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Abstract: The Ili River Basin (IRB) is located in the northwest of China. With its large‑scale zone
and abundant resources, it is believed to be a “wet island” and a biotic resource storehouse in the
dry regions of Eurasia. The IRB has stable ecological conditions and abundant water resources, pro‑
viding natural conditions for agricultural production and human settlements. With the population
increasing and economic development advancing, the competition for land resources is becoming
fierce, leading to some ecological problems in this region. Therefore, understanding the spatiotem‑
poral changes and driving mechanisms of the “three‑zone space” (TZS) in the IRB is of significant
practical importance for promoting sustainable development and optimizing the territorial spatial
pattern. This study first analyzes the characteristics and intensity of the TZS changes from 2000 to
2020. Then, it utilizes the optimized parameter Geodetector (OPGD) to analyze the driving mech‑
anisms behind these changes. The results show the following. Firstly, the agricultural space (AS)
increased by a total of 837.5 km2, the urban space (US) increased by 519.64 km2, and other ecological
space (OES) increased by 1518.83 km2. Green ecological space (GES) decreased by 2875.97 km2. Sec‑
ondly, intensity analysis indicated that the total TZS change in IRB was 11.07%. At the spatial‑type
level, the increased intensities of OES, US, and AS were active. In spatial transformation intensity,
US and OES tended to transform into AS; AS tended to transform into US; and OES and GES had a
mutual transformation tendency. Thirdly, AS converted into US around emerging cities like Khor‑
gas and Cocodala. The conversion towards GESwas scattered. Themutual conversion between OES
and GES showed spatial distribution consistency, mainly occurring in the Borohoro ranges and the
Halik ranges. Lastly, regarding the driving mechanisms, the evolution of US in the IRB was driven
by social and economic factors. Location and climate factors accelerated agricultural development,
facilitating the transformation of GES and OES into AS. Climate and economic factors played a cru‑
cial role in the scale of conversions between OES and GES. The findings can provide a basis for the
governance and protection of the IRB, help to form a rational territorial spatial pattern, and offer
scientific guidance for sustainable land management.

Keywords: spatial–temporal evolution characteristics; “three‑zone space”; driving mechanisms; Ili
River Basin; optimized parameter Geodetector

1. Introduction
The Sustainable Development Goals (SDGs) were released by the United Nations in

September 2015 [1]. The SDGs aim to serve as a guide for nations in shaping their plan‑
ning, policy, and investment strategies, as well as in consistently monitoring and reporting
their advancements towards sustainable development from 2016 to 2030 [2]. China actively
engages in global environmental and climate governance.
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Territorial space is essential for human survival and development; it is a crucial re‑
source for sustainable societal progress and national power [3–5]. China has achieved
significant advancements in both its economic and social progress, with accelerated ter‑
ritorial space development in these years. However, issues, such as disorder of spatial
development, inefficient resource use, and shrinking ecological space, have emerged [6–8].
Thus, to achieve the SDGs, China has advocated for the establishment of a “Three Zones
and Three Lines” framework [9] to create an integrated spatial management system. This
framework categorizes territorial space into urban, agricultural, and ecological spaces,
each demarcated by the following distinct control lines: the urban development bound‑
ary, the boundary for permanent agricultural land, and the ecological protection red line,
respectively. The changes in ecological space, agricultural space, and urban space reflect
the extent of the influence of human activities [10]. It plays a crucial bridging role between
the macro scale (major function‑oriented zone [11]) and the micro scale (land use plan‑
ning [9]). Despite differences in land classification systems and spatial dominant functions,
the “three‑zone space” (TZS) classification is more suitable for medium to large‑scale anal‑
yses [12].

The scope of this study is the Ili River Basin (IRB) within China. The Ili River is
shared by both China (approximately 624 km long, upstream) and Kazakhstan (approx‑
imately 815 km long, downstream) [13,14], with several originated branch rivers includ‑
ing the Tekes River, Kash River, and Gongnaisi River. The IRB, situated in the western
part of the Xinjiang Uygur Autonomous Region (XUAR) in Central Asia, is a crucial sen‑
sitive ecological environment zone in China [15], and it is known as “Jiangnan beyond
the Great Wall”. Additionally, it features three border trade ports, namely, Khorgos, Du‑
lata, and Muzhaerte, of which Khorgos stands out as a crucial hub for the New Eurasian
Land Bridge, making it the largest land port between China and Kazakhstan [16]. In re‑
cent years, the Ili Kazakh Autonomous Prefecture government has introduced and revised
the “Ili River Valley Ecological Environment Protection Regulations”, formulated the “14th
Five‑Year Plan for Ecological Environment Protection”, and implemented the “Three Lines
One Permit” policy [17,18]. These initiatives were designed to regulate the protection of
the ecological environment, taking into account factors like industrial scale, spatial distri‑
bution, environmental risk mitigation, and ecological carrying capacity, with the goal of
achieving a balanced relationship between human activities and the natural world.

With the implementation of theWesternDevelopment strategy [19] and socio‑economic
improvements, the rapid expansion of urban space in the IRB has encroached on ecological
and agricultural space, leading to conflicts between development and protection as well
as tensions in the relationship between humans and land. To mitigate these issues, it is
essential to construct a rationally structured and spatially ordered pattern based on the
TZS framework. Specifically, it is crucial to describe the trends and intensities of changes
occurring within urban, ecological, and agricultural spaces. By analyzing the distribution,
kernel density, and spatial exchange intensity of the TZS from 2000 to 2020, we can de‑
termine the scale, intensity, and patterns of the spatial changes in the TZS. This work
will help optimize the territorial spatial pattern. The use of a space pattern transfer ma‑
trix [20], kernel density estimation [21], and TZS dynamic degree [11] methods is suitable
for achieving this goal. Current research on the IRB primarily focuses on the sources of soil
and potential distribution mechanisms [22–24], the distribution and impact mechanisms
of diseases [25], and areas such as hydrology [26], the ecological environment [27], and
climate [28,29]. There is limited research on land use [30,31] and a lack of studies on the
evolution processes and impact mechanisms of the TZS in the IRB from the perspective of
territorial spatial planning. The transition matrix is a fundamental method in the analysis
of land change [32]. To explain the changes in the TZS, one can utilize the land use transi‑
tion matrix method to obtain accurate information about the potential processes that drive
the changes. Intensity analysis is a hierarchical analysis method used to analyze land use
change in terms of its interval, category, and transition level [33–35]. This study utilizes
intensity analysis to assess the magnitude and intensity of total losses and gains for each
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spatial type at the category level between 2000 and 2020. At the transition level, it analyzes
the size and intensity of specific spatial types transitioning to other categories between
2000 and 2020. Regarding driving mechanisms, the optimized parameter Geodetector tool
(OPGD) [36] has seen extensive use across diverse domains, such as assessing ecological
risk factors, examining the spatiotemporal dynamics of land use and land cover changes,
and analyzing spatial variation characteristics [37–40]. This study utilizesOPGD to explore
the impact of economy, society, geography, location, and climate factors on the evolution
of the TZS, aiming to provide a more comprehensive understanding of the spatiotemporal
evolution characteristics and mechanisms of TZS in the IRB.

The IRB is a key hub of the Silk Road Economic Belt and a strategic ecological secu‑
rity barrier in Northwest China, which is considered a “wet island” and a biotic resource
storehouse in the dry regions of Eurasia. Within the framework of the TZS, this research
quantitatively analyzes spatial and temporal cross‑transformation characteristics and de‑
tects the driving mechanisms behind the conversion of the TZS in the IRB from 2000 to
2020. Furthermore, it fills a research gap in the long‑term analysis of the TZS within the
context of territorial spatial planning in the IRB. The aim is to provide a basis for strength‑
ening the governance and protection of the region, accelerate the formation of a territorial
spatial pattern, and promote the achievement of SDGs.

2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area

The IRB in China (42◦14′16″–44◦53′30″N, 80◦09′42′′–84◦56′50′′ E) is located in the inte‑
rior of Central Asia in the western part of XUAR (Figure 1), with an area of approximately
55,339.16 km2, including 3 cities and 8 counties. By the end of 2020, the total population
of the area was 2,619,200 with a population density of 47 people/km2. The study area en‑
compasses the following three border ports: Khorgos, Dulata, and Muzhaerte. The IRB
is an area that is a sensitive ecological environment. The “Ili Prefecture Territorial Spa‑
tial Planning 2021–2035” positions the IRB as an important hub of the Silk Road Economic
Belt, a world‑class tourist destination, and a strategic ecological security barrier in North‑
west China.

The IBR features complex terrain, with terrain that is higher in the east and lower in
the west. It is narrow in the east andwide in the west, resembling a trumpet opening to the
west. The Ili River originates from three main feeder streams (the Kash, Gongnaisi, and
Tekes Rivers), which descend from the Tian Shan Mountains. The river is surrounded by
the Borohoro and Dzungarian Alatau ranges to the north and the Halik and Ketpen ranges
to the south. It flowswestward for 1,439 km from its point of origin, exiting China’s XUAR
and extending into Kazakhstan [41], with a mean annual discharge of about 480 m3/s [14].
The IRB, which has a typical temperate continental climate characterized by amean annual
temperature of 7 ◦C [42] and a mean annual precipitation ranging from 200 to 1000 mm,
is the wettest region in XAUR [43]. It features a relatively humid climate, well‑developed
vegetation, and pasture, making it a typical livestock farming base in China [44].

2.1.2. Data Sources
This study focuses on the TZS of the IRB, analyzing its distribution, scale, spatial trans‑

formation, and driving mechanisms. To ensure data consistency, the administrative units
of 2020 were used as the reference. The necessary data are listed in Table 1.

2.2. Methods
2.2.1. Spatial Classification

This article used ArcGIS technology to crop GlobeLand30 data from 2000 to 2020.
The overall accuracy of the GlobeLand30 is 83.58% in XUAR, with a kappa coefficient of
0.717 [47]. Based on the GlobeLand30 classification of land use types, the nine distinct cat‑
egories within the region were subsequently grouped into three overarching spaces as fol‑
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lows: “ecological space, agricultural space, and urban space” (Table 2). Urban space (US)
primarily consists of artificial surfaces, while agricultural space (AS) is predominantly cul‑
tivated land. The special characteristics of bareland in the basin ecological space (large‑
scale and concentrated bareland; obvious cross‑conversion with forest, shrubland, and
other land uses; and dominant functions and ecological services are different from for‑
est and other land uses) necessitated its classification into two subcategories as follows:
“green ecological space” (GES) and “other ecological space” (OES).
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Table 1. Data sources.

Data
Classification Data Name Variable Data Source

Land use
basic data

30 m Global Surface Coverage
Data GlobeLand30 (2000–2020)

https://www.webmap.cn/commres.do?method=
globeDetails&type=brief (accessed on 3 June 2023)
https://zenodo.org/records/8385299 (alternative link)
(accessed on 10 September 2023) [45].

National 1:1,000,000 Basic
Geographical Information

Dataset (2021)

X12, X13
X14, X15 https://www.webmap.cn/ (accessed on 12 May 2023).

Natural geographic data X8, X9,
X10, X11

ASTER GDEM 30M (https://www.gscloud.cn/
(accessed on 12 May 2023)).
Spatial distribution of soil types in China
(https://www.resdc.cn/ (accessed on 12 May 2023)).

https://www.webmap.cn/commres.do?method=globeDetails&type=brief
https://www.webmap.cn/commres.do?method=globeDetails&type=brief
https://zenodo.org/records/8385299
https://www.webmap.cn/
https://www.gscloud.cn/
https://www.resdc.cn/
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Table 1. Cont.

Data
Classification Data Name Variable Data Source

Driver
mechanism data

Annual economic data X1, X2
X3, X4

China County Statistical Yearbook (2021).
Statistical Yearbook of the XPCC (2021).
Annual dataset of nighttime lighting in China
(http://www.resdc.cn (accessed on 14 May 2023)) [46].

Annual social data X5, X6,
X7

Seventh Population Census Data (stats.gov.cn
(accessed on 4 June 2023)).
ORNL LandScan Viewer‑Oak Ridge National
Laboratory (accessed on 5 June 2023)

Climatic data X16, X17
X18

National Earth System Science Data Center, National
Science, and Technology Infrastructure of China
(https://www.geodata.cn (accessed on 10 June 2023)).
National Cryosphere Desert Data Center
(http://www.ncdc.ac.cn (accessed on 12 July 2023)).

Note: X1–X18 correspond to various influencing factors in Section 2.2.8.

Table 2. The classification scheme of “three‑zone space” in the Ili River Basin.

Spatial Type GlobeLand30 Land‑Use Classification System
Classification Basis

Primary Space Secondary Space Primary Land Use
Classification Secondary Land Use Classification

Urban space (US) – Artificial surfaces

Urban residential land, rural
residential land, industrial and
mining land, transportation facility
land, etc.

Carry the town’s
development

Agricultural
space (AS) – Cultivated land

Paddy land, irrigated drylands,
rainfed drylands, vegetable plots,
pasture land, greenhouses, economic
tree forests, economic shrub forests.

Ensure food security

Ecological space

Other ecological
space (OES) Bareland Deserts, sand, gravel, bare rock, salt

marshes, etc.
Need for ecological

restoration

Green ecological
space
(GES)

Forest land
Land with tree cover and more than
30% canopy cover, open forest land
with 10% to 30% cover.

Provision of ecological
services such as soil
conservation, water
conservation, climate

regulation, and
biodiversity
conservation

Grassland Grasslands, meadow savannas, desert
grasslands, artificial grasslands.

Shrubland Mountain scrub, deciduous and
evergreen scrub, and desert scrub.

Wetland
Bogs, riverine floodplains,
forested/shrubland wetlands, peat
bogs, salt marshes, etc.

Water bodies Rivers, lakes, reservoirs, ponds,
offshore, etc.

Permanent snow
and ice

Permanent snow in alpine areas and
glaciers.

Therefore, this paper established the TZS classification system in the IRB by taking
land dominant functions as the starting point, combining relevant studies with the actual
situation of the basin. This study analyzed the evolutionary characteristics of US, AS, OES,
and GES.

http://www.resdc.cn
stats.gov.cn
https://www.geodata.cn
http://www.ncdc.ac.cn
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2.2.2. “Three‑Zone Space” Dynamic Degree
The dynamic degree serves as a measure to quantify both the rate of transformation

and the extent of change that various geographical functional areas undergo within a spec‑
ified time frame in research on land use change [48,49].

K =
(Ub − Ua)

Ua
× 1

T
× 100% (1)

where K represents the dynamic degree, or the rate of change, of a particular spatial type
over a defined time period. Ua signifies the initial area occupied by this spatial type at the
start of the period, whereas Ub denotes its area at the conclusion of the period. T stands
for the length of this time period.

2.2.3. Kernel Density Estimation
Kernel density estimation can help us understand the spatial distribution patterns of

data points [50]. This studyutilizedArcGIS 10.8 software to analyze the spatial distribution
characteristics of the transformed area within the TZS. After comparing kernel density
analysis maps under various search radii, a 10 km search radius was adopted, as it better
depicted the spatial distribution. The formula is as follows:

Fn(x) =
1

nh

n

∑
i=1

k
(

x − xi
h

)
(2)

where Fn(x) serves as an approximation for the kernel density value for the search radius,
denoted as h (h > 0). n signifies the total count of samples that represent spatial transitions
within the studied area. The k function quantifies the distance between any given point
element x and a reference point xi.

2.2.4. Space Pattern Transfer Matrix
A land use transfer matrix can visualize the overall change in land use types [51].

This study employed a land use transfer matrix as a tool for quantitatively describing the
transformation of TZS. In Table 3, i = 1, 2, … J represents the space type at the initial time
point and j = 1, 2,… J represents the space type at the final time point, where J is the number
of space types. T is the number of time points, Yt represents the year at time point t, and t
represents the index for the initial time point of interval [Yt, Yt+1], where t ranges from 1 to
T − 1. Ctij represents the area converted from space type i at time Yt to space type j at time
Yt+1. Ctii represents the area of space type i that remains unchanged. ∑J

j=1 Ctij represents

the total area of space type i at the initial time point. ∑J
i=1 Ctij represents the total area of

space type j at the final time point.
(

∑J
j=1 Ctij

)
−Ctii represents the loss in the area of space

type i for time interval [Yt, Yt+1];
(

∑J
i=1 Ctij

)
− Ctjj represents the gain in the area of land

use type j for time interval [Yt, Yt+1].

Table 3. Space pattern transfer matrix from the initial time to the final time.

Categories at Final Time (t + 1)
Initial Total (Yt) Gross Loss

j = 1 j = 2 … j = J

Categories
at

Initial
Time (t)

i = 1 Ct11 Ct12 … Ct1J ∑J
j=1 Ct1j

(
∑J

j=1 Ct1j

)
− Ct11

i = 2 Ct21 Ct22 … Ct2J ∑J
j=1 Ct2j

(
∑J

j=1 Ct2j

)
− Ct22

︙ … … … … … …
i = J CtJ1 CtJ2 … CtJJ ∑J

j=1 CtJ j

(
∑J

j=1 CtJ j

)
− CtJ J

Final Total (Yt+1) ∑J
i=1 Cti1 ∑J

i=1 Cti2 … ∑J
i=1 CtiJ ∑J

i=1 ∑J
j=1 Ctij ∑J

i=1

((
∑J

j=1 Ctij

)
− Ctii

)
Gross Gain

(
∑J

i=1 Cti1

)
− Ct11

(
∑J

i=1 Cti2

)
− Ct22 …

(
∑J

i=1 CtiJ

)
− CtJ J ∑J

j=1

((
∑J

i=1 Ctij

)
− Ctjj

)
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2.2.5. Change Budget
Based on the spatial change transfermatrix, we can further calculate the spatial change

budget [52]. Equation (3) calculates the total change by summing all the entries within the
matrix and then subtracting the diagonal entries, which represent persistence. The total
change encompasses both quantity change and allocation change.

Total change = S =
∑J

j=1

{(
∑J

i=1 Ctij

)
− Ctij

}
∑J

j=1 ∑J
i=1 Ctij

× 100% (3)

Quantity change =
∑J

j=1

{
MAXIMUM

[
0, ∑J

i=1

(
Ctij − Ctji

)]}
∑J

j=1 ∑J
i=1 Ctij

× 100% (4)

Allocation change = Total change − Quantity change (5)

Equation (4) gives the quantity change. Categories with a positive net change are
selected by the MAXIMUM function, followed by a summation over j to accumulate the
positive net changes. Equation (5) computes the allocation change, which represents the
percentage of total change minus the percentage of quantity change.

2.2.6. Intensity Analysis
The intensity analysismethod, grounded in a transfermatrix, constitutes amathemati‑

cal framework that compares a uniform intensitywith the intensities of temporal variations
observed among distinct categories [33,53]. Although this study utilized only a single time
interval from 2000 to 2020, we could still employ the interval level of intensity analysis to
calculate the annual change during the interval [Yt, Yt+1], which serves as a foundation
for subsequent category level analysis. In Equation (6), St represents the observed annual
change intensity during interval [Yt, Yt+1].

St =

{
∑J

j=1

[(
∑J

i=1 Ctij

)
− Ctij

]}
/
[
∑J

j=1 ∑J
i=1 Ctij

]
Yt+1 − Yt

× 100% (6)

This study adopted this method at two levels (category and transition) to analyze the
intensity characteristics of changes in the TZS.

Gtj =

[(
∑J

i=1 Ctij

)
− Ctjj

]
/
(

∑J
i=1 Ctij

)
Yt+1 − Yt

× 100% (7)

Lti =

[(
∑J

j=1 Ctij

)
− Ctii

]
/
(

∑J
j=1 Cij

)
Yt+1 − Yt

× 100% (8)

Equations (7) and (8) show the intensity analysis of the category level, whereGtj repre‑
sents the annual average increase intensity and Lti represents the annual average decrease
intensity. By comparing the values of Gtj, Lti, and St (from Equation (6)), it can be deter‑
mined whether the increase or decrease in a space type is active or dormant. If Gtj > St, the
increase in category j is judged as active; if Gtj < St, the increase in category j is judged as
dormant. The same applies to the judgment of space type decrease.

Rtin =
(Ctin)/

(
∑J

j=1 Ctij

)
Yt+1 − Yt

× 100% (9)

Wtn =

[(
∑J

i=1 Ctin

)
− Ctnn

]
/∑J

j=1

{(
∑J

i=1 Cij

)
− Cnj

}
Yt+1 − Yt

× 100% (10)
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Equations (9) and (10) show the intensity analysis of the transition level, where Rtin
represents the intensity of the transformation from other space types to this specific space
type andWtn represents the uniform transition intensity of other space types converting to
this space type. If space types n were to gain with the same intensity from all non‑i space
types, thenRtinwould equalWtn. IfRtin >Wtn, it is judged that space type i tends to convert
to space type n; if Rtin <Wtn, it is judged that space type i avoids converting to space type n.

2.2.7. Optimized Parameter Geodetector
The factor detection and interaction detection of the optimized parameterGeodetector

(OPGD) [36] was employed to analyze the impact of various factors on the transformation
of the TZS.

In practical spatial analysis, continuous variables should be discretized with optimal
parameters before modeling. The efficacy of discretization in classification can be assessed
through the statisticQ of a geographic detector, where a higherQ value indicates better par‑
titioning. Thus, we employed the GD package in the R language, utilizing methods such
as natural breaks, quantile breaks, and others, with the number of classifications ranging
from 3 to 8, and selected the parameter combination yielding the highest Q value as the
parameter for geographic detector analysis.

Qv = 1 −
∑M

j=1 Nv,jσ
2
v,j

Nvσ2
v

(11)

Equation (11) show the explanatory power of factors for the transformation of various
types of spaces, with the range of Q‑statistic values being [0, 1]. The larger the Q, the
stronger the explanatory power of the factor for the specific type of spatial transformation.
j = 1, …, M represents the strata (or sub‑regions) of the explanatory variable v; Nv,j and
Nv represent the number of units in the j‑th sub‑region of variable v and the whole area,
respectively. σ2

v,j and σ2
v are the variances in the j‑th sub‑region of variable v and the whole

area, respectively.
The impacts of two spatial variables were explained by their interactions, which are

illustrated by the five interaction types shown in Table 4 [54,55].

Table 4. Types of interaction between two covariates.

Geographical Interaction Relationship Interaction

Qu∩v < min(Qu, Qv) 1
Nonlinear weaken: Impacts of single variables are nonlinearly weakened by the
interaction between two variables.

min(Qu, Qv) ≤ Qu∩ v ≤max(Qu, Qv)
Univariable weaken: Impacts of single variables are univariable weakened by
the interaction.

max(Qu, Qv) < Qu∩ v < (Qu + Qv)
Bi‑variable enhance: Impact of single variables are bi‑variable enhanced by
the interaction.

Qu∩v = (Qu + Qv) Independent: Impacts of variables are independent.
Qu∩v > (Qu + Qv) Nonlinear enhance: Impacts of variables are nonlinearly enhanced.

1 Qu is the Q‑statistic of the variable u,Qv is the Q‑statistic of the variable v, andQu∩v is the interaction Q‑statistic
between the variables u and v.

2.2.8. Description of Variables
Considering local circumstances and the factors’ quantifiabilities and availabilities,

we selected 18 indicators from the perspectives of economy, society, geography, location,
and climate (Table 5). The selected independent variables were stratified using optimal pa‑
rameter selection, converting them fromnumerical variables to categorical variables. Then,
using the OPGD, detection was conducted for the 12 spatial types in the IRB from 2000
to 2020.
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Table 5. Description of variables and indicators.

Dimensions of Influencing Factors Name of Independent Variable Processing Method

Economy‑related

Output value of primary production (X1) Statistical yearbook acquisition
Nighttime light index (X2) ArcGIS raster statistics

Local general budget revenue (X3) Statistical yearbook acquisition
Local general budget expenditure (X4) Statistical yearbook acquisition

Social‑related

Resident population (X5) The seventh national population census

Urbanization rate (X6) Urban registered population/total
registered population

Population density (X7) ArcGIS raster statistics

Geography‑related

Elevation (X8) ArcGIS raster statistics
Slope (X9) ArcGIS raster statistics

Slope aspect (X10) ArcGIS raster statistics
Soil type (X11) ArcGIS raster statistics

Location condition

Average distance to city and county
seats (X12) ArcGIS Euclidean distance analysis

Average distance to rivers (X13) ArcGIS Euclidean distance analysis
Average distance to railways (X14) ArcGIS Euclidean distance analysis
Average distance to roads (X15) ArcGIS Euclidean distance analysis

Climate‑related
Average annual temperature (X16) ArcGIS raster statistics
Average annual precipitation (X17) ArcGIS raster statistics

Snow depth (X18) ArcGIS raster statistics

3. Results
3.1. Characteristics of Spatial–Temporal Evolution of Land Use Structure

From 2000 to 2020, significant changes were observed in the land use distribution in
the IRB (Figure 2 and Table 6). The cultivated land increased by 837.5 km2 over 20 years,
with a gradual decline in the first decade and substantial growth in the second. The artifi‑
cial surfaces expanded by 519.64 km2, with the majority of the increase concentrated in the
cities of Khorgos, Cocodala, and Yining, while other counties and cities also experienced
different levels of growth.

The reduction of 1469.2 km2 occurred in the grassland, representing a 4.46% decrease.
The decline in grassland primarily occurred from 2000 to 2010. During the following
decade, the reduction in grassland area was alleviated. Shrubland decreased by 11.64 km2

over a period of 20 years, while bareland increased by 1518.20 km2. Bareland was pri‑
marily found in the southern region of the Tian Shan Mountains, the Borohoro range, and
Dzungarian Alatau range, intersecting with glacier and permanent snow land as well as
forested land. This trend will increase the ecological vulnerability of the IRB. The most
substantial growth in land use area was observed in wetlands, with their size increasing
from 8.94 km2 in 2000 to 300.60 km2 in 2020, representing a growth rate of 3264.27%. They
were primarily located along the riverbanks, and during the same period, the water bodies
of the IRB also increased to 381.65 km2, with a growth rate of 112.72%. The expansion of
wetland areas was closely linked to the increase in water area. Glaciers and permanent
snow land saw the most significant decrease in area, declining by 1996.83 km2, which was
attributed to global warming and the overall temperature rise in the IRB [15]. Meanwhile,
the melting of glaciers and permanent snowfields accelerated the formation of bareland.
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Figure 2. Land use classification maps of the IRB in 2000, 2010, and 2020. Note: (a) Khorgos City,
(b) Huocheng County, (c) Cocodala City, (d) Yining City, (e) Yining County, (f) Gongliu County, (g)
Nileke County, (h) Xinyuan County, (i) Chabuchaer County, (j) Tekes County, (k) Zhaosu County.

Table 6. Land use classification data of the Ili River Basin in 2000, 2010, and 2020.

2000 2010 2020 Rate of
Change in
Total Area,
2000–2010

(%)

Rate of
Change in
Total Area,
2010–2020

(%)

Rate of
Change in
Total Area,
2000–2020

(%)

Type of
Land Use

Land
Area
(km2)

Proportion
of Total
Area (%)

Land
Area
(km2)

Proportion
of Total
Area (%)

Land
Area
(km2)

Proportion
of Total
Area (%)

Cultivated land 9123.57 16.49 9107.26 16.46 9961.07 18 −0.18 9.38 9.18
Forest 5172.58 9.35 5312.44 9.6 5280.37 9.54 2.7 −0.6 2.08

Grassland 32,907.95 59.47 30,962.83 55.95 31,438.75 56.81 −5.91 1.54 −4.46
Shrubland 74.64 0.13 73.11 0.13 63 0.11 −2.05 −13.83 −15.59
Wetland 8.94 0.02 12.2 0.02 300.6 0.54 36.58 2363.16 3264.27

Water bodies 179.41 0.32 337.89 0.61 381.65 0.69 88.33 12.95 112.72
Artificial surfaces 599.47 1.08 627.34 1.13 1119.11 2.02 4.65 78.39 86.68

Bareland 2935.2 5.3 4621.65 8.35 4454.02 8.05 57.46 −3.63 51.75
Permanent snow

and ice 4337.42 7.84 4284.44 7.74 2340.59 4.23 −1.22 −45.37 −46.04

Total 55,339.16 100 55,339.16 100 55,339.16 100
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3.2. Spatial–Temporal Evolution Characteristics of the “Three‑Zone Space” in the Ili River Basin
From 2000 to 2020, notable alterations took place in the urban spatial configuration

of the IRB (Figure 3 and Table 7). In 2020, US reached 1119.11 km2, accounting for 2.02%
of the total study area. Over the course of 20 years, US increased by a total of 519.64 km2,
representing a growth rate of 86.68%. This increase was primarily concentrated in newly
established cities, such as Khorgos City and Cocodala City, and the surrounding areas of
Yining City (Figure 3a–d). The evolution rate of US shifted from stable growth in the first
decade to rapid expansion in the second decade (dynamic degree: 0.46 to 7.84%). In terms
of spatial distribution, USwas primarily distributed along the valley lowlands. Taking Yin‑
ing City as an example, urbanization led to gradual outward expansion of its US, resulting
in the formation of an urban–rural interface with adjacent agricultural areas. From 2000
to 2020, the overall scale of AS underwent a process of initial decline followed by growth
(dynamic degree: −0.02 to 0.94%). From 2000 to 2010, there was a slight decrease in AS,
amounting to a reduction of 16.31 km2. Over the next decade, there was a stable increase,
with a growth scale of 853.81 km2. In 2020, AS reached 9961.07 km2, accounting for 18% of
the total study area. Over the course of 20 years, the AS increased by a total of 837.5 km2,
representing a growth rate of 9.18%. Notably, the expansion of ASwas particularly evident
in Chabuchaer County (Figure 3i).
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Figure 3. The three‑zone space evolution in the Ili River Basin in 2000, 2010, and 2020. Note:
(a) Khorgos City, (b) Huocheng County, (c) Cocodala City, (d) Yining City, (e) Yining County, (f)
Gongliu County, (g) Nileke County, (h) Xinyuan County, (i) Chabuchaer County, (j) Tekes County,
(k) Zhaosu County.
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There was a decrease in the scale of ecological space, with the area decreasing from
45,616.13 km2 in 2000 to 44,258.98 km2 in 2020, representing a reduction rate of 2.98%. Fur‑
thermore, from a secondary classification standpoint, there was a downward trend in GES.
The net decrease in GES from 2000 to 2020 was 2875.97 km2, with a dynamic degree of
−0.67%. For OES, the net increase from 2000 to 2010 was 1686.45 km2, with a dynamic
degree of 5.75%, and the net decrease from 2010 to 2020 was 167.93 km2, with a dynamic
degree of −0.36%. These spaces were mostly situated in the mountainous areas surround‑
ing the IRB.

Table 7. Spatial changes and dynamic degree of the “Three‑zone space” in the Ili River Basin in 2000,
2010, and 2020.

AS US
ES

Total
GES OES

2000
Area (km2) 9123.57 599.47 42,680.93 2935.2 55,339.16

Proportion of total area (%) 16.5 1.08 77.14 5.28 100

2010
Area (km2) 9107.26 627.34 40,982.91 4621.65 55,339.16

Proportion of total area (%) 16.46 1.13 74.04 8.37 100

2020
Area (km2) 9961.07 1119.11 39,804.96 4454.02 55,339.16

Proportion of total area (%) 18 2.02 71.92 8.06 100

2000–2010
Area change (km2) −16.31 27.87 −1698.02 1686.45 —
Growth rate (%) −0.18 4.65 −3.98 57.46 —

Dynamic degree (%) −0.02 0.46 −0.4 5.75 —

2010–2020
Area change (km2) 853.81 491.77 −1177.95 −167.93 —
Growth rate (%) 9.38 78.39 −2.87 −3.63 —

Dynamic degree (%) 0.94 7.84 −0.29 −0.36 —

2000–2020
Area change (km2) 837.5 519.64 −2875.97 1518.82 —
Growth rate (%) 9.18 86.68 −6.74 51.75 —

Dynamic degree (%) 0.92 8.67 −0.67 5.17 —
Note: AS, agricultural space; US, urban space; GES, green ecological space; OES, other ecological space.

3.3. Spatial–Temporal Cross‑Transformation Characteristics of the “Three‑Zone Space”
3.3.1. Change Budget for “Three Zone Space”

According to Table 8, from 2000 to 2020, there was a change in the spatial area of the
TZS within the study area. Specifically, US increased by 584 km2, and the increase in OES
was the highest, reaching 2799.35 km2. The main reduction was the decrease in GES, with
a reduction of 4165.98 km2. The reduction in US was the least, at only 64.36 km2.

Table 8. Transfer matrix of the three‑zone space, 2000–2020 (km2).

Projects
2020

Total 2000 Gross Loss
AS US GES OES

2000

AS 8506.36 408.86 206.43 1.92 9123.57 617.21
US 52.25 535.10 12.05 0.05 599.47 64.36
GES 1209.95 158.66 38,514.95 2797.38 42,680.93 4165.98
OES 192.51 16.48 1071.53 1654.67 2935.20 1280.52

Total 2020 9961.07 1119.11 39,804.96 4454.02 55,339.16 6128.07
Gross Gain 1454.71 584 1290.01 2799.35 6128.07

Note: AS, agricultural space; US, urban space; GES, green ecological space; OES, other ecological space.

Figure 4 shows that the total spatial change in the TZS of the IRB from 2000 to 2020was
11.07%, comprising both quantity and allocation changes, with quantity change accounting
for 5.20% of the total.

Figure 5 illustrates the percent gain, persistence, and loss in the total area from 2000
to 2020. By calculating the sum of persistence and gain for each spatial type in the diagram,
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one can obtain the scale of the corresponding spatial type in 2020. Similarly, by calculating
the sum of persistence and loss, one can obtain the scale of the corresponding spatial type
in 2000. The percentage of GES had the greatest loss, whereas US had the least. In contrast,
the percentage of OES had the largest gain.
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3.3.2. Change Intensity Analysis for the “Three‑Zone Space”
Figure 6 shows the intensity of gains and losses by each spatial type from 2000 to 2020.

The left side shows that OES had the largest area in terms of annual gains while GES has
the largest area in terms of annual losses. The right side of Figure 6 shows the annual
transition intensity (St), and the red dotted line represents the uniform intensity line. If
the change intensity of a certain spatial type is greater than the uniform line, it indicates
that the spatial‑type change is active; otherwise, it is dormant. OESwas an active loser and
active gainer, and OES’s gain was greater than its loss, resulting in a net gain. In contrast,
GES was a dormant loser and a dormant gainer, and GES’s loss was greater than its gain,
resulting in a net loss. In addition, US and AS were dormant in loss but active in terms of
spatial gain.

Figure 7 shows the analysis results of transition intensities among the four spatial
types from 2000 to 2020, where the red dashed line represents uniform transition intensi‑
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ties. If the transition intensity of a certain spatial type on the right side is greater than the
uniform line, then the transition is targeted; conversely, it is avoided.
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The left side of Figure 7a shows that the largest source of increase forASwas fromGES
in terms of the annual change area. The right side of Figure 7a shows that the intensity of
US transitioning to ASwas the highest in terms of the annual transition intensity, followed
by the transition of OES to AS, but the transition intensity of GES to AS was the lowest.
This indicates that US and OES were more inclined to transition to AS, while GES avoided
transitioning to AS. Further explanation is that, although the scale of GES transforming
into AS was large, its transition intensity, because of its large initial area, was small and
displayed a tendency to avoid.

The left side of Figure 7b shows that the main sources of increase for US were AS
and OES in terms of the annual change area. The right side of Figure 7b shows that, in
terms of the annual transition intensity, only AS targeted the transition to US specifically.
Despite the large area of GES transitioning to US, its transition intensity remained low and
displayed a tendency to avoid.

The left sides of Figure 7c,d show that, in terms of the annual change area, the main
source of increase for both GES and OESwas the other. The right sides of Figure 7c,d show
that in terms of the annual transition intensity, GES and OES tended to transition to each
other, but the transition intensity of OES to GES was stronger than that of GES to OES.

3.3.3. Spatial Differentiation Characteristics of Cross‑Transitions in the
“Three‑Zone Space”

To explore the TZS conversion in the IRB, the TZS transformationmatrix for 2000–2020
was obtained (Table 8) and visualized. Figure 8 shows the overall distribution of spatial
changes during the period. In order to further study the distribution of various spatial
type conversions, the kernel density analysis method was used (Figure 9).
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Figure 9 shows that the conversion from AS to GES (Figure 9(Y1)) in 2000–2020 ex‑
hibited pronounced spatial clustering characteristics. The high‑value areas were mainly
distributed in the eastern parts of Nileke County andChabuchaer County. The spatial clus‑
tering of the conversion from AS to OES (Figure 9(Y2)) was high, and the areas with high
values were distributed in the western parts of Chabuchaer County. The conversion from
AS to US (Figure 9(Y3)) showed obvious spatial clustering characteristics, and the areas
with high values were distributed in the southern part of Yining City and Cocadala City.

The high‑value areas of the conversion from US to GES (Figure 9(Y4)) were widely
distributed, and the spatial agglomeration was low. The high‑value areas were mainly
distributed in the central part of Nileke County, with secondary occurrences in western
Tekes County and Zhaosu County. The spatial clustering of the conversion from US to
other AS (Figure 9(Y6)) was high, and the areas with high values were distributed at the
confluence of Yining City, Yining County, and Chabuchaer County, as well as the Gongliu
County seat and the northwest of Xinyuan County. Notably, the conversion from US to
OES (Figure 9(Y5)) from 2000 to 2020 only amounted to 0.05 km2, whichwas limited to Yin‑
ing County, Nileke County, and Xinyuan County and lacked a clustered pattern. Because
of the sparse sample point data, further analysis of this type of spatial transformation was
not conducted.

The GES conversions to AS (Figure 9(Y7)) and to US (Figure 9(Y8)) were mainly dis‑
tributed in urban suburbs at all levels within the IRB. The spatial clustering of the conver‑
sion fromGES to OES (Figure 9(Y9)) was high, the areas with high values were distributed
in the Dzungarian Alatau range, the eastern regions of Borohoro Mountain, and the south‑
ern regions of Tian Shan Mountains in the IRB.

The spatial clustering of the conversion to AS (Figure 9(Y10)) was very high, and the
areas with high kernel density values were distributed in the southern area of Cocadala
City and the western boundary of Chabuchaer County. Concerning the conversion to US
(Figure 9(Y11)), the areas with high values were distributed in the counties and cities along
the Ili River and the Gongnaisi River. The spatial clustering of the conversion from OES to
GES (Figure 9(Y12)) was also high. The analysis of Y9 and Y12 revealed a mutual conver‑
sion pattern between OES and GES, demonstrating significant spatial congruence between
these two categories of spatial transformation.
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3.4. Driving Mechanism
3.4.1. The Conversion of Agricultural Space

Regarding the conversion from US to AS, the order of the Q‑statistic (value > 0.1)
was as follows: X6 > X5 > X2 > X3 > X4 > X1 > X11 > X16 > X8 > X14 > X17 > X12 > X18
(Figure 10(Y6)). Therefore, the resident population and urbanization rate were the main
factors for the conversion fromUS to AS. In this conversion process, the interaction among
variables demonstrated bi‑variable enhancement, nonlinear enhancement, and nonlinear
weaken. Regarding the transformation from OES to AS (Figure 10(Y10)), the variables
with an influence (Q > 0.2) were X18, X14, X12, X2, X11, X1, X3, X4, X17, X5, X6, and X16.
In this transformation process, all variables exhibited bi‑variable enhancement or nonlin‑
ear enhancement, indicating that the interaction effects among variables enhanced the ex‑
planatory power of the conversion from OES to AS to varying degrees. The interaction
between X18 and X12 demonstrated bi‑variable enhancement, with the highest interaction
statistic reaching 0.87. Based on the location advantages of the newly built Cocodala City,
it drove agricultural development in surrounding areas, thereby promoting the transfor‑
mation from OES to AS.

Based on a comparison of the q values in all the transformations, the Q‑statistic in
the conversion from GES to AS (Figure 10(Y7)) was lower than others. The order of the
Q‑statistic (value > 0.1) was as follows: X14 > X8 > X1 > X16 > X6 > X17. Notably, the in‑
teraction between X15 and X16 demonstrated nonlinear enhancement, with an interaction
statistic of 0.39. The influence of interactions in locational conditions and climatic factors
surpassed the individual effects of each factor. The suitable climatic conditions for agricul‑
tural development, along with transportation facilities that facilitate people’s agricultural
activities, promoted the transformation of GES into AS.

3.4.2. The Conversion of Urban Space
Regarding the conversion from AS to US (Figure 10(Y3)), the variables with an influ‑

ence (Q > 0.2) were X6, X5, X2, X4, X3, X18, X1, X8, X11, and X17. The interaction detection
results for Y3 revealed that the interaction between X3 and X12 exhibited bi‑variable en‑
hancement, with the highest explanatory power reaching 0.7231. The rapid development
of towns and cities, which occupied a certain amount of farmland, was the main reason for
the transformation of AS into US.

The analysis of driving variables behind the transition fromOES toUS (Figure 10(Y11))
indicated that these spatial transformations were influenced by variables encompassing
economic, social, geographical, locational, and climatic aspects. The order of theQ‑statistic
(Q > 0.2) was as follows: X1 > X4 > X6 > X3 > X5 > X14 > X12 > X11 > X18 > X16. The interac‑
tion detection results for Y11 revealed that all variables exhibited bi‑variable enhancement
or nonlinear enhancement. X14 and X12 demonstrated bi‑variable enhancement, with the
highest interaction statistic being 0.66.

In the analysis of the driving factors for the conversion fromGES toUS (Figure 10(Y8)),
the variables with an influence (Q > 0.2) were X3, X6, X2, X5, X1, X4, and X16. This trans‑
formation process included bi‑variable enhancement or nonlinear enhancement among all
variables, indicating that the interaction effects among variables enhanced the explanatory
power of these spatial transformations relative to single‑variable effects. The interaction
between X3 and X16 demonstrated the highest interaction statistic of 0.7645. Social and
economic factors constituted the main driving forces. The development of urbanization
caused cities to expand outward, inevitably encroaching on GES.

3.4.3. The Conversion of Ecological Space
The order of the Q‑statistic (value > 0.1) corresponding to the transition from AS to

GES (Figure 10(Y1)) was as follows: X18 > X14 > X11 > X8 > X1 > X17>X16> X4 > X5 > X12
> X13 > X16. The variables with an influence (Q > 0.2) were X18 and X14. The interac‑
tion detection results for Y1 revealed a pattern of bi‑variable enhancement or nonlinear
enhancement among the variables. This suggests that the interaction effects between vari‑
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ables enhanced the explanatory capability of the transition fromAS to GES comparedwith
single‑factor effects, with differing degrees of strengthening. The largest interaction vari‑
ables were X18 and X14, and the interaction statistic was 0.701. This indicates that both
climatic factors and location conditions significantly impacted the spatial transformation
of this type. The areas with certain water resources and relatively inconvenient transporta‑
tionweremore likely to undergo a transformation fromAS to GES, which is closely related
to the government’s policies of returning farmland to forests and other forestry and grass‑
land projects.
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Figure 10. Geodetector results for the “three‑zone space”. Note: 1. In each group, the bar chart on the
left shows the results of the factor detector, while the heat map on the right shows the results of the
interactive detector. 2. Output value of primary production (X1), nighttime light index (X2), local
general budget revenue (X3), local general budget expenditure (X4), resident population (X5), ur‑
banization rate (X6), population density (X7), elevation (X8), slope (X9), slope aspect (X10), soil type
(X11), the average distance to city and county seats (X12), average distance to rivers (X13), average
distance to railways (X14), average distance to roads (X15), average annual temperature (X16), aver‑
age annual precipitation (X17), and snow depth (X18). 3. Due to an inadequate number of sampling
points in Y5, we are unable to fully leverage geographical detectors for a comprehensive exploration.

Regarding the transformation from US to GES (Figure 10(Y4)), the variables with an
influence (Q > 0.2) were X18, X17, X2, X8, X1, X16, X5, X6, and X13. In this transforma‑
tion process, the interaction among variables demonstrated bi‑variable enhancement and
nonlinear enhancement. The largest interaction variables were X14 and X12, and the inter‑
action statistic was 0.74. Increasing public green spaces, constructing ecological parks, and
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other means enhanced the urban ecological environment, leading to the transformation of
US into GES.

The analysis of the driving factors for the conversion fromOES toGES (Figure 10(Y12))
showed that the order of the Q‑statistic (value > 0.1) was as follows: X11 > X1 > X18 > X12.
The variables with an influence (Q > 0.2) were X11, with a q value of 0.3683. Among the
interaction detection results, the interaction factors between X18 and X12 demonstrated
nonlinear enhancement, with the highest value of interaction factors being 0.2937. This in‑
dicates that both snow depth and location conditions impacted the spatial transformation
of this type.

The analysis of the driving factors behind the transformation of AS into OES
(Figure 10(Y2)) revealed that, apart from slope (X9) and slope aspect (X10), the Q‑statistic
of other driving factors exceeded 0.2. Among them, the Q values of the X15, X16, X13, X1,
X14, X12, X18, and X8 variables were greater than 0.6. The interaction between X16 and
X12 yielded the highest explanatory power of 0.9841. Therefore, the distance from cities
and towns and the climatic conditions were the main reasons for the abandonment of AS.

Regarding the conversion from GES to OES (Figure 10(Y9)), the variables with an in‑
fluence (Q > 0.2) were X1, X6, X3, X5, X4 and X18. In this transformation process, except for
the nonlinear weaken between X1 and the other variables, the other variables exhibited bi‑
variable enhancement or nonlinear enhancement, suggesting that the interaction between
X1 and the other factors did not enhance its explanatory power relative to a single variable.
Within the interaction outcomes, the interaction factors between X6 and X12 displayed
nonlinear‑enhancement, with the maximum interaction variable value reaching 0.50.

4. Discussion
4.1. Social and Economic Factors Have a Significant Impact on the Evolution of Urban Space

Since 2000, the IRB has experienced rapid development through the pairing assist pro‑
grams in XUAR [56], economic assistance, the Silk Road Economic Belt [57], and China’s
WesternDevelopment Strategy [58,59]. In terms of industrial structure changes, the growth
rates of the primary, secondary, and tertiary industries have reached 515.59%, 1186.89%,
and 2006.50%, respectively (Figure 11). The rapid development of the tertiary industry also
resulted in a shift in its proportion from 29.2% in 2000 to 50.4% in 2020, compared with the
primary and secondary industries, which changed from 45.7% and 35.4% to 23.1% and
26.5%, respectively. This shift aligns with the increase in US within the IRB. Under the
background of urbanization and industrialization, the territorial space pattern of the IRB
underwent changes.

Since 2000, US expanded significantly. US was primarily distributed along the banks
of the Ili River, Kash River, Tekes River, and other rivers in the valley lowland, with urban
sprawl expanding outward from the city center into surrounding agricultural areas and
intersecting with them, causing the patch shape to become complex and the level of space
fragmentation to become larger (Figure 3). The conversion of US was primarily sourced
from AS (0.74%), followed by GES (0.29%) and OES (0.03%). The factors influencing their
conversions were predominantly human factors and exhibited significant spatial hetero‑
geneity. In the case of AS→US (Y3), social and economic factors played the predominant
driving roles, with the urbanization rate and resident population as the main driving fac‑
tors. As for the conversion of GES→US (Y8) and OES→US (Y11), social and economic
factors also made the greatest contribution. Compared with ecological space, AS incurred
lower construction costs and was more readily converted to US. The expansion of US was
concentrated in Khorgos City, Cocodala City, and Yining City. As the capital of the au‑
tonomous prefecture, Yining City serves as a regional transportation hub, with a popu‑
lation of 778,000 residents as of 2020, boasting relatively high levels of fiscal revenue, ex‑
penditure, and urbanization rates. This signifies that elevated levels of economic develop‑
ment can lead to greater conversion capabilities. Cocodala City, established in 2015 and
positioned as a part of the XUAR border urban belt, is located between Khorgos City and
Yining City. Its urban development has been bolstered by support from both national and
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local strategies. Because of urban construction needs, Cocodala City boasts the highest gen‑
eral fiscal revenue and expenditure in the region. The acceleration of urban construction
and economic investment has promoted the expansion of US. Khorgos City, home to Khor‑
gos Port, is one of the largest land ports in Central Asia. It has experienced rapid growth
in border trade. In 2020, the import and export cargo volume at Khorgos Port reached
34.4162 million tons, ranking first among XUAR ports, with an import and export trade
value of CNY 242.65 billion. This enhanced its status as a land port city, attracting large
flows of people, goods, and information, thus driving US expansion.
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Figure 11. Trend of industrial changes in the Ili River Basin from 2000 to 2020.

4.2. The Scale of Agricultural Space Did Not Change Significantly
AS increased from 9,123.57 km2 in 2000 to 9,961.07 km2 in 2020. On the one hand,

408.86 km2 of AS was converted to US. On the other hand, 1209.95 km2 of GES, 192.51 km2

of OES, and 52.25 km2 of US were used to supplement AS. Therefore, the overall AS re‑
mained stable with consistent growth within the IRB. This is different from the situation
in the adjacent area in Almaty province, Kazakhstan, where there was a decrease in culti‑
vated land and an increase in grassland [60]. The Chinese government has implemented
a “requisition–compensation balance” policy of cultivated land [61]. The government has
resolutely stopped the “non‑agricultural” use of cultivated land and implemented a high‑
standard cultivated land construction action plan to improve the quality and productivity
of cultivated land.

The conversion of AS was primarily sourced from GES (2.19%), followed by OES
(0.35%) and US (0.09%). The factors influencing their conversions were predominantly
natural factors. In the case of GES→AS (Y7) and OES→AS (Y10), locational factors and ge‑
ographical factors played a predominant driving role. This spatial transformation entails
a comprehensive assessment of transportation, arable land suitability, and snow depths in
OES, fulfilling the requirements for agricultural development. The presence of convenient
transportation and a favorable climate accelerates agricultural development, facilitating
the transformation of GES and OES into AS. Regarding the conversion of US, social and
economic factors made the highest contribution. The scale of the transition from US to
AS (Y6) was relatively small between 2000 and 2020. Social and economic factors such as
the permanent population, urbanization rate, and local general budget revenue and ex‑
penditure significantly influenced this transition. Polarization and redistribution of the
population in the region and rapid urbanization led to the degradation of inefficient land
use in some peripheral towns and villages into AS, which optimized the structure of AS.
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4.3. Human and Natural Factors Led to the Degradation of Ecological Space
The IRB is situated in the western Tian Shan Mountains and is surrounded by moun‑

tains on three sides. It features prevalent westerly winds and abundant precipitation, mak‑
ing it a “wet island” inCentralAsia, though it remains part of the arid inland region. Global
climate change has impacted the IRB’s ecological environment, making it an ecologically
fragile area and an important ecological functional zone in China. Under the influence of
the policies of returning farmland to forest (grass), returning grazing land to grasslands,
natural forest resources protection, and ecological civilization construction, ecological is‑
sues have been emphasized. Our research found that from 2000 to 2020, OES in the IRB,
mainly bareland, increased by 1518.82 km2, while GES decreased by 2875.97 km2.

The conversion of GES is primarily sourced fromOES (1.94%), followed byAS (0.37%).
The transformation from AS to GES (Y1) tended to occur in remote areas with far from
towns because of transportation inconveniences. This conversionwasmainly concentrated
in Nileke County and Chabuchaer County. Nileke County is surrounded by high moun‑
tains, has intensified its efforts to protect the ecological environment, including land, forests,
and water systems, and is actively creating a practical innovation base for the concept
that “lucid waters and lush mountains are invaluable assets.” Through measures such
as afforestation of barrenmountains and environmental management, it has promoted the
improvement and enhancement of the ecological environment. In Chabuchaer County,
conversions from AS to GES are closely tied to the government’s ongoing efforts to pro‑
mote the protection and restoration of natural forests, as well as the implementation of
grassland restoration projects, such as the “returning grazing land to grasslands” and “re‑
turning farmland to forests and grasslands” policies.

The conversion of OES was primarily sourced from GES (5.05%). In the conversion
from GES to OES, economic, social, and climatic factors played major driving roles. On
the one hand, the encroachment of other spaces on GES led to the degradation of green
spaces. On the other hand, the conversion of GES to OES often occurred in mountainous
areas, where various geological activities and climate changes caused glaciers and peren‑
nial snow to melt, forming bareland. Regarding the conversions from OES to US (Y11),
climatic and locational factors played the predominant role. Such transformations typi‑
cally occurred in areas abundant in water resources at the periphery of cities, closely in‑
tertwined with the implementation of regional ecological conservation projects. This was
mainly concentrated in Cocodala City and Xinyuan County, which are expanding their
urbanization processes by utilizing OES. In conversions fromOES to GES (Y12), geograph‑
ical and locational factors played dominant roles, which were distributed in high‑altitude
areas at around 3000 m.

Notably, themutual transformation betweenGES andOESwas significant anddemon‑
strated a clear spatial congruence in these two categories of spatial transformation
(Figure 9(Y9,Y12)). This transformationwas primarily distributed in the southern region of
the Tian Shan Mountains, the Borohoro range, and the Dzungarian Alatau range, overlap‑
ping with the distribution of glaciers and permanent snow cover. The reduction in glacier
and permanent snow cover areas led to an increase in OES (Figure 2). Glaciers, as “solid
reservoirs,” are crucial sources of replenishment for many rivers in arid regions, playing
a vital role in maintaining regional ecological stability and regulating river runoff. The
existing research indicates that the snowline elevation in various regions of the Tian Shan
Mountains showed a fluctuating upward trend from 2001 to 2015. The average snowline
elevation in the Tian Shan Mountains is 3690 m, with a significant upward trend rate of
276 m per decade. Meanwhile, the snowline in the IRB is 3390 m, with a trend rate of 180
m per decade [62]. The meteorological factors most closely related to glacier changes are
temperature and precipitation. In recent decades, XUAR has experienced rising tempera‑
tures and increased precipitation, which have profoundly impacted glacier reserves. The
rise in temperature accelerates glacier melting, which partially offsets the replenishment
of glaciers from increased precipitation, promoting glacier melting. Consequently, the in‑
creasedmeltwater is a rising trend in the runoff of glacier‑fed rivers in the Tian Shan region



Land 2024, 13, 1530 22 of 25

of XUAR [63]. This trend also explains the increase in water bodies and wetland areas in
the IRB (Figure 2). The conversion of OES to GES in mountainous regions resulted from
the natural growth and evolution of bareland vegetation, driven by climate warming and
increased rainfall over the 20‑year period. Vegetation indices vary with different altitudes.
According to the existing research in the IRB, vegetation in areas with elevations below
500 m, between 500 and 1000 m, and above 3000 m has shown an improving trend, while
vegetation in areas with elevations between 1000 and 3000 m has experienced vegetation
degradation [64]. Consequently, the rise in the snowline and glacier melting leads to the
emergence of bareland, which forms newOES through natural restoration processes. This
indicates that the IRB should place greater emphasis on managing ecological space and
effectively controlling the reduction in ecological space, which will lead to the future de‑
velopment of the social economy in a greener and higher‑quality direction.

4.4. Research Significance and Limitations
To understand the inherent mechanisms of spatial evolution and interactions among

spaces in the region, an in‑depth interactive study from the TZSperspectivewas conducted.
The findings provide a basis for the governance and protection of the IRB, offering guid‑
ance for sustainable land management. This paper selected variables from five aspects,
including economy, society, geography, location conditions, and climate, to analyze the
driving mechanisms of the TZS in the IRB. However, to form a complete theoretical frame‑
work of drivingmechanisms, further exploration is still required. Because data are difficult
to obtain, only district‑ and county‑level indicators were selected. The impact factors also
have shortcomings. Subsequent studies can consider indicators such as policy systems, le‑
gal regulations, and other indicators, improve the selection of indicators, and fully explore
the factors affecting the development of the TZS.

5. Conclusions
The ecological environment of the IRB is of great significance to the ecological security

of Northwest China and Central Asia. Based on the territorial spatial governance frame‑
work of the TZS, this paper analyzes the long‑term spatiotemporal evolution characteris‑
tics of the TZS in the IRB and examines the inherent driving mechanisms of its evolution.
The following conclusions are drawn from this study.

First, from 2000 to 2020, the AS in the IRB experienced a net increase of 837.51 km2,
with a dynamic degree of 0.92%, indicating a gradual expansion trend. US and OES ex‑
panded by 519.64 km2 and 1518.83 km2, with the dynamic degrees of 8.67% and 5.17%,
respectively, showing significant expansion trends in these two spatial categories. Con‑
versely, GES reduced by 2875.97 km2, with the dynamic degree recorded at −0.67%, sig‑
naling a declining trend. Taking 2010 as a pivotal year, the trendsmanifested as a “decline–
rise” in AS, “rise–rise” in US, “rise–decline” in OES, and “decline–decline” in GES.

Second, from intensity analysis, the total TZS change in IRBwas 11.07%. At the spatial‑
type level, both the increase and decrease intensities of OESwere active, while those of GES
were dormant. The increased intensities of US and AS were active, but their decreased
intensities were dormant. The increase in AS mainly came from US and OES, while the
increase in US was mainly sourced from AS. The main source of increase for both GES
and OES was each other. In terms of spatial transformation intensity, US and OES tended
to transform into AS; AS tended to transform into US; and OES and GES had a mutual
transformation tendency.

Third, during the 20 years, 12 types of space transformations occurred within the
study area. AS converted into US, especially around emerging cities like Khorgas and
Cocodala. Additionally, the conversion towards GES was scattered, which encompassed
a wider spatial range. The mutual conversion between OES and GES showed spatial dis‑
tribution consistency, mainly occurring in the Borohoro ranges and the Halik ranges.

Finally, regarding the driving mechanisms, the evolution of US in the IRB was driven
by social and economic factors. Location and climate factors accelerated agricultural de‑
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velopment, facilitating the transformation of GES and OES into AS. Climate and economic
factors played a crucial role in the scale of conversions between OES and GES.
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