Transitions in Land Use Architecture under Multiple Human Driving Forces in a Semi-Arid Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Processing
Cover Scheme | Symbols | Description | ||
---|---|---|---|---|
Settlement | BA | Built up area | ||
Cropland | CL | Farm land, harvested agricultural land and young fallows Tree species: Vitelaria paradoxa, Detarium microcarpum, Terminalia macroptera, Piliostigma reticulatum, Combretum glutinosum, Acacia macrostachya | ||
Gallery forest | GF | Dense forest along river side Tree species: Mitragyna inermis, Anogeissus leiocarpus, Acacia macrostachya, Mimosa pigra, Acacia nilotica, Lanea acida, Piliostigma thonningii, Terminalia macroptera, Combretum glutinosum | ||
Grass savanna | GS | Grassland with very sparse shrubs | ||
Shrub savanna | SS | Land covered by shrub, bushes and young broadleaf plants (<50 trees/ha) Tree species: Detarium microcarpum, Piliostigma thonningii, Terminalia macroptera, Bombax costatum, Vitelaria paradoxa, Acacia macrostachya, Diospyros mespiliformis, Afzelia africana, Crosopterix febrifuga, Isoberlinia doka, Parkia biglobosa, Ximenia Americana | ||
Water body | WB | Dams, small reservoirs or flooded river | ||
Wood savanna | WS | Open woodland with an upper layer comprised of deciduous medium trees. Their crowns are more or less touching above a sparse woody stratum. The ground layer consists of undergrowth of shrubs and grasses (75 – 150 trees/ha) Tree species: Vitelaria paradoxa, Anogeissus leiocarpus, Terminalia macroptera, Pterocarpus erinaceus, Ximenia americana, Gardenia SP, Isoberlinia doka, Guiera senegalensis, Grewia flavescens, Crossopteryx febrifuga, Strychnos pinosa, Bombax costatum |
2.3. Land Use Dynamics
2.4. Transition and Vulnerability to Transition
Abbreviation | Name | Equation | Interpretation | |
---|---|---|---|---|
Eq.1 | Swap | The distance over which change occurs | ||
Eq.2 | Gross loss | The magnitude of loss for the class | ||
Eq.3 | Gross gain | The magnitude of gain for the class | ||
Eq.4 | Gain to persistence | exceeding 1 indicate that the land cover class under consideration has a higher tendency to gain from other land classes than persist | ||
Eq.5 | Loss to persistence | exceeding 1 indicates that the land cover class under consideration has a higher tendency to lose to other land classes than persist | ||
Eq.6 | Net persistence | negative indicates that the land class has a higher tendency to lose area to other cover types, than to gain from them. |
T1 | T2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
BA | CL | GF | GS | SS | WB | WS | Total T1 | Loss | |
BA | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C1+ | |
CL | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C2+ | |
GF | C31 | C32 | C33 | C34 | C35 | C36 | C37 | C3+ | |
GS | C41 | C42 | C43 | C44 | C45 | C46 | C47 | C4+ | |
SS | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C5+ | |
WB | C61 | C62 | C63 | C64 | C65 | C66 | C67 | C6+ | |
WS | C71 | C72 | C73 | C74 | C75 | C76 | C77 | C7+ | |
Total T2 | C+1 | C+2 | C+3 | C+4 | C+5 | C+6 | C+7 | 1 | |
Gain |
2.5. Drivers of Land Cover Change in Cassou
3. Results
3.1. Land Cover Dynamics in Cassou
Cover schemes | Symbols | Cover Change | Net Change | SWAP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1990 | 2000 | 2013 | 1990–2000 | 2000–2013 | 1990–2000 | 2000–2013 | ||||
Built up area | BA | 0.10 | 0.11 | 0.12 | 0.02 | 0.01 | 0.00 | 0.00 | ||
cropland | CL | 26.24 | 23.05 | 25.03 | −3.19 | 1.98 | 15.84 | 8.08 | ||
Gallery forest | GF | 8.87 | 4.54 | 1.11 | −4.33 | −3.42 | 5.63 | 1.24 | ||
Grass savannah | GS | 0.75 | 0.55 | 0.51 | −0.20 | −0.04 | 1.01 | 0.93 | ||
Shrub savannah | SS | 20.19 | 28.65 | 67.71 | 8.46 | 39.06 | 23.92 | 16.40 | ||
Water body | WB | 0.02 | 0.03 | 0.02 | 0.00 | −0.01 | 0.00 | 0.00 | ||
Wood savannah | WS | 43.84 | 43.07 | 5.49 | −0.76 | −37.59 | 39.55 | 3.64 |
3.2. Land Cover Transition and Vulnerability to Transition
1990 | 2000 | ||||||||
---|---|---|---|---|---|---|---|---|---|
BA | CL | GF | GS | SS | WB | WS | Total 1990 | Loss | |
BA | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 |
CL | 0.02 | 15.13 | 0.21 | 0.06 | 5.57 | 0.00 | 5.24 | 26.24 | 11.11 |
GF | 0.00 | 0.30 | 1.72 | 0.10 | 2.04 | 0.00 | 4.71 | 8.87 | 7.15 |
GS | 0.00 | 0.01 | 0.00 | 0.05 | 0.60 | 0.00 | 0.08 | 0.75 | 0.70 |
SS | 0.00 | 1.56 | 0.46 | 0.20 | 8.23 | 0.00 | 9.74 | 20.19 | 11.96 |
WB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 |
WS | 0.00 | 6.06 | 2.15 | 0.14 | 12.20 | 0.00 | 23.30 | 43.84 | 20.54 |
Total 2000 | 0.11 | 23.05 | 4.54 | 0.55 | 28.65 | 0.03 | 43.07 | 100.00 | 51.45 |
Gain | 0.02 | 7.92 | 2.82 | 0.50 | 20.41 | 0.00 | 19.78 | 51.45 |
2000 | 2013 | ||||||||
---|---|---|---|---|---|---|---|---|---|
BA | CL | GF | GS | SS | WB | WS | Total 2000 | Loss | |
BA | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 |
CL | 0.00 | 10.68 | 0.03 | 0.02 | 12.06 | 0.00 | 0.27 | 23.05 | 12.37 |
GF | 0.00 | 0.38 | 0.49 | 0.00 | 2.56 | 0.02 | 1.09 | 4.54 | 4.04 |
GS | 0.00 | 0.06 | 0.02 | 0.05 | 0.41 | 0.00 | 0.01 | 0.55 | 0.50 |
SS | 0.01 | 7.31 | 0.12 | 0.32 | 20.45 | 0.00 | 0.44 | 28.65 | 8.20 |
WB | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.03 | 0.01 |
WS | 0.00 | 6.60 | 0.46 | 0.13 | 32.22 | 0.00 | 3.67 | 43.07 | 39.40 |
Total 2013 | 0.12 | 25.03 | 1.11 | 0.51 | 67.71 | 0.02 | 5.49 | 100.00 | 64.53 |
Gain | 0.01 | 14.35 | 0.62 | 0.46 | 47.26 | 0.00 | 1.82 | 64.53 |
Persistence | Gain | Loss | Gain to Persistence | Loss to Persistence | Net persistence | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1990 to 2000 | 2000 to 2013 | 1990 to 2000 | 2000 to 2013 | 1990 to 2000 | 2000 to 2013 | 1990 to 2000 | 2000 to 2013 | 1990 to 2000 | 2000 to 2013 | 1990 To 2000 | 2000 To 2013 | ||||||
BA | 0.10 | 0.11 | 0.02 | 0.01 | 0.00 | 0.00 | 0.17 | 0.08 | 0.00 | 0.00 | 0.17 | 0.08 | |||||
CL | 15.13 | 10.68 | 7.92 | 14.35 | 11.11 | 12.37 | 0.52 | 1.34 | 0.73 | 1.16 | −0.21 | 0.19 | |||||
GF | 1.72 | 0.49 | 2.82 | 0.62 | 7.15 | 4.04 | 1.64 | 1.26 | 4.15 | 8.18 | −2.52 | −6.93 | |||||
GS | 0.05 | 0.05 | 0.50 | 0.46 | 0.70 | 0.50 | 10.45 | 9.10 | 14.50 | 9.85 | −4.06 | −0.74 | |||||
SS | 8.23 | 20.45 | 20.41 | 47.26 | 11.96 | 8.20 | 2.48 | 2.31 | 1.45 | 0.40 | 1.03 | 1.91 | |||||
WB | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.18 | 0.02 | 0.00 | 0.33 | 0.18 | −0.31 | |||||
WS | 23.30 | 3.67 | 19.78 | 1.82 | 20.54 | 39.40 | 0.85 | 0.50 | 0.88 | 10.74 | −0.03 | −10.24 |
3.3. Drivers of Change
Drivers | Description | |
---|---|---|
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
Drivers | Description | |
---|---|---|
Increased deforestation and forest degradation(***) | ||
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
Increased population size (***) | ||
|
| |
|
| |
|
| |
|
| |
Decreased rainfall (**) | ||
|
| |
|
| |
Increased crop price (*) | ||
|
| |
|
| |
|
| |
|
| |
Increasing living cost (**) | ||
|
| |
|
| |
|
| |
|
|
4. Discussion
5. Conclusion
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Promper, C.; Puissant, A.; Malet, J.P.; Glade, T. Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl. Geogr. 2014, 53, 11–19. [Google Scholar] [CrossRef]
- Fischer, C.; Kleinn, C.; Fehrmann, L.; Fuchs, H.; Panferov, O. A national level forest resource assessment for Burkina Faso—A field based forest inventory in a semiarid environment combining small sample size with large observation plots. Forest Ecol. Manage. 2011, 262, 1532–1540. [Google Scholar] [CrossRef]
- Were, K.O.; Dick, Ø.B.; Singh, B.R. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin, Kenya. Appl. Geogr. 2013, 41, 75–86. [Google Scholar] [CrossRef]
- Haberl, H.; Mbow, C.; Deng, X.; Irwin, E. G.; Kerr, S.; Kuemmerle, T.; Mertz, O.; Meyfroidt, P.; Turner, B.L., II. Finite Land Resources and Competition. In Rethinking Global Land Use in an Urban Era; Seto, K.S., Reenberg, A., Eds.; The MIT Press: Cambridge, MA, USA, 2014; Volume 14, pp. 35–69. [Google Scholar]
- Rasmussen, L.V.; Rasmussen, K.; Reenberg, A.; Proud, S. A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel. Agr. Syst. 2012, 107, 56–64. [Google Scholar] [CrossRef]
- Ramankutty, N.; Graumlich, L.; Achard, F.; Alves, D.; Chhabra, A.; DeFries, R.; Foley, J.; Geist, H.; Houghton, R.; Goldewijk, K.; et al. Global Land-Cover Change: Recent Progress, Remaining Challenges. In Land-Use and Land-Cover Change; Lambin, E., Geist, H., Eds.; Springer: Berlin, Germany, 2006; pp. 9–39. [Google Scholar]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.; Qin, D.; Plattner, G. K.; Tignor, M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2013. [Google Scholar]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land use and land cover change in tropical regions. Ann. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. C. Forest Ecol. Manage. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Salvati, L.; Sateriano, A.; Zitti, M. Long-term land cover changes and climate variations—A country-scale approach for a new policy target. Land Use Policy 2013, 30, 401–407. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Trends in Global Land-Use Competition. In Rethinking Global Land Use in an Urban Era; Seto, K.C., Reenberg, A., Eds.; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Hartter, J.; Lucas, C.; Gaughan, A.E.; Aranda, L.L. Detecting tropical dry forest succession in a shifting cultivation mosaic of the Yucatan Peninsula, Mexico. Appl. Geogr. 2008, 28, 134–149. [Google Scholar] [CrossRef]
- Mayaux, P.; Holmgren, P.; Achard, F.; Eva, H.; Stibig, H.; Branthomme, A. Tropical forest cover change in the 1990s and options for future monitoring. Phil. Trans. R. Soc. B-Biol. Sci. 2005, 360, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Mbow, C.; Fensholt, R.; Rasmussen, K.; Diop, D. Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurements. J. Arid Environ. 2013, 97, 56–65. [Google Scholar] [CrossRef]
- Geist, H.; McConnell, W.; Lambin, E.F.; Moran, E.; Alves, D.; Rudel, T. Causes and trajectories of land-use/cover change. In Land-Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H.J., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2006; pp. 41–70. [Google Scholar]
- Geist, H.J.; Lambin, E.F. What Drives Tropical Deforestation? A Meta-Analysis of Proximate and Underlying Causes of Deforestation Based on Subnational Case Study Evidence; LUCC International Project Office: Brussels, Belgium, 2001. [Google Scholar]
- Gutiérrez Angonese, J.; Grau, H.R. Assessment of swaps and persistence in land cover changes in a subtropical periurban region, NW Argentina. Landsc. Urban Plan. 2014, 127, 83–93. [Google Scholar] [CrossRef]
- Henry, S.; Boyle, P.; Lambin, E.F. Modelling inter-provincial migration in Burkina Faso, West Africa: the role of socio-demographic and environmental factors. Appl. Geogr. 2003, 23, 115–136. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Ouattara, K.; Kaboré/Sawadogo, S.; Paré, S.; Barron, J. Permanent internal migration as response to food shortage: implication to ecosystem services in southern Burkina Faso. In Food Production: Approaches, Challenges and Tasks; Aladjadjiyan, A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 41–54. [Google Scholar]
- Ouedraogo, I.; Savadogo, P.; Tigabu, M.; Cole, R.; Odén, P.C.; Ouadba, J.M. Is rural migration a threat to environmental sustainability in Southern Burkina Faso? Land Degrad. Develop. 2009, 20, 217–230. [Google Scholar] [CrossRef]
- Ouedraogo, I. Land Use Dynamics and Demographic Change in Southern Burkina Faso. Ph.D. Thesis, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2010; p. 143. [Google Scholar]
- Howorth, C.; O'Keefe, P. Farmers do it better: Local management of change in southern Burkina Faso. Land Degrad. Develop. 1999, 10, 93–109. [Google Scholar] [CrossRef]
- Paré, S.; Söderberg, U.; Sandewall, M.; Ouadba, J.M. Land use analysis from spatial and field data capture in southern Burkina Faso, West Africa. Agric. Ecosyst. Environ. 2008, 127, 277–285. [Google Scholar] [CrossRef]
- Coulibaly-Lingani, P.; Savadogo, P.; Tigabu, M.; Oden, P. C. Factors influencing people’s participation in the forest management program in Burkina Faso, West Africa. Forest Policy Econ. 2011, 13, 292–302. [Google Scholar] [CrossRef]
- Ouedraogo, B. Household energy preferences for cooking in urban Ouagadougou, Burkina Faso. Energy Policy 2006, 34, 3787–3795. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Savadogo, P.; Tigabu, M.; Cole, R.; Oden, P. C.; Ouadba, J. M. Trajectory analysis of forest cover change in the tropical dry forest of Burkina Faso, West Africa. Landsc. Res. 2011, 36, 303–320. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Savadogo, P.; Tigabu, M.; Dayamba, S.D.; Odén, P. Systematic and Random Transitions of land cover types in Burkina Faso, West Africa. Int. J. Remote Sens. 2011, 32, 5229–5245. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Tigabu, M.; Savadogo, P.; Compaoré, H.; Oden, P.C.; Ouadba, J.M. Land cover change and its relation with population dynamics in Burkina Faso, West Africa. Land Degrad. Develop. 2010. [Google Scholar] [CrossRef]
- Ouedraogo, M. New Stakeholders and the Promotion of Agro-Silvo-Oastoral Activities in Southern Burkina Faso: False Start or Inexperience; IIED: London, UK, 2003. [Google Scholar]
- Fontes, J.; Guinko, S. Carte de végétation et de l'occupation du sol du Burkina Faso; Projet Campus, UPS, ICIV Toulouse: France, 1995. [Google Scholar]
- Thieba, D. La gestion des ressources forestières à Cassou au Burkina Faso: enseignements pour la gestion des ressources en concession; GRAF: Ouagadougou, Burkina Faso, 2003. [Google Scholar]
- Driessen, P.; Deckers, J.; Spaargaren, O. Lectures notes on the major soils of the world (No. 94); Food and Agriculture Organization (FAO): Rome, Italy, 2001. [Google Scholar]
- INSD. Résultats préliminaires du recensement général de la population et de l'habitat de 2006; Institut National des Statistiques et de la Démographie (INSD), Direction de la Démographie: Ouagadougou, Burkina Faso, 2007. [Google Scholar]
- Hall, F.G.; Strebel, D.E.; Nickeson, J.E.; Goetz, S.J. Radiometric rectification-toward a common radiometric response among multidate, multisensor images. Remote Sens. Environ. 1991, 35, 11–27. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. Application of the tasseled cap concept to simulated thematic mapper data. Photogramm. Eng. Remote Sens. 1984, 50, 343–352. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th ed.; John Wiley & Sons: Danvers, MA, USA, 2008. [Google Scholar]
- Braimoh, A.K. Random and systematic land-cover transitions in northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
- Pontius, R.G.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Mottet, A.; Ladet, S.; Coqué, N.; Gibon, A. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agric. Ecosyst. Environ. 2006, 114, 296–310. [Google Scholar] [CrossRef]
- Cattarino, L.; McAlpine, C.A.; Rhodes, J.R. Land-use drivers of forest fragmentation vary with spatial scale. Glob. Ecol. Biogeogr. 2014, 23, 1215–1224. [Google Scholar] [CrossRef]
- Zak, M.R.; Cabido, M.; Caceres, D.; Diaz, S. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environ. Manage. 2008, 42, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Braimoh, A.K.; Vlek, P.L.G. Land-cover change trajectories in Northern Ghana. Environ. Manage. 2005, 36, 356–373. [Google Scholar] [CrossRef] [PubMed]
- Riebsame, W.E.; Meyer, W.B.; Turner, B.L. Modeling land-use and cover as part of global environmental-change. Climatic Change 1994, 28, 45–64. [Google Scholar] [CrossRef]
- FAO. Global Forest Resource Assessment 2010; FAO: Rome, Italy, 2010. [Google Scholar]
- Bellefontaine, R.; Gaston, A.; Petrucci, Y. Management of natural forests of dry tropical zones, in FAO Conservation Guide; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000. [Google Scholar]
- Höhn, A.; Neumann, K. Shifting cultivation and the development of a cultural landscape during the Iron Age (0–1500 AD) in the northern Sahel of Burkina Faso, West Africa: Insights from archaeological charcoal. Quatern. Int. 2012, 249, 72–83. [Google Scholar] [CrossRef]
- Mohammed, Y.S.; Bashir, N.; Mustafa, M.W. Overuse of wood-based bioenergy in selected sub-Saharan Africa countries: review of unconstructive challenges and suggestions. J. Cleaner Production 2014, 96, 501–519. [Google Scholar] [CrossRef]
- Heubes, J.; Schmidt, M.; Stuch, B.; García Márquez, J.R.; Wittig, R.; Zizka, G.; Thiombiano, A.; Sinsin, B.; Schaldach, R.; et al. The projected impact of climate and land use change on plant diversity: An example from West Africa. J. Arid Environ. 2013, 96, 48–54. [Google Scholar] [CrossRef]
- Zampaligré, N.; Dossa, L.H.; Schlecht, E. Contribution of browse to ruminant nutrition across three agro-ecological zones of Burkina Faso. J. Arid Environ. 2013, 95, 55–64. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Ningal, T.; Hartemink, A.E.; Bregt, A.K. Land use change and population growth in the Morobe province of Papua New Guinea between 1975 and 2000. J. Environ. Manage. 2008, 87, 117–124. [Google Scholar] [CrossRef]
- INSD. Résultats définitifs Recensement général de la population et de l'habitat du Burkina Faso: du 10 au 20 Dec. 1996; Institut National des Statistiques et de la Démographie (INSD), Direction de la Démographie: Ouagadougou, Burkina Faso, 1998. [Google Scholar]
- Rasmussen, L.V.; Reenberg, A. Land use rationales in desert fringe agriculture. Appl. Geogr. 2012, 34, 595–605. [Google Scholar] [CrossRef]
- van Vliet, N.; Reenberg, A.; Rasmussen, L.V. Scientific documentation of crop land changes in the Sahel: A half empty box of knowledge to support policy? J. Arid Environ. 2013, 95, 1–13. [Google Scholar] [CrossRef]
- Reenberg, A. Embedded flexibility in couple human-environmental systems in the Sahel: Talking about resilience. In The Question of Resilience. Social Response to Climate Change; Hastrup, K., Ed.; Det Kongelige Danske Videnskabernes Selskab: Copenhagen, Denmark, 2009. [Google Scholar]
- Headey, D.; Dereje, M.; Taffesse, A.S. Land constraints and agricultural intensification in Ethiopia: A village-level analysis of high-potential areas. Food Policy 2014, 48, 129–141. [Google Scholar] [CrossRef]
- Josephson, A.L.; Ricker-Gilbert, J.; Florax, R.J.G.M. How does population density influence agricultural intensification and productivity? Evidence from Ethiopia. Food Policy 2014, 48, 142–152. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouedraogo, I.; Mbow, C.; Balinga, M.; Neufeldt, H. Transitions in Land Use Architecture under Multiple Human Driving Forces in a Semi-Arid Zone. Land 2015, 4, 560-577. https://doi.org/10.3390/land4030560
Ouedraogo I, Mbow C, Balinga M, Neufeldt H. Transitions in Land Use Architecture under Multiple Human Driving Forces in a Semi-Arid Zone. Land. 2015; 4(3):560-577. https://doi.org/10.3390/land4030560
Chicago/Turabian StyleOuedraogo, Issa, Cheikh Mbow, Michael Balinga, and Henry Neufeldt. 2015. "Transitions in Land Use Architecture under Multiple Human Driving Forces in a Semi-Arid Zone" Land 4, no. 3: 560-577. https://doi.org/10.3390/land4030560
APA StyleOuedraogo, I., Mbow, C., Balinga, M., & Neufeldt, H. (2015). Transitions in Land Use Architecture under Multiple Human Driving Forces in a Semi-Arid Zone. Land, 4(3), 560-577. https://doi.org/10.3390/land4030560