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Abstract: Given global climate change and rapid land cover changes due to human activities,
accurately identifying, extracting, and monitoring the long-term evolution of wetland resources
is profoundly significant, particularly in areas with fragile ecological conditions. Gansu Province,
located in northwest China, contains all wetland types except coastal wetlands. The complexity of its
wetland types has resulted in a lack of accurate and comprehensive information on wetland changes.
Using Gansu Province as a case study, we employed the GEE platform and Landsat time-series satellite
data, combining high-quality sample datasets with feature-optimized multi-source feature sets. The
random forest algorithm was utilized to create wetland classification maps for Gansu Province across
eight periods from 1987 to 2020 at a 30 m resolution and to quantify changes in wetland area and type.
The results showed that the wetland mapping method achieved robust classification results, with an
average overall accuracy (OA) of 96.0% and a kappa coefficient of 0.954 across all years. The marsh
type exhibited the highest average user accuracy (UA) and producer accuracy (PA), at 96.4% and
95.2%, respectively. Multi-source feature aggregation and feature optimization effectively improve
classification accuracy. Topographic and seasonal features were identified as the most important
for wetland extraction, while textural features were the least important. By 2020, the total wetland
area in Gansu Province was 10,575.49 km2, a decrease of 4536.86 km2 compared to 1987. The area
of marshes decreased the most, primarily converting into grasslands and forests. River, lake, and
constructed wetland types generally exhibited an increasing trend with fluctuations. This study
provides technical support for wetland ecological protection in Gansu Province and offers a reference
for wetland mapping, monitoring, and sustainable development in arid and semi-arid regions.

Keywords: wetland mapping; random forests; feature optimization; long time series; wetland dynamics

1. Introduction

Wetlands, referred to as the “kidneys of the earth”, are recognized as one of the most
crucial natural ecosystems globally due to their significant ecological functions and socioe-
conomic value [1–3]. They play an indispensable role in climate regulation, food and fiber
production, flood control and storage, carbon sequestration and storage, water treatment
and purification, as well as in the maintenance of biodiversity, ecological security, and
human well-being [4,5]. Although wetlands account for only 9% of the total land area, they
contribute over 23% of the global ecosystem service value [6,7]. Despite their immense
value, over half of the world’s wetlands have disappeared in recent decades due to drainage
and filling [8]. The surrounding landscape of the remaining wetlands is undergoing signifi-
cant changes, which may adversely affect their condition and functionality [9]. Therefore, it
is essential to develop rapid methods for identifying, extracting, analyzing, and evaluating
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wetland resources. Accurate inventorying of wetland distribution is crucial to safeguard
against further changes and degradation of land cover while enhancing our understanding
of wetland conditions and resource management.

Remote sensing technology has been widely used for large-scale wetland mapping
and monitoring, due to the low cost of data acquisition and high spatial and temporal
resolution [10]. In recent decades, several global wetland datasets have been generated
from satellite images, categorized into three groups: land cover and land use change
(LCLUC) datasets, single-type wetland datasets, and multitype wetland datasets [7]. The
global LCLUC datasets include the MCD12Q1 product by NASA, updated yearly from
2000 to 2020; the 300 m CCI_LC product by ESA updated yearly from 1992 to 2020; the
GLC_FCS30 product by Liu’s team at the Institute of Space and Astronautical Information
Innovation, Chinese Academy of Sciences, updated every five years from 1985 to 2020 [11];
the GlobeLand30 data released by the National Geographic Information Center [12]; and
the CLCD product by Yang and Huang (2021) from Wuhan University, updated yearly from
1985 to 2021 [13]. Although these products maintain good temporal continuity, they include
only two wetland-related land types: water and wetland. Consequently, these datasets
do not distinguish between more detailed wetland types, such as rivers, lakes, marshes,
constructed wetlands, and coastal wetlands [14]. Single-type wetland datasets focus on
a single wetland type (e.g., water, mangroves) and can accurately delineate the extent of
specific wetland types [15,16]. However, these datasets do not provide a comprehensive
understanding of all wetland types. Multitype wetland datasets delineate the spatial
distribution of different wetland types, but their resolution and thematic accuracy are too
coarse and do not account for temporal changes, limiting their utility for wetland protection
and management, as exemplified by the Global Lakes and Wetlands Database (GLWD) [17].
Therefore, mapping wetlands with detailed types and high spatiotemporal resolution is
essential for monitoring and studying wetland resource dynamics.

Given the variations in geographic locations and wetland types, selecting appropriate
classification methods for extracting wetland information is particularly important. Ma-
chine learning algorithms, such as decision trees (DTs), random forests (RFs), and support
vector machines (SVMs), are widely used in wetland mapping due to their fast construction
speed, high discrimination efficiency, and effective utilization of big Earth data [18]. DTs
offer certain advantages over traditional maximum likelihood supervised classification, but
they rely heavily on empirical knowledge and human intervention, which has a significant
impact on classification accuracy [19]. Although some studies demonstrate that SVMs
can produce highly accurate wetland maps [20–22], they struggle with large-scale training
samples and multi-classification problems and are also very sensitive to parameter and
kernel function selection [23]. Random forest (RF) has proven to be practical due to its
advantages in processing correlated high-dimensional data [24], addressing nonlinearity
and overfitting [25], as well as screening and prediction. Ranking the importance of se-
lected factors enhances simulation precision [26]. To date, RF is considered one of the most
effective algorithms for classifying remotely sensed images in topographically complex
regions [27]. Lawrence and Moran (2015) systematically compared the performance of
multiple machine learning classification algorithms using 30 different datasets and found
that RF’s average classification accuracy was significantly higher than other algorithms [28].
More importantly, RF has distinct advantages in wetland classification [29]. Studies, such as
those by Millard and Richardson (2013), have identified RF’s potential in marsh mapping,
demonstrating its ability to prioritize features based on their classification accuracy [30].
Therefore, RF can be effectively utilized for wetland mapping by integrating existing
wetland samples with environmental data as model inputs.

Due to the complexity of wetland feature types and significant spectral confusion,
the extraction and selection of remote sensing classification features present a substantial
challenge for current wetland mapping. Spectral reflectance features are the basis for
wetland remote sensing extraction. Wetlands are intrinsically linked to vegetation, water
bodies, soil, topography, and other environmental factors. Since wetlands are constantly
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changing, multi-temporal images can capture the seasonal characteristics of wetland water
bodies or vegetation, enhancing classification accuracy [31]. While it is undoubtedly
beneficial to fully utilize multiple types of features to identify wetland types, an excess of
features can lead to “dimensional catastrophe” and data redundancy [32]. Therefore, it is
necessary to filter and optimize features before classification. Currently, common feature
optimization methods include filter, embedded, and wrapper techniques [33]. Among
these, recursive feature elimination (RFE) is a classical wrapper algorithm that can extract
effective features in land cover classification studies of wetlands, cities, forests, and other
landscapes [34–36].

Gansu Province, located in northwestern China, has a fragile ecological background
and diverse types of wetlands, including rivers, lakes, marshes, and constructed wetlands,
but excluding coastal wetlands (China’s national standard GB/T 24708-2009). Since the vast
majority are in semi-arid and arid regions, these wetland resources are particularly precious
and play a vital role in mitigating drought and flood disasters, maintaining watershed
water balance, and promoting Gansu’s socioeconomic development [37]. However, in
recent years, under the dual threat of natural factors (climate, vegetation, hydrology,
etc.) and anthropogenic factors (water resource exploitation, agricultural and animal
husbandry development, engineering construction, etc.) [38,39], the utilization, protection,
and destruction of wetland resources in Gansu Province have been equally emphasized.
Although some protection efforts have yielded results, Gansu Province still faces problems
such as shrinking wetland areas, ecological function degradation, and water environment
deterioration [40]. Monitoring wetland resources in Gansu Province and understanding
the reality of the distribution and evolution trends of various wetland types are profoundly
significant for further wetland protection and management. Therefore, this study uses
Gansu Province as a case to explore the mapping method of wetland resource types using
machine learning within a feature optimization framework and to identify the spatial
distribution of different wetland types. The main objectives of this study are (1) to construct
a classification method using random forests within a feature optimization framework and
map the wetland categories of Gansu Province from 1987 to 2020 based on the GEE platform
and Landsat data; (2) to assess the influence of different features on automatic wetland
classification and extraction; and (3) to analyze the dynamic changes and underlying
reasons for wetland resource changes in Gansu Province from 1987 to 2020. This study
can provide data support for the monitoring and managing of wetland resources in Gansu
Province and offer potential application references for evaluating wetland-related goals at
national and global scales in the context of global change.

2. Materials and Methods
2.1. Study Area

Gansu Province is located in northwest China, between 32◦11′ N–42◦57′ N and
92◦13′ E–108◦46′ E, and covers a total area of about 454,400 km2 (Figure 1). The region is
situated at the convergence of the Inner Mongolia, Loess, and Qinghai-Tibet Plateaus [41],
featuring complex geomorphological types, including plateaus, mountains, basins, river
valleys, deserts, and Gobi. The terrain is undulating and varied, with an overall high
elevation, averaging 2260 m. Additionally, Gansu Province is situated at the confluence
of the northwestern arid zone, the Qinghai-Tibet alpine region, and the eastern monsoon
region [42], encompassing four major climate types: temperate continental (arid), plateau
alpine, temperate monsoon, and subtropical monsoon climates. Precipitation varies con-
siderably across the region, ranging from 37 mm to 750 mm, with a drying gradient from
southeast to northwest. In addition, precipitation is unevenly distributed throughout
the year, with most of it falling between the months of June and September [43]. Gansu
Province is rich in solar energy resources, with annual sunshine hours increasing from
southeast to northwest. The province’s rivers span from east to west and belong to the
three major basins of the Yellow River, the Yangtze River, and the Inland River.
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Figure 1. Overview of the study area. Note: The map is based on the Department of Natural
Resources Standard Map Service website, Standard Map No. GS (2023) 2767, with no modifications
to the base map boundaries.

2.2. Data Sources

In this study, Landsat 5 and Landsat 8 surface reflectance (SR) data with a resolution
of 30 m, provided by GEE, were used. To ensure complete image coverage of the study
area, images from the study period and the two years before and after were radiometrically
calibrated, processed with a cloud mask, and then subjected to median filtering to obtain
interannual composite images. The relevant image data are presented in Table 1. Addi-
tionally, digital elevation model (DEM) data from the Shuttle Radar Topography Mission
(SRTM) with a resolution of 30 m were used in this study. These data were used to construct
topographic features (elevation, slope, and slope direction) that can be directly utilized in
the GEE cloud platform. The various auxiliary data used in this study are presented in
Table 2. These data were utilized to aid in the creation of the sample dataset and the fine
classification of wetlands.
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Table 1. Number of images used in this study from 1987 to 2020.

Year Satellite Landsat Product Name
Number

Total Cloud ≤ 10%

1987 Landsat5 TM LANDSAT/LT05/C02/T1_L2 960 663
1990 Landsat5 TM LANDSAT/LT05/C02/T1_L2 1494 982
1995 Landsat5 TM LANDSAT/LT05/C02/T1_L2 1395 958
2000 Landsat5 TM LANDSAT/LT05/C02/T1_L2 1599 1134
2005 Landsat5 TM LANDSAT/LT05/C02/T1_L2 1541 997
2010 Landsat5 TM LANDSAT/LT05/C02/T1_L2 1375 933
2015 Landsat8 OLI LANDSAT/LT08/C02/T1_L2 1873 1264
2020 Landsat8 OLI LANDSAT/LT08/C02/T1_L2 1919 1251

Table 2. Auxiliary data in this study.

Product Name Date Resolution Data Resource References

GlobalLand30 2000/2010/2020 30 m http://globeland30.org/ (accessed on 7 July 2023) [44]
GLC_FCS30 1985–2020 30 m https://data.casearth.cn/ (accessed on 8 July 2023) [11]

JRC-GSW 1984–2020 30 m https://developers.google.com/earth-engine/datasets/
(accessed on 10 July 2023) [15]

Hydro LAKES — 1:24,000 http://www.hydrosheds.org (accessed on 7 July 2023) [45]
GWRL — 30 m https://zenodo.org/ (accessed on 15 July 2023) [46]

GLWD — 1 km https://www.worldwildlife.org/ (accessed on
20 June 2023) [17]

SDSMW 2015 30 m http://www.geodata.cn (accessed on 20 July 2023) [47]

GOODD 2020 https://www.globaldamwatch.org/directory (accessed
on 26 July 2023) [48]

Reservoir statistics — — http://www.stats.gov.cn/ (accessed on 27 June 2023) —

Note: GLC_FCS30: Global Land Cover with Fine Classification System at 30 m; JRC-GSW: JRC Global Surface
Water; GWRL: Global River Widths from Landsat; GLWD: Global Lakes and Wetlands Database; SDSMW: spatial
distribution dataset of marshes in China; GOODD: Global Geo-referenced Database of Dams.

2.3. Classification Method

The wetland classification process in this study is primarily divided into three steps
(Figure 2): (1) Utilizing the GEE cloud platform to preprocess the Landsat series images and
obtain five classification features. (2) Using ArcGIS 10.2 software, the GEE cloud platform,
and auxiliary datasets to construct a sample collection process and obtain sample data.
(3) Combining RF and RFE to select the optimal number of decision trees and the optimal
combination of features. Three types of wetlands (lake/constructed wetland, river, and
marsh) and six non-wetland types (grassland, agriculture, forest, settlement, bare area, and
permanent snow) were obtained and evaluated for accuracy. Then, based on the wetland
and non-wetland classification data, auxiliary data were used to make further distinction
between lakes and constructed wetlands, ultimately obtaining the classification data of
four types of wetlands in Gansu Province for eight periods from 1987 to 2020.

http://globeland30.org/
https://data.casearth.cn/
https://developers.google.com/earth-engine/datasets/
http://www.hydrosheds.org
https://zenodo.org/
https://www.worldwildlife.org/
http://www.geodata.cn
https://www.globaldamwatch.org/directory
http://www.stats.gov.cn/
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Figure 2. Flowchart of wetland classification in this study.

2.3.1. Classification System and Sample Construction

This study integrates the Convention on Wetlands, China’s national standard for
wetland classification (GB/T 24708-2009), while considering the current status of wetland
resources in the study area. Consequently, the wetland resources in Gansu Province were
categorized into natural and constructed wetlands. Natural wetlands are subdivided into
rivers, marshes, and lakes. Constructed wetlands include reservoirs and ponds, while
non-wetland categories encompass grasslands, forests, agriculture, settlement, bare area,
and permanent snow (Table 3).
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Table 3. The remote sensing classification system used in this study.

Category I Category II Description Landsat Image Example

Natural wetlands

Lake Natural depressions in the ground, varying in size and
form, are filled with bodies of water.
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Generally speaking, the number and quality of samples largely determine the accuracy
of remote sensing classification [49]. This study integrates auxiliary data and manual visual
discrimination to improve the accuracy of classification samples. Since the remote sensing
features of lakes and constructed wetlands are too similar to be automatically extracted
using machine learning methods, this study initially classifies these two wetlands as one
category for automatic remote sensing classification and then uses auxiliary data of lakes
and reservoirs for secondary fine extraction.

In this study, ArcGIS10.2 software was used to generate random points within the
study area and then generate sample points of each type in conjunction with auxiliary
data (Table 2). JRC-GSW, Hydro L AKES, GWRL, GLWD, GOODD, and reservoir statistics
were utilized to assist in the extraction of sample points from lakes/constructed wetlands
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and rivers. SDSMW was utilized to assist in the sample point extraction from marshes.
GlobalLand30 and GLC_FCS30 were utilized to assist in the sample point extraction for
grasslands, forests, settlements, agriculture, bare areas, and permanent snow areas. Finally,
on the GEE platform, further visual identification of the generated sample points was
carried out using Landsat imagery from each of the years. To ensure a sufficient number of
samples of each type, additional samples were included during the visual discrimination
process to generate the final sample set. The samples were divided into training and
validation sets in a 7:3 ratio for each year in the study area, with the statistics presented in
Table 4 below.

Table 4. Statistics on the number of samples of each type in the study area from 1987 to 2020.

Year Lake/Constructed
Wetland River Marsh Grassland Forest Agriculture Settlement Bare Area Permanent

Snow

1987 355/152 360/154 358/153 358/153 356/153 368/158 336/144 442/190 162/69
1990 356/152 358/154 358/154 357/153 354/152 369/158 346/148 440/188 161/69
1995 357/153 361/155 359/154 356/152 356/153 368/158 347/149 441/189 164/70
2000 358/153 361/155 357/153 356/153 356/152 370/159 344/148 444/190 163/70
2005 355/152 360/154 358/154 357/153 355/152 370/158 344/147 441/189 158/68
2010 350/150 359/154 357/153 359/154 356/153 369/158 347/149 444/190 168/72
2015 349/150 358/154 358/153 356/152 358/154 370/158 342/147 448/192 155/67
2020 363/155 358/153 360/154 357/153 361/155 368/158 340/146 440/188 169/72

Note: The number of samples in the table is expressed as training/validation.

2.3.2. Feature Construction and Optimization

A total of 63 classification features for 5 classes were constructed for wetland extraction
using the GEE cloud platform in this study. (Table 5). Six major spectral bands (blue,
green, red, near-infrared, shortwave infrared1, and shortwave infrared2) were selected
for spectral features. Index features included normalized difference vegetation index
(NDVI) [50], enhanced vegetation index (EVI) [51], ratio vegetation index (RVI) [52], soil-
adjusted vegetation index (SAVI) [53], modified soil-adjusted vegetation index (MSAVI) [54],
normalized difference water index (NDWI) [55], enhanced water index (EWI) [56], modified
normalized difference water index (MNDWI) [57], land surface water index (LSWI) [58],
automatic water extraction index (AWEI) [59], modified adjusted water extraction index
(MAWEI) [60], normalized difference building index (NDBI) [61], and normalized difference
snow index (NDSI) [62]. Physically meaningful brightness, greenness, and humidity are
obtained through tasseled cap transformation, reflecting the bare soil rocks, vegetation
cover, and moisture information of the surface [63]. Phenological characteristics can reflect
the seasonal phenomena of water bodies or vegetation life activities. Therefore, this study
calculated NDWI, NDVI, MNDWI, LSWI, and EVI in spring, summer, fall, and winter
to better extract plants and water bodies [64]. Texture is the spatial distribution of gray
levels of neighboring pixels in an image region that obeys the statistical distribution law.
The Gray Level Co-occurrence Matrix (GLCM) is a commonly used method for texture
computation that not only responds to the distributional characteristics of contrast but
also responds to the distributional characteristics among pixels with equally bright or
similarly bright pixels and is a second-order statistical feature regarding the changes
graphic contrast. Referring to previous studies, we selected 18 quantitative metrics as
texture features based on the Gray Level Co-occurrence Matrix (GLCM) provided by
GEE [65]. Additionally, this study utilized SRTM data to derive elevation, slope, and slope
direction as topographic features [66]. Feature optimization reduces potential noise in
the feature space and improves classification accuracy [32]. In this study, RFE is used for
feature optimization. The algorithm removes the least important features in each round of
iterations, then performs a new round of iterations until all features have been iterated, and
ultimately compares the accuracy to determine the optimal combination of features [67].
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Table 5. The specific information of classification features.

Feature Types Indicators Description or Formula References

Spectral features BLUE, GREEN, RED, NIR, SWIR1,
SWIR2 Spectral bands ___

Index features

NDVI (NIR − RED)/(NIR + RED) [50]
EVI 2.5 × (NIR − RED)/((NIR + 6 × RED − 7.5 × BLUE) + 1) [51]
RVI (NIR − RED)/(NIR + RED) [52]

SAVI (NIR − RED) × 1.5/(NIR + RED + 0.5) [53]
MSAVI (2 × NIR+1 − sqrt ((2 × NIR + 1) − 8 × (NIR − RED)))/2 [54]

NDWI (GREEN − NIR)/(GREEN + NIR) [55]
EWI (Green + NIR + SWIR1)/(Green – NIR − SWIR1) [56]

MNDWI (GREEN − SWIR)/(GREEN + SWIR) [57]
LSWI (NIR − SWIR)/(NIR + SWIR) [58]
AWEI 4 × (GREEN − SWIR1) − (0.25 × NIR + 2.75 × SWIR2) [59]

MAWEI 5 × (GREEN − NIR) + BLUE + RED + 4 × SWIR2 [60]
NDBI (SWIR − NIR)/(SWIR + NIR) [61]
NDSI (GREEN − SWIR)/(GREEN + SWIR) [62]

BRIGHTNESS, GREENNESS,
WETNESS Tasseled cap transformation [63]

Seasonal features Four-season averages (NDWI, NDVI,
MNDWI, LSWI, EVI) _SP/SU/FA/WI Time series characteristics [64]

Textural features

ASM, CONTRAST, CORR,
MAXCORR, VAR, IDM, SAVG, SVAR,
SENT, ENT, DVAR, DENT, IMCORR1,

IMCORR2, INTERIA, DISS, PROM,
SHADE

GLCM [65]

Topographic features ELEVATION, SLOPE, ASPECT SRTM [66]

Note: (NDWI, NDVI, MNDWI, LSWI, EVI) _SP/SU/FA/WI: “_SP” for spring, “_SU” for summer, “_FA” for
fall, and “_WI” for winter; ASM: angular second-order matrix; CORR: autocorrelation; MAXCORR: maximum
correlation coefficient; VAR: variance; IDM: inverse difference matrix; SAVG: summed mean; SVAR: summed
variance; SENT: sum entropy; ENT: entropy; DVAR: difference variance; DENT: difference entropy; IMCORR1:
correlation information measure 1; IMCORR2: correlation information measure 2; INERTIA: inertia; DISS:
dissimilarity; PROM: cluster prominence; SHADE: cluster shading.

2.3.3. Random Forest Classification

Random forest is an integrated learning method that employs decision trees as the
basic classifiers [68]. Compared to other machine learning methods, random forest (RF)
algorithms are more suitable for wetland extraction [23]. They effectively incorporate the
idea of randomly selecting samples and features. Their powerful computational speed
and generalization ability enable them to adapt to sample datasets with heterogeneous
categories and have been widely used in classification problems with multidimensional
features [69]. Moreover, the RF algorithm can evaluate and rank the importance of the
input features, facilitating feature optimization to improve accuracy. Additionally, there
are two main parameters to establish in the random forest step: the number of decision
trees (n) and the number of features (m) [70,71].

2.3.4. Classification Accuracy Assessment

A commonly used method to evaluate the classification accuracy of remote sensing
images is to calculate the confusion matrix using validation sample points. In this study,
70% of the sample data is used as training samples, and the remaining 30% is used as
validation samples (Table 4). The overall accuracy (OA), kappa coefficient, user accuracy
(UA), and producer accuracy (PA) are calculated using the confusion matrix to evaluate the
accuracy of the classification results.

OA =

(
Pc

Pn

)
× 100 (1)
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where Pc denotes the count of accurately classified pixels for a specific class, while Pn
signifies the total number of pixels.

Kappa =
N∑ r

i=1xii − ∑ r
i=1(xi+ × x+i)

N2 − ∑ r
i=1(xi+ × x+i)

(2)

where N represents the total number of pixels. The sums of each row and column in the
confusion matrix are denoted by xi+ and x+i, respectively, with xii specifically referring to
the diagonal elements of the confusion matrix.

UAi =
Nii
Ni+

(3)

where UAi denotes the user accuracy for the i-th land use type, Nii indicates the count of
correctly classified samples, and Ni+ signifies the true number of samples for the i-th land
use type.

PAi =
Nii
N+i

(4)

where PAi denotes the producer accuracy for the i-th land use type, Nii indicates the count
of correctly classified samples, and N+i signifies the predicted number of samples for the
i-th land use type.

2.4. Wetland Evolution Analysis

The land use transfer matrix is utilized to characterize the dynamics of various land use
types based on the area transformation matrix of land cover over different time phases in
the same area. This study employs this method to investigate the transfer and change char-
acteristics between different wetlands, as well as between wetlands and non-wetlands [72]:

X =


X11 X12 . . . X1j
X21 X22 . . . X2j

...
...

. . .
...

Xi1 Xi2 . . . Xij

 (5)

where Xij represents the area converted from land cover type i to j.
The single land use momentum (K) reflects the rate of change in the area of a particular

land use type in the study area over a certain time frame, as defined by the following
formula [73]:

K =
Ub − Ua

Ua
× 1

T
× 100% (6)

where K represents the annual change rate (dynamic index) of a specific land use type over
the study period; Ui and Uj denote the areas of the land type at the study’s start and end,
respectively; and T signifies the duration of the study period.

3. Results
3.1. Number of Decisions Tree and Features Tuning

The number of decision trees (n) has a direct relationship with the accuracy of the
random forest classification model. To determine the optimal value of the random forest
parameter decision tree (n) for each year’s classification, this study traversed all the results
with (n) taking values from 50 to 200 in increments of 5. The results show that the number
of decision trees that give the highest accuracy varies from one year to the next (Figure 3).
Following the accuracy statistics, the numbers 105, 160, 160, 95, 65, 55, 80, and 155 were
eventually selected as the number of decision trees for the eight study periods ranging
from 1987 to 2020.
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Figure 3. Number of decision trees and corresponding accuracy of random forest models from 1987
to 2020.

To achieve better classification results, this study also calculated the importance correspond-
ing to each feature in the random forest and used the RFE method to tune a total of 63 features
across five types, ensuring that the number of features selected each year maximizes the accuracy
of its classification results. From the graph depicting the number of features and the importance
ranking of each study period (Figure 4), several observations can be made: (1) After feature
optimization, the number of features in each year was lower than 35, with the lowest being 18 in
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1990, 2000, and 2020, respectively. (2) Elevation features consistently scored highest in importance
across study periods except for 2015. (3) Each study period showed a preference for five or more
feature types, indicating that the inclusion of multiple feature types aids in classification. Moreover,
topographic and seasonal features seemed to play a more significant role in classifying compared
to other features. (4) Among the preferred features for all eight periods were ELEVATION, SLOPE,
LSWI_SU, MNDWI_SU, NDGI, SWIR2, BRIGHTNESS, and SAVG, with MAWEI being selected
in seven periods. (5) In feature optimization, texture features were frequently deleted, with only
three features selected out of 18 in 2015, and none selected in 1987 and 2000.
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3.2. Classification and Accuracy Evaluation

The results revealed that the average OA of the classification accuracy from 1987 to
2020 after feature optimization was 96.0%, with a Kappa coefficient of 0.954 (Figure 5).
After feature optimization, among different wetland types, the average UA and PA of
lake/constructed wetlands reached 96.4% and 92.8%, respectively. For rivers, the optimized
mean UA and PA increased to 92.2% and 93.2%, respectively. Marshes demonstrated the
highest classification accuracy, with their optimized mean UA and PA reaching 96.4%
and 95.2%, respectively (Figure 6). Taken collectively, these results demonstrate that the
classification method exhibits high accuracy and fulfills the requirements for wetland
classification in the study area.
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Utilizing the automatically extracted wetland and non-wetland data in Gansu Province,
this study further differentiated constructed wetlands and lakes using auxiliary datasets.
Ultimately, wetlands were categorized into four major types: lakes, rivers, constructed
wetlands (including reservoirs and ponds), and marshes (Figure 7). Overall, wetlands
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occupy a relatively small area in Gansu Province, and their distribution is scattered. Among
the wetland types, marshes dominate in terms of both area and distribution, with the
highest concentration observed in southern Gansu Province (Figure 7).

Land 2024, 13, x FOR PEER REVIEW 15 of 26 
 

 

Figure 7. Cont.



Land 2024, 13, 1527 15 of 25Land 2024, 13, x FOR PEER REVIEW 16 of 26 
 

Figure 7. Cont.



Land 2024, 13, 1527 16 of 25Land 2024, 13, x FOR PEER REVIEW 17 of 26 
 

 

Figure 7. Cont.



Land 2024, 13, 1527 17 of 25Land 2024, 13, x FOR PEER REVIEW 18 of 26 
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3.3. Analysis of Changes in Wetland Resources in Gansu Province
3.3.1. Characteristics of Changes in Wetland Area

From 1987 to 2020, the wetland area in Gansu Province exhibited a fluctuating decreasing
trend overall (Figure 8), with a total decrease of 4536.86 km2 by the end of 2020. The average
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annual rate of change (K) was −0.91%. However, on a phased basis, there was an increase in the
area between 2000–2005 and 2010–2015, particularly notable in 2000–2005, which experienced
the highest rate of increase (5.83%) and reached a maximum area of 16,181.25 km2.
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The area of lakes showed a slight increase except for a minor decrease in 1990, rising
from 135.78 km2 to 180.21 km2, with the highest annual rate of change (K) recorded during
the 2015–2020 period at 2.90%. By the end of 2020, the area of rivers and constructed
wetlands had expanded by 239.02 km2 and 315.31 km2, respectively, with growth rates
of 44.79% and 100.14%. However, the trends of these two types of wetlands diverged,
with rivers experiencing the highest K from 1995 to 2000 (19.62%) and reaching a peak
area of 862.06 km2 in 2000. Constructed wetlands had the highest K of 52.52% during the
1990–1995 phase, but their area peaked at 975.12 km2 in 2010 and has been decreasing since
then. By the end of 2020, the area of marshes had been reduced by a total of 5135.60 km2, a
reduction rate of 36.35%. The largest decrease occurred between 2015 and 2020, amounting
to 4355.80 km2, with an average rate of change of −6.53%. Notably, the average rate of
change in the area of increased marshes from 2000 to 2005 was 6.80%, exceeding the average
rate of decrease from 2015 to 2020.
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3.3.2. Characteristics of Changes in Wetland Types

Between 1987 and 2020, transfers in and out between lakes and all other land use types
were minimal. Their main sources of the increase were from marshes, grasslands, and
bare lands, resulting in a maximum net increase of only 20.71 km2. The reduction in rivers
was primarily attributed to losses to grasslands and forests, resulting in net reductions of
130.66 km2 and 121.97 km2, respectively. The increase in river areas was primarily due to
the conversion of grassland, bare area, and permanent snow. Additionally, the directions of
transfer into and out of constructed wetlands paralleled that of rivers. Their main sources
of increase were predominantly grassland and bare area, with bare area undergoing the
most conversion, resulting in a net increase in area of 208 km2. The decrease in the area
of constructed wetlands is primarily converted to grassland (77.60 km2). Compared with
the other three wetland types, the marsh type underwent the most significant change.
Specifically, a substantial portion of its diminished area was converted into grassland and
forest, resulting in net reduction rates of 31.17% and 32.44%, respectively. In addition,
grassland has the largest contributing role in the increase in the area of marshes, amounting
to 2876.34 km2, followed by agriculture, which transformed 1151.19 km2 (Table 6).

Table 6. Land use area transfer matrix for Gansu Province from 1987 to 2020 (units: km2).

2020
1987

Lake River Constructed
Wetland Marsh Grassland Forest Agriculture Settlement Bare

Area
Permanent

Snow

Lake 120.26 0.00 0.00 20.71 12.95 0.25 1.55 0.06 15.04 9.36
River 0.02 120.13 6.80 26.23 216.40 64.29 10.42 1.02 200.70 124.09

Constructed
wetland 0.00 39.09 183.38 16.84 103.90 14.08 22.54 0.10 208.00 42.09

Marsh 5.17 22.80 5.85 4057.94 2876.34 337.40 1151.19 12.70 427.12 94.72
Grassland 5.13 130.66 77.60 4404.40 97,126.30 2447.67 4552.63 57.24 35,915.00 3262.84

Forest 0.25 121.97 6.37 4583.36 203,86.80 48,353.40 194.68 0.82 147.84 56.89
Agriculture 0.81 12.68 1.94 795.74 3893.70 46.62 12,496.80 29.29 3952.90 24.34
Settlement 1.16 14.28 0.89 168.97 634.93 17.89 928.67 822.54 448.04 0.09
Bare area 2.71 22.62 10.40 11.61 1583.74 3.13 68.84 1.12 158,971.00 1999.61

Permanent
snow 0.21 48.85 21.58 39.94 541.89 26.77 0.62 0.00 1018.63 4323.35

4. Discussion
4.1. Influencing Factors of Wetland Classification

In this study, the RFE method reduced the number of features by half or even more
while simultaneously improving OA, kappa, UA, or PA. This is sufficient evidence to
demonstrate that feature optimization can aid researchers in integrating effective informa-
tion from multi-source data and enhancing classification accuracy. This finding aligns with
results from previous studies in urban, wetland, and other domains [36].

Elevation, among the topographic features, exerted the most significant influence on
wetland classification in the study area. These findings align with numerous previous
studies [74,75], suggesting that topography largely determines wetland presence, with
low-lying or flat conditions favoring wetland development. Furthermore, the selection
of interannual synthetic images in this study limited the consideration of differences in
vegetation or water body phenology. Hence, the inclusion of phenological features aided in
wetland vegetation differentiation while effectively reducing classification uncertainty [66].
However, most prior studies focused solely on commonly used indicators like NDVI and
NDWI, neglecting others like MNDWI and LSWI, which proved more influential in this
study’s classification. Compared to other features, texture features exhibited the least
significant effect, likely due to the absence of distinctive geometries and regularities among
wetland types in the study area. Overall, while each feature’s contribution to classification
was varied, the efficacy of utilizing multi-source information for wetland classification and
extraction remains indisputable. Moreover, researchers increasingly apply this method to
extract other features [76,77].
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In addition to features, image and sample quality also play a critical role in the accuracy
of wetland extraction [78]. It is well known that Landsat series images are affected by the
temporal resolution and weather interference, among other factors, and the available Landsat
data often lack continuous high-quality images, which poses challenges, particularly for
large study areas [79]. Therefore, this study partially addressed this issue by synthesizing
median images from three consecutive years, utilizing high-quality images, to some extent
mitigating the abovementioned issues. Extracting land information from long time series data
through purely visual interpretation not only proves time-consuming and labor-intensive but
also involves complex phenomena such as homogeneous spectra, which are challenging to
differentiate on 30 m resolution images [80]. In this study, the method of combining numerous
auxiliary data and satellite images to construct samples improved the accuracy of the sample
data, thereby resulting in more precise classification outcomes.

4.2. Changes in Wetlands

From 1987 to 2020, the overall trend of wetland area in Gansu Province has been
decreasing, primarily attributed to population growth, long-term overconsumption of
resources, and wetland development, along with increased pollution [37,41–43]. However,
it is noteworthy that the wetland area experienced a significant increase from 2000 to
2005, likely due to a series of ecological conservation measures, such as the addition of
a large and medium-sized reservoir (Table 7). In 2000, the Chinese government initiated
substantial investments in the protection and restoration of natural capital and formulated
the National Action Plan for Wetland Conservation [81]. Additionally, Gansu Province
enacted the Gansu Provincial Wetland Protection Regulations in 2003 to legally safeguard
wetland ecology. While the number of reservoirs has increased during the 2015–2020
period, the total area of wetlands has decreased significantly as a result of strong economic
development, particularly in marshes. This is due to the extensive conversion of marshes
to grasslands and forests. This finding aligns with the results of an analysis comparing
wetland data from the Second National Wetland Resources Survey and the Third National
Land Survey in Gansu Province [82]. The area of lakes continues to increase but experiences
little fluctuation, as most of the increase results from the conversion of marshes surrounding
the lakes. With the development of the western region in 2000, water scarcity issues have
worsened, especially in the northern region [83], consistent with the significant reduction
in rivers since 2000 observed in this study. Additionally, historical data indicate that from
1976 to 1995, the water conservancy department of Gansu Province conducted surveys and
constructed large-scale water conservancy projects, for example, the establishment of the
Bikou Reservoir and the Huangcheng Reservoir, leading to a continuous increase in the
area of constructed wetlands during this period. However, later fluctuations in the area
of constructed wetlands occurred due to population growth and economic development,
rendering the trend unstable.

Table 7. Auxiliary data related to reservoirs in Gansu Province.

Year
Average Annual

Precipitation
(mm)

GDP (Billion
RMB)

Reservoir
Capacity

(Billion m3)

Large and
Medium-Sized

Reservoirs

1991 233.5 271.39 31.2852 16
1995 250.3 557.76 40.32751 28
2000 247.1 1052.88 35.2401 28
2005 281.2 1864.63 39.203 29
2010 263.9 3943.73 39.048 29
2015 251.4 6556.55 36.105 29
2020 317.6 9016.7 46.33 33

Notes: A total reservoir capacity ≥ 1 billion m3 is considered large, and a total reservoir capacity of 1 to
0.1 billion m3 is considered medium.
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4.3. Implications and Improvements of Current Research

Wetland change unfolds over the long term, influenced by various factors leading to
distinct trends in different wetlands [84]. Due to the heterogeneity and fragmentation of
wetland landscapes and the spectral similarities between wetland classes, there are significant
challenges to achieving accurate wetland mapping [85]. Nonetheless, wetland data with long-
term frequency and high spatial resolution can elucidate the enduring dynamic changes of
wetlands and play a pivotal role in delineating ecological protection red lines and promoting
the sustainable development of wetlands [86]. Despite wetland studies being common in
certain watersheds or protected areas within Gansu Province [41–43], there is still a significant
lack of comprehensive research on multitype wetlands across the entire Gansu Province. The
long-time series wetland dataset generated in this study, with a spatial resolution of 30 m,
offers a robust depiction of the evolution of various wetland types in Gansu Province over
the past years. This dataset constitutes a valuable resource, providing data support and a
scientific basis for the sustainable management of wetland ecosystems in northwest China.

Landsat data were selected for their extensive time series, which is essential for the ex-
traction of wetland information over extended periods. The 30 m resolution of Landsat data,
however, may lead to fragmented wetland information, thereby restricting the extraction of
small water bodies and slender streams [80,81]. Additionally, there is still a persistent issue
where certain roads, buildings, and water bodies can be easily mistaken for wetlands due to
spectral similarity [87]. To address these challenges, an increasing number of studies have
turned towards multi-source remote sensing image fusion techniques to enhance the accu-
racy of wetland mapping [88]. While this approach partially addresses the temporal and
spatial resolution discrepancies of satellite sensors, its fusion accuracy is subject to notable
errors due to technological complexity, radiometric differences, geometrical misalignment,
and mixed pixels [89]. Thus far, employing multi-source remote sensing image fusion
for wetland information extraction remains challenging, particularly for large-scale and
multi-temporal analyses. Additionally, the automated classification method employed in
this study struggled to differentiate lakes from reservoirs, necessitating manual secondary
classification; however, the capacity for manual classification is limited. In conclusion,
future research endeavors will focus on enhancing both image accuracy and classification
methods to improve wetland classification accuracy. With advancements in remote sensing
and computer technology, achieving automated, long-term, large-scale, high-precision,
and fine wetland classification is imminent, offering significant implications for wetland
ecological protection and restoration.

5. Conclusions

High-quality wetland data are indispensable for Gansu Province, given its scarce water
resources and fragile ecological environment. In this study, leveraging the GEE cloud platform,
we combined the recursive feature elimination method with the random forest model and
integrated sample points with multi-source data features to extract wetland information in
Gansu Province from 1987 to 2020. The average OA achieved 96.0%, with a kappa coefficient
of 0.954. Additionally, we derived quantitative data on the changes in wetland area and
type transformations and discussed the factors influencing classification uncertainty and the
drivers of wetland changes. Our findings indicate that integrating multi-source data features
enhances the distinguishability of wetland categories. Nevertheless, an excess of features can
introduce noise, underscoring the importance of feature optimization for the enhancement
of classification accuracy. Topographic features, particularly elevation, had the most impact,
while textural features had the least impact. From 1987 to 2020, the overall wetland area in
Gansu Province decreased by 4543.86 km2, with different wetland types exhibiting varied
changes at each time stage. There has been a slight increase in the area of lakes, primarily
sourced from marshes. The areas of river and constructed wetlands fluctuated, with increases
primarily due to the conversion of grasslands and bare land. The most notable change was in
marshes, which decreased by 5135.60 km2 between 1987 and 2020, primarily due to conversion
to grassland and forest. The wetland classification method employed in this study yielded
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positive results in Gansu Province, offering a framework for extracting large-scale, long-term
wetland data in other regions and providing scientific support for wetland protection and
sustainable management.
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