − * | + * | − * | + * | − * |
42.3 | 57.7 | 41.3 | 58.7 | 42.2 | 57.8 | 42.4 | 57.6 | |
Summer | + * | − * | + * | − * | + * | − * | + * | − * |
69.7 | 30.3 | 69.6 | 30.4 | 69.9 | 30.1 | 67.7 | 32.3 | |
Autumn | + * | − * | + | − * | + | − * | + | − |
56.9 | 43.1 | 55.1 | 44.9 | 55.1 | 44.9 | 52.7 | 47.3 | |
Annual | + * | − * | + * | − * | + * | − * | + * | − * |
51.9 | 48.1 | 50.6 | 49.4 | 51.2 | 48.8 | 50.3 | 49.7 |
Geopotential Level | Time Period | C | Cwsw | Cssw | Cse | Cne |
---|---|---|---|---|---|---|
500 hPa | Winter | − * | − | − | − * | − * |
5.6 | 11.3 | 5.5 | 16.8 | 14.9 | ||
Spring | − | − * | − * | − * | − * | |
6.7 | 10.3 | 4.4 | 13.7 | 14.4 | ||
Summer | − * | − * | − * | − * | − * | |
8.3 | 6.0 | 1.6 | 5.1 | 4.9 | ||
Autumn | + | − * | − * | − * | − * | |
9.0 | 10.3 | 3.0 | 6.4 | 8.2 | ||
Annual | − | − * | − * | − * | − * | |
7.4 | 9.5 | 3.6 | 10.5 | 10.6 | ||
700 hPa | Winter | − * | − | − * | − * | − * |
4.5 | 11.5 | 5.8 | 17.4 | 15.8 | ||
Spring | − | − | − * | − * | − * | |
7.2 | 9.7 | 4.5 | 11.4 | 16.8 | ||
Summer | − * | − * | − * | − * | − * | |
7.7 | 6.6 | 2.4 | 3.1 | 7.2 | ||
Autumn | − | − | − * | − * | − * | |
6.9 | 9.6 | 4.7 | 6.2 | 10.4 | ||
Annual | − | − * | − * | − * | − * | |
6.6 | 9.3 | 4.3 | 9.5 | 12.5 | ||
850 hPa | Winter | − * | − | − | − * | − |
4.8 | 11.5 | 5.4 | 14.5 | 16.3 | ||
Spring | − | − | − * | − * | − | |
7.3 | 9.3 | 4.3 | 10.3 | 17.4 | ||
Summer | − * | − * | − * | − * | − * | |
5.7 | 6.4 | 2.9 | 2.7 | 8.9 | ||
Autumn | − | − | − | − * | − | |
5.8 | 9.1 | 4.9 | 6.4 | 11.3 | ||
Annual | − * | − | − | − * | − | |
5.9 | 9.1 | 4.4 | 8.4 | 13.5 | ||
1000 hPa | Annual | − * | − * | + | − * | + * |
6.7 | 8.0 | 3.8 | 8.5 | 15.4 | ||
Winter | − * | − | − | − * | − | |
7.0 | 10.0 | 4.4 | 12.9 | 16.8 | ||
Spring | − * | − * | − * | − * | + | |
7.4 | 8.0 | 4.4 | 9.7 | 19.3 | ||
Summer | − * | − * | − * | − * | − | |
5.5 | 5.5 | 2.6 | 3.2 | 12.0 | ||
Autumn | − * | − | − * | − * | + | |
6.7 | 8.4 | 3.7 | 8.2 | 13.5 |
Time Period | Geopotential Level | Spring | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
500 hPa | 700 hPa | 850 hPa | 1000 hPa | |||||||
Antic | Cyclo | Antic | Cyclo | Antic | Cyclo | Antic | Cyclo | |||
Winter | 500 hPa | Antic | 1 | −1 | 0.952 | −0.952 | 0.839 | −0.839 | 0.629 | −0.629 |
Cyclo | −0.999 | 1 | −0.952 | 0.952 | −0.839 | 0.839 | −0.629 | 0.629 | ||
700 hPa | Antic | 0.961 | −0.958 | 1 | −1 | 0.926 | −0.926 | 0.750 | −0.750 | |
Cyclo | −0.962 | 0.962 | −1.000 | 1 | −0.926 | 0.926 | −0.750 | 0.750 | ||
850 hPa | Antic | 0.905 | −0.901 | 0.961 | −0.960 | 1 | −1 | 0.897 | −0.897 | |
Cyclo | −0.906 | 0.903 | −0.962 | 0.961 | −1.000 | 1 | −0.897 | 0.897 | ||
1000 hPa | Antic | 0.770 | −0.765 | 0.859 | −0.857 | 0.941 | −0.940 | 1 | −1 | |
Cyclo | −0.771 | 0.768 | −0.859 | 0.857 | −0.940 | 0.940 | −0.999 | 1 |
Time Period | Geopotential Level | Autumn | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
500 hPa | 700 hPa | 850 hPa | 1000 hPa | |||||||
Antic | Cyclo | Antic | Cyclo | Antic | Cyclo | Antic | Cyclo | |||
Summer | 500 hPa | Antic | 1 | −1 | 0.928 | −0.928 | 0.740 | −0.740 | 0.515 | −0.515 |
Cyclo | −1 | 1 | −0.928 | 0.928 | −0.740 | 0.740 | −0.515 | 0.515 | ||
700 hPa | Antic | 0.899 | −0.899 | 1 | −1 | 0.879 | −0.879 | 0.703 | −0.703 | |
Cyclo | −0.899 | 0.899 | −1 | 1 | −0.879 | 0.879 | −0.703 | 0.703 | ||
850 hPa | Antic | 0.695 | −0.695 | 0.880 | −0.880 | 1 | −1 | 0.893 | −0.893 | |
Cyclo | −0.695 | 0.695 | −0.880 | 0.880 | −1 | 1 | −0.893 | 0.893 | ||
1000 hPa | Antic | 0.470 | −0.470 | 0.706 | −0.706 | 0.915 | −0.915 | 1 | −1 | |
Cyclo | −0.470 | 0.470 | −0.706 | 0.706 | −0.915 | 0.915 | −1 | 1 |
Geopotential Level | 500 hPa | 700 hPa | 850 hPa | 1000 hPa | ||||
---|---|---|---|---|---|---|---|---|
Time period | Antic | Cyclo | Antic | Cyclo | Antic | Cyclo | Antic | Cyclo |
Winter | 7.1+ | 92.9+ | 7.2+ | 92.8+ | 9.3+ | 90.7+ | 12.9+ | 87.1+ |
Spring | 16.2+ * | 83.3− * | 17.0+ * | 83.0− | 22.5+ * | 77.5− | 30.7+ * | 69.3− |
Summer | 43.0+ * | 57.0− * | 43.8+ * | 56.2− * | 48.4+ * | 51.6− * | 55.8+ | 44.2− |
Autumn | 19.3+ | 80.7+ | 20.7+ | 79.3+ | 27.4+ | 72.6+ | 33.9+ | 66.1 + |
Annual | 24.1+ * | 75.9− | 24.8+ * | 75.2− | 29.6+* | 70.4− | 36.3+ | 63.7 |
Geopotential Level | Time Period | C | Cwsw | Cssw | Cse | Cne | Cyclonic |
---|---|---|---|---|---|---|---|
500 hPa | Winter | + | + | − | − * | + | + |
12.4 | 30.5 | 13.6 | 15.3 | 12.7 | 92.9 | ||
Spring | + | + | + | − | − | − | |
15.9 | 20.5 | 10.0 | 15.7 | 11.5 | 83.3 | ||
Summer | − | − | − * | − * | − * | − * | |
20.8 | 14.2 | 6.8 | 8.0 | 5.1 | 57.0 | ||
Autumn | + | + | − * | − | − | + | |
26.2 | 26.4 | 11.1 | 5.9 | 6.1 | 80.7 | ||
Annual | + | + | − | − * | − | − | |
19.1 | 21.5 | 9.0 | 10.6 | 8.1 | 75.9 | ||
700 hPa | Winter | − | + | − | − | + | + |
13.7 | 26.8 | 16.2 | 19.2 | 11.0 | 92.8 | ||
Spring | + | + | − | − * | + | − | |
20.8 | 14.9 | 11.2 | 14.2 | 14.7 | 83.0 | ||
Sumer | − | − | − * | − * | − | − | |
20.2 | 13.7 | 8.5 | 7.2 | 5.9 | 56.2 | ||
Autumn | + | + | − | − | + | + | |
23.2 | 19.4 | 16.1 | 6.6 | 9.4 | 79.3 | ||
Annual | + | + | − | − | + | − | |
19.4 | 17.7 | 11.6 | 10.6 | 9.9 | 75.2 | ||
850 hPa | Winter | − * | + * | − | − | + | + |
16.7 | 21.8 | 14.5 | 21.2 | 11.5 | 90.7 | ||
Spring | − | + | + | − * | − | − | |
19.9 | 10.7 | 10.5 | 13.3 | 17.2 | 77.5 | ||
Summer | − | + | − * | − * | − | − | |
16.5 | 10.3 | 9.4 | 6.7 | 10.7 | 51.6 | ||
Autumn | − | + | + | − | + * | + | |
14.9 | 12.0 | 17.0 | 13.5 | 13.1 | 72.6 | ||
Annual | − | + * | + | − * | + | − | |
16.5 | 13.0 | 11.7 | 11.6 | 13.1 | 70.4 | ||
1000 hPa | Winter | − | + | ss | − | + | + |
19.1 | 14.4 | 12.6 | 23.3 | 13.6 | 87.1 | ||
Spring | − | + | − | − * | + | − | |
14.5 | 7.4 | 8.5 | 13.9 | 20.6 | 69.3 | ||
Summer | − * | − | − * | − * | + * | − | |
10.6 | 4.7 | 6.9 | 5.9 | 16.8 | 44.2 | ||
Autumn | − | + | ss | − | + * | + | |
9.7 | 6.4 | 11.8 | 20.4 | 17.2 | 66.1 | ||
Annual | − * | + | + | − | + * | ss | |
12.9 | 7.6 | 8.8 | 14.0 | 17.3 | 63.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolika, K.; Anagnostopoulou, C.; Traboulsi, M.; Zaharia, L.; Constantin, D.M.; Tegoulias, I.; Maheras, P. Comparative Study οf the Frequencies οf Atmospheric Circulation Types at Different Geopotential Levels and Their Relationship with Precipitation in Southern Romania. Atmosphere 2024, 15, 1027. https://doi.org/10.3390/atmos15091027
Tolika K, Anagnostopoulou C, Traboulsi M, Zaharia L, Constantin DM, Tegoulias I, Maheras P. Comparative Study οf the Frequencies οf Atmospheric Circulation Types at Different Geopotential Levels and Their Relationship with Precipitation in Southern Romania. Atmosphere. 2024; 15(9):1027. https://doi.org/10.3390/atmos15091027
Chicago/Turabian StyleTolika, Konstantia, Christina Anagnostopoulou, Myriam Traboulsi, Liliana Zaharia, Dana Maria (Oprea) Constantin, Ioannis Tegoulias, and Panagiotis Maheras. 2024. "Comparative Study οf the Frequencies οf Atmospheric Circulation Types at Different Geopotential Levels and Their Relationship with Precipitation in Southern Romania" Atmosphere 15, no. 9: 1027. https://doi.org/10.3390/atmos15091027