Parity-Dependent Quantum Phase Transition in the Quantum Ising Chain in a Transverse Field
Abstract
:1. Introduction
2. Model
3. Results
- (1)
- For N even and , the lowest energy state of with an even number of fermions is simply obtained by occupying all the energy levels, so
- (2)
- For N even and , the lowest energy state of with an odd number of fermions is the one obtained by occupying all the fermionic states, except for one. Since contains , and is the only state with positive energy, it is indeed favorable to keep it empty. By doing so, and by noticing that the energy contribution of keeping the empty is , the energy becomes
- (3)
- For N even and , the lowest energy state of with an even number of fermions is simply obtained by occupying all the energy levels, so
- (4)
- For N even and , the lowest energy state of with an odd number of fermions is the one obtained by occupying all the fermionic states, except for one. Since contains , and is the only state with positive energy, it is indeed favorable to keep it empty. By doing so, and by noticing that the energy contribution of keeping the empty is , the energy becomes
- (5)
- For N odd and , the lowest energy state of with an even number of fermions is the one obtained by filling all the states, except for the one with the smallest energy in the modulus (note that all energies are negative). For , such minimum is for . We hence obtain
- (6)
- For N odd and , the lowest energy state of with an even number of fermions is the one obtained by filling all the states. We obtain
- (7)
- For N odd and , the lowest energy state of with an even number of fermions is the one obtained by filling all the states except for the one with the smallest energy in modulus (note that all energies are negative), given by . We hence find
- (8)
- For N odd and , the lowest energy state of is the one obtained by leaving both and empty, where p is the nearest to element in . We hence obtain
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kardar, M. Statistical Physics of Particles; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kardar, M. Statistical Physics of Fields; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bernevig, B.; Hughes, T.; Zhang, S. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.; Zhang, S. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef] [Green Version]
- König, M.; Wiedmann, J.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.L.; Zhang, S. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 2007, 318, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdev, S. Quantum Phase Transitions; University Press: Cambridge, UK, 2011. [Google Scholar]
- Giampaolo, S.M.; Ramos, F.B.; Franchini, F. The frustration of being odd: Universal area law violation in local systems. J. Phys. Commun. 2019, 3, 081001. [Google Scholar] [CrossRef]
- Marić, V.; Giampaolo, S.M.; Kuić, D.; Franchini, F. The frustration of being odd: How boundary conditions can destroy local order. N. J. Phys. 2020, 22, 08302. [Google Scholar] [CrossRef]
- Marić, V.; Giampaolo, S.M.; Franchini, F. Quantum phase transition induced by topological frustration. Commun. Phys. 2020, 3, 1. [Google Scholar] [CrossRef]
- Torre, G.; Marić, V.; Franchini, F.; Giampaolo, S.M. Effects of defects in the XY chain with frustrated boundary conditions. Phys. Rev. B 2021, 103, 014429. [Google Scholar] [CrossRef]
- Marić, V.; Franchini, F.; Kuić, D.; Giampaolo, S.M. Resilience of the topological phases to frustration. Sci. Rep. 2021, 11, 1. [Google Scholar] [CrossRef]
- Marić, V.; Giampaolo, S.M.; Franchini, F. Fate of local order in topologically frustrated spin chains. Phys. Rev. B 2022, 105, 064408. [Google Scholar] [CrossRef]
- Marić, V.; Torre, G.; Franchini, F.; Giampaolo, S.M. Topological Frustration can modify the nature of a Quantum Phase Transition. SciPost Phys. 2022, 12, 075. [Google Scholar] [CrossRef]
- Kinoshita, T.; Wenger, T.; Weiss, D.S. A quantum Newton’s cradle. Nature 2006, 440, 900. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, P.; Cardy, J. Time Dependence of Correlation Functions Following a Quantum Quench. Phys. Rev. Lett. 2006, 96, 136801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazalilla, M.A. Effect of Suddenly Turning on Interactions in the Luttinger Model. Phys. Rev. Lett. 2006, 97, 156403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iucci, A.; Cazalilla, M.A. Quantum quench dynamics of the Luttinger model. Phys. Rev. A 2009, 80, 063619. [Google Scholar] [CrossRef] [Green Version]
- Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M. Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 2011, 83, 863. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, P.; Essler, F.H.L.; Fagotti, M. Quantum Quench in the Transverse-Field Ising Chain. Phys. Rev. Lett. 2011, 106, 227203. [Google Scholar] [CrossRef]
- Mitra, A.; Giamarchi, T. Mode-Coupling-Induced Dissipative and Thermal Effects at Long Times after a Quantum Quench. Phys. Rev. Lett. 2011, 107, 150602. [Google Scholar] [CrossRef] [Green Version]
- Karrasch, C.; Rentrop, J.; Schuricht, D.; Meden, V. Luttinger-liquid universality in the time evolution after an interaction quench. Phys. Rev. Lett. 2012, 109, 126406. [Google Scholar] [CrossRef]
- Heyl, M.; Polkovnikov, A.; Kehrein, S. Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model. Phys. Rev. Lett. 2013, 110, 135704. [Google Scholar] [CrossRef]
- Kennes, D.M.; Meden, V. Luttinger liquid properties of the steady state after a quantum quench. Phys. Rev. B 2013, 88, 165131. [Google Scholar] [CrossRef] [Green Version]
- Collura, M.; Calabrese, P.; Essler, F.H.L. Quantum quench within the gapless phase of the spin 1/2 Heisenberg XXZ spin chain. Phys. Rev. B 2015, 92, 125131. [Google Scholar] [CrossRef] [Green Version]
- Eisert, J.; Friesdorf, M.; Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 2015, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Porta, S.; Gambetta, F.M.; Cavaliere, F.; Traverso Ziani, N.; Sassetti, M. Out-of-equilibrium density dynamics of a quenched fermionic system. Phys. Rev. B 2016, 94, 085122. [Google Scholar] [CrossRef] [Green Version]
- Calzona, A.; Gambetta, F.M.; Cavaliere, F.; Carrega, M.; Sassetti, M. Quench-induced entanglement and relaxation dynamics in Luttinger liquids. Phys. Rev. B 2017, 96, 085423. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A. Quantum Quench Dynamics. Ann. Rev. Cond. Mat. Phys. 2018, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Franchini, F. An Introduction to Integrable Techniques for One-Dimensional Quantum Systems; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Porta, S.; Cavaliere, F.; Sassetti, M.; Traverso Ziani, N. Topological classification of dynamical quantum phase transitions in the xy chain. Sci. Rep. 2020, 10, 12766. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacco Shaikh, D.; Sassetti, M.; Traverso Ziani, N. Parity-Dependent Quantum Phase Transition in the Quantum Ising Chain in a Transverse Field. Symmetry 2022, 14, 996. https://doi.org/10.3390/sym14050996
Sacco Shaikh D, Sassetti M, Traverso Ziani N. Parity-Dependent Quantum Phase Transition in the Quantum Ising Chain in a Transverse Field. Symmetry. 2022; 14(5):996. https://doi.org/10.3390/sym14050996
Chicago/Turabian StyleSacco Shaikh, Daniel, Maura Sassetti, and Niccolò Traverso Ziani. 2022. "Parity-Dependent Quantum Phase Transition in the Quantum Ising Chain in a Transverse Field" Symmetry 14, no. 5: 996. https://doi.org/10.3390/sym14050996
APA StyleSacco Shaikh, D., Sassetti, M., & Traverso Ziani, N. (2022). Parity-Dependent Quantum Phase Transition in the Quantum Ising Chain in a Transverse Field. Symmetry, 14(5), 996. https://doi.org/10.3390/sym14050996