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Abstract: This study investigates the geochemical characteristics and evolutionary implications
of sediments at the confluence of the Xingu and Amazon Rivers. The main objective is to under-
stand sediment mixing, mobility, and weathering processes through geochemical proxies. Samples
were collected from various sections of the lower Xingu River, focusing on its interaction with the
Amazon River. Analytical techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF),
and inductively coupled plasma mass spectrometry (ICP-MS) were employed to analyze major
and trace elements. The results reveal significant spatial variations in mineralogical and textural
patterns, with sediments forming distinct groupings based on their location. The data suggest that
the lower Xingu River is strongly influenced by sediment inputs from the Amazon River, particularly
affecting sediment composition and chemical weathering processes. This research highlights the
critical interactions between river systems and their implications for the evolution of the Amazon
basin, especially regarding sediment contributions from various geological sources. Even though the
Xingu River drains cratonic regions at higher elevations, the geochemistry of the bottom sediments
confirms that the bedload is derived from heterogeneous sources with primarily intermediate igneous
compositions and has undergone substantial recycling during river transport.

Keywords: geochemistry; weathering; provenance; sediment transport; Xingu River; Amazon River

1. Introduction

The geochemical analysis of fluvial sediments is a valuable tool for studying the origin,
hydrological conditions, paleoenvironmental reconstructions, and anthropogenic impacts
on rivers. The chemical composition of river sediments is significantly influenced by source
rocks, sedimentary recycling, and post-depositional modifications during diagenesis and
metamorphism [1–3]. However, this analysis is challenging due to the complex interplay of
these factors and their varying effects under different climatic conditions. As sediments are
formed, transported, and deposited, they experience structural, mineralogical, and geo-
chemical transformations. The observed variation, caused by the processes of weathering
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and fractionation, adds complexity to the study of their source and the conditions of local
hydrodynamics [3–7].

The Xingu River and other tributaries of the Lower sector in the Amazon basin
originating from distinct geological formations converge at their mouth with more recent
sediments from the Amazon River. Studies indicate that the headwaters of the Xingu
River and the Amazon River contribute to the sediments in the broader section known as
the ria. However, the extent of interaction between these two river systems is currently
unknown [8–12]. An analysis of mixing proxies and elemental geochemistry is necessary
to evaluate the influence of the main river on its tributaries by examining their signatures
in order to comprehend the dynamics of the sediments and the hydrological conditions
of these ecosystems. The investigation of these processes is essential for a comprehensive
knowledge of the river systems of the region, as the influence of the tide brings variability
that can have a significant impact on recent deposits.

While few investigations have examined the lower tributaries, the majority of geo-
chemical studies on the Amazon River have concentrated on the central Amazon region,
which encompasses around 30% of the 6 million km2 drainage basin [13–16]. A compre-
hensive study has been conducted in the lower Amazon to examine the dispersion of
geochemical and mineralogical components in both the primary channel and significant
tributaries [14,17–19].

Nevertheless, the existing research has mostly concentrated on suspended matter,
thereby posing difficulties in the study of blackwater and clearwater rivers, such as the
Xingu River, owing to the limited quantity of suspended matter present. Existing research
on bedload sediments or floodplains primarily focuses on the central region of the Amazon
basin, particularly in the Solimões, Madeira, and, more recently, Tapajós rivers [10,15,16,20].
However, the tributaries in the lower part of the basin have received limited attention
in research.

A post-glacial sea-level rise in the Amazon basin led to sediment deposition, obstruct-
ing lower tributaries such as the Xingu River and creating submerged valleys (rias) at
their confluences. This was due to the tributaries originating in Proterozoic terrains being
unable to transport enough sediment to fill their incised valleys [8,9,21]. In order to obtain
a deeper comprehension of hydrological conditions, sediment sources, and weathering
processes, this study will assess the capacity of geochemical markers to detect mixing and
interaction among river systems of various origins. The important goals of this research
include comprehending the evolution of river systems and assessing current effects in
confluence zones like the Amazon and Xingu rivers [22,23].

Physiographic and Geological Settings

As a major tributary of the Amazon basin, the Xingu River originates in the Archean
terrain of the Brazilian Shield, characterized by ancient crystalline rocks such as gneisses
and granites. The geological characteristics of the upper course of the river influence its to-
pography, resulting in a landscape marked by prominent mountain ranges and steep slopes.
The Proterozoic geological units, which exert ongoing influence on the geomorphology
and erosion processes, are traversed by the Xingu River over its northern trajectory [24–26].

Upon its descent, the Xingu River flows into the Amazon Sedimentary Basin (Figure 1),
a vast area composed of younger and less consolidated sediments, including sandstones
and claystone, that were created over millions of years. The environment in the region
exhibits geological and biological complexity, characterized by alluvial plains, fertile soils,
and meandering river channels. These features arise from the transition between ancient
crystalline formations and more recent deposits.

The lower course of the Xingu River is located in the northern portion of the Central
Amazonian Province [27,28], on the boundary between the sedimentary basin of the Ama-
zon (Paleozoic to Neogene) and its basement composed of Mesoarchean to Paleoproterozoic
units (Vasquez and Rosa-Costa). These units are mainly represented by charnockitoids and
tonalitic orthogneisses, granodiorites, and granitoids of the Xingu Complex [24].
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dium, and high sectors based on the local geology (A). The region the Xingu River basin occupies 
becomes the Amazon River before being emptied into the Atlantic Ocean (B). 
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Bottom sediments, in this context, are deposits that accumulate over time without 
significant seasonal effects and are useful in characterizing river environments with mod-
erate hydrodynamics. Samples of bottom sediments were collected using a conventional 
Van Veen grab from a small aluminum boat, ensuring coverage of the entire study area. 
Navigation and positioning were conducted using a Garmin™ 60Map CSx GPS receiver 
(Lenexa, KS, USA). 

2.2. Analytical Procedures 

Figure 1. Location of the study area. The Xingu ria indicates the lower course of the basin and
the region where it confluences with the Amazon River; the sampled points are divided into low,
medium, and high sectors based on the local geology (A). The region the Xingu River basin occupies
becomes the Amazon River before being emptied into the Atlantic Ocean (B).

2. Materials and Methods
2.1. Data Acquisition

The study involved the collection of bottom sediments during a specific time period
(February 2016), and additional samples were taken in June 2018 to provide a detailed
analysis of the Lower sector of the Xingu River and its confluence with the Amazon River.

Bottom sediments, in this context, are deposits that accumulate over time without
significant seasonal effects and are useful in characterizing river environments with mod-
erate hydrodynamics. Samples of bottom sediments were collected using a conventional
Van Veen grab from a small aluminum boat, ensuring coverage of the entire study area.
Navigation and positioning were conducted using a Garmin™ 60Map CSx GPS receiver
(Lenexa, KS, USA).

2.2. Analytical Procedures

The percentages of sand, silt, and clay were determined using a laser diffraction gran-
ulometer, model Laser Diffraction SALD 2101 (Shimadzu (Kyoto, Japan)). The percentages
of granulometric fractions, along with textural classification and statistics, were calculated
for all samples following the methodology established by Folk and Ward (1957) [29].

The mineral compositions were determined through X-Ray Diffraction (XRD) analysis
at the XRD Lab of the Geosciences Department of Federal University of Pará. A total of
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32 samples were analyzed for major elements (SiO2, Al2O3, Fe2O3, TiO2, P2O5, MgO, CaO,
Na2O, and K2O) and 30 trace elements (Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu,
Nb, Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, and Zr). The samples were
dried at 50 ◦C, disaggregated, sieved, and homogenized. Aliquots of 2 g were extracted
from the total fraction (<2 mm) and digested with lithium metaborate or tetraborate.
Quality control measures included the use of blanks and duplicates to ensure the accuracy
and reliability of the results. X-Ray Fluorescence (XRF) and Inductively Coupled Plasma
Mass Spectrometry (ICP-MS) were utilized to determine the major and trace elements,
respectively, and gravimetric analysis was employed to examine the loss of ignition (LOI).
ALS Global Analytical Laboratories conducted all sample analyses, with 28 used as a
standard for sediment analysis. Details on the description of the analytical procedures are
available at: http://www.alsglobal.com.

The relationships among the major elements were obtained through principal compo-
nent analysis (PCA) using the XLSTAT® software (Trial Version 2021). accessed on 16 March
2022, considering other variables such as the location sector of the ria (1: Upper, 2: Middle,
and 3: Lower), mineralogical group, and phi scale, the latter being obtained through gran-
ulometric analysis. Pearson correlations were used to determine elemental associations
(major and trace elements, including REEs) in sediments. Highly significant correlations
were identified based on critical values for the correlation coefficients at p < 0.05. Principal
component analysis (PCA) was employed to explore relationships between variables and
simplify data interpretation by identifying major controlling factors.

The major elements also allowed for the evaluation of the degree of chemical weath-
ering based on the Chemical Index of Alteration (CIA), deduced by Nesbitt and Young
(1986) [30], and the calculation of the molecular ratio of Al2O3-Na2O + CaO-K2O in the
sediments. The results were plotted on an A-CN-K ternary diagram according to Fedo
et al. 1995 and Nesbit and Young 1996 [31,32] to relate the influence of weathering on the
compositional history of the sediments. The distribution of REEs in the sediments was
used as a provenance indicator and to identify their relationship with the composition of
potential source rocks.

3. Results
3.1. Mineralogical Groups and Textural Patterns

The Xingu River has traditionally been divided into three sectors: Upper, Middle, and
Lower, to facilitate a more precise spatial interpretation of sediment distribution. In the
central portion of the Xingu River (Upper and Middle sectors), a concordance was observed
between mineralogical and granulometric data. Finer sediments were identified in the
main river channel, accompanied by a diverse and homogeneous mineralogical assemblage,
highlighting the presence of minerals such as kaolinite and anatase in the total fraction
analyzed. Upstream, near the headwaters’ delta, the same mineralogical assemblage was
identified, though only discernible through the extraction of clay minerals.

A decrease in quartz abundance was noted in the central portion due to the pre-
dominance of finer sediments (silt + clay), which allowed for better discrimination of the
constituent minerals. Despite the predominance of coarser grains in sample Amaz-18, it in-
dicated that this sample originated from a sensitive zone that was beginning to differentiate
from the upstream mineralogical assemblage (Figure 2).

Therefore, the mineralogical data evidenced certain geographical discrimination,
which allowed for grouping by zones. Group 1 is associated with a high abundance
of quartz-Qtz. The samples of this group are usually located near the shores, coinciding
with the greater predominance of sand. In Group 2, it was possible to discriminate the pres-
ence of minerals such as kaolinite-Kln, quartz, and occasional occurrences of anatase-Ant
and micas-Mca in areas located in the main channel of the ria. This group had the highest
levels of occurrence, which extended throughout almost the entire study area. In Group 3,
there is the occurrence of minerals such as smectite-Smc, micas-Mca, albite-Alb, and minor
occurrences of kaolinite-Kln.

http://www.alsglobal.com
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Figure 2. Categorization of recognized mineral assemblages and arrangement of granulometric
samples in a triangular diagram based on the Sheppard classification (1959). One can undertake
an interpolation of the granulometric classification based on the phi scale by using a larger sample
size. An estimation of the granulometric classification based on the phi scale can be conducted in the
research region by taking into account a larger sample size.

3.2. Oxide and Trace Geochemistry

The Al2O3 concentrations exhibited a relative decline from upstream to downstream,
Fe2O3 displayed greater values in the Middle region, and CaO, MgO, Na2O3, and K2O
showed a substantial increase from upstream to downstream. The concentrations of TiO2,
P2O3, and BaO remained rather constant throughout sectors. High amounts of MnO were
observed in certain samples within the Middle sector, as is evident in Table 1.

Table 1. Concentrations of major (weight % oxides) elements analyzed for the sediments by X-ray
fluorescence (XRF).

Sample SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 MnO P2O5 BaO LOI CIA

Upper
Sector

AMAZ 103 46.6 22.9 7.62 0.26 0.39 0.09 1.06 0.78 0.09 0.22 0.07 21.8 94.20
AMAZ 98 95.7 2.11 0.79 0.09 0.03 0.02 0.14 0.11 0.01 0.02 0.01 2.78 89.41
AMAZ 105 97.2 0.73 1.06 0.04 <0.01 0.01 0.02 0.13 0.02 0.03 <0.01 1.65 91.25
AMAZ 91 66.8 13.3 5.12 0.29 0.27 0.21 1.01 0.58 0.09 0.11 0.06 13.65 89.80
AMAZ82 - - - - - - - - - - - 21.4 -
AMAZ 78 47 21.3 7 0.23 0.37 0.1 1.04 0.71 0.14 0.18 0.07 21 93.96
AMAZ 75 50 21.1 6.43 0.23 0.39 0.09 1.09 0.7 0.12 0.16 0.07 17.85 93.74
AMAZ 74 48.6 20.9 7.87 0.27 0.38 0.09 0.99 0.68 0.16 0.18 0.07 20.7 93.93
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Table 1. Cont.

Sample SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 MnO P2O5 BaO LOI CIA

Mean 64.5 14.62 5.1 0.20 0.31 0.09 0.76 0.53 0.09 0.13 0.06 15.10 92.33
SD 22.9 9.54 3.0 0.10 0.14 0.07 0.47 0.28 0.06 0.08 0.02 8.39 2.11
CV 35.4 65.24 58.6 48.00 46.63 75.17 61.48 53.94 63.51 60.65 41.17 55.57 2.29

Middle
Sector

AMAZ 66 44 23.9 7.51 0.29 0.31 0.07 0.84 0.84 0.11 0.22 0.06 20.2 95.22
AMAZ 63 48.2 20.1 6.63 0.28 0.35 0.12 0.98 0.66 0.14 0.22 0.06 21 93.58
AMAZ 62 46.8 22.3 6.56 0.29 0.36 0.09 1.01 0.72 0.11 0.19 0.07 20.1 94.13
AMAZ 52 46.9 23.1 7.39 0.18 0.37 0.08 1.03 0.71 0.17 0.26 0.07 20.3 94.71
AMAZ 51 46.3 22.7 7.44 0.16 0.37 0.07 0.96 0.67 0.17 0.26 0.06 20.4 95.02
AMAZ 49 74.1 9.55 3.48 0.11 0.13 0.05 0.36 0.82 0.04 0.09 0.03 10.25 94.84
AMAZ 39 45.2 22.3 8.2 0.13 0.35 0.07 0.91 0.62 0.24 0.22 0.06 20.4 95.26
AMAZ 38 44.7 22.3 8.92 0.12 0.37 0.08 0.91 0.64 0.26 0.23 0.05 20.6 95.26
AMAZ 37 84.3 1.93 10.7 0.04 0.04 0.03 0.11 0.24 0.04 0.08 0.01 4.13 91.47
AMAZ 29 45.8 21.3 8.27 0.19 0.42 0.1 0.92 0.61 0.24 0.19 0.06 20.6 94.62

Mean 52.6 18.9 7.5 0.18 0.31 0.08 0.80 0.65 0.15 0.19 0.05 17.80 94.41
SD 14.2 7.26 1.8 0.09 0.12 0.03 0.31 0.16 0.08 0.06 0.02 5.78 1.16
CV 27.1 38.1 24.7 47.6 39.7 32.9 38.6 25.2 52.1 32.2 35.63 32.47 1.23

Lower
Sector

AMAZ 18 62.3 11.85 11 0.63 0.69 0.72 1.36 0.57 0.15 0.17 0.07 10.55 81.39
AMAZ 17 66 13.5 5.21 0.71 0.93 0.97 1.88 0.8 0.07 0.13 0.06 9.04 79.13
AMAZ 13 74.7 10.2 4.01 0.61 0.64 0.99 1.64 0.59 0.04 0.07 0.05 6.34 75.89
AMAZ 10 60.2 14.65 7.44 0.75 0.97 0.81 1.87 0.78 0.09 0.12 0.06 11.5 81.03

XIN 10 88.7 4.92 2.07 0.5 0.34 0.39 0.73 0.33 0.04 0.06 0.03 3.64 75.23
XIN 09 73.7 11.1 4.17 0.87 0.96 1.17 1.84 0.71 0.07 0.1 0.05 5.23 74.10
XIN 08 67.9 13.15 5.02 0.9 1.16 1.11 2.13 0.84 0.08 0.13 0.06 6.61 76.06
XIN 11 67.7 12.8 4.89 0.98 1.13 1.11 2.07 0.77 0.07 0.13 0.05 7.56 75.47
XIN 14 98.2 0.5 0.85 <0.01 <0.01 0.02 0.14 0.03 0.01 0.03 <0.01 0.82 -
XIN 13 96.7 1.51 1.07 0.13 0.09 0.21 0.31 0.12 0.01 0.03 0.01 0.93 69.91

AMAZ 3 71.7 11.6 4.11 0.91 1 1 1.9 0.69 0.07 0.11 0.05 6.02 75.28

Mean 75.2 9.6 4.5 0.70 0.79 0.77 1.44 0.57 0.06 0.10 0.05 6.20 76.35
SD 13.3 4.9 2.9 0.25 0.35 0.39 0.72 0.28 0.04 0.05 0.02 3.48 3.42
CV 17.7 51.5 63.7 36.1 44.25 51.0 49.70 49.81 61.78 45.96 35.28 56.16 4.47

The predominant components in oxide form were intricately linked to the silicon
content. Al2O3, Fe2O3, and TiO2 had negative correlations of 0.97, 0.62, and 0.61, corre-
spondingly suggesting that a rise in silicon content resulted in a decrease in the abundance
of these components. In contrast, CaO, MgO, and Na2O did not exhibit a significant associ-
ation. Nevertheless, it was feasible to distinguish their concentration zoning, suggesting
that the Lower sector contained greater concentrations of these oxides (Figure 3).

A high negative correlation between Al2O3 and SiO2 in river bottom sediments may
indicate mineralogical separation between quartz and clay minerals, suggesting chemically
mature sediments where quartz is predominant. This pattern may reflect differential
weathering, with the removal of aluminum-rich minerals and the preservation of quartz,
as well as influences from multiple sediment sources with distinct compositions. Textural
variation may also play a role, with finer fractions enriched in Al2O3 and coarser fractions
dominated by SiO2 associated with depositional processes that segregate minerals based
on their grain size and resistance to weathering.

The trace elements Ba, Cr, Ga, Hf, Nb, Rb, Sr, Ta, Th, U, V, W, Y, and Zr did not
show significant variations along the extent of the ria; therefore, there were no geographic
fluctuations in the contents of these elements (Table 2). Samples with high sand contents
presented low concentrations of the mentioned elements, except for Zr and Hf, which
had their highest concentrations in sandy samples with a predominance of quartz in
their composition.
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Table 2. Concentration of some trace elements. Additional information is available in the Supplemen-
tary Materials (Table S1).

Sample Ba Cr Ga Hf Nb Rb Sn Sr Ta Th U V Y Zr

AMAZ 103 610 80 29.6 5.9 17.3 70.5 3 45.6 1.1 22.9 4.23 67 36.7 225
AMAZ 98 109 10 4.1 4.4 4.1 10.2 1 12.6 0.1 5.14 1.08 13 6.9 171

AMAZ 105 44.7 10 1.6 2.9 3.3 2.3 <1 4.2 <0.1 3.11 0.75 9 4 104
AMAZ 91 518 110 23.2 14.6 15 59.2 2 52.9 1.1 17.4 3.72 73 30.2 576
AMAZ 82 710 80 30.2 6.1 17.2 71.9 4 60.2 1.2 24 4.52 71 35.9 226
AMAZ 78 556 60 25.9 5.3 16.9 59.4 3 41.1 1.1 21 3.71 63 32.8 200
AMAZ 75 637 70 28.3 6.5 17.3 68.2 3 47.6 1.2 22.5 3.77 64 36.3 240
AMAZ 74 781 80 30.8 6.6 17.7 71.8 4 52.8 1.1 24.8 4.59 71 38.1 244

Mean 496 62.5 21.71 6.54 13.60 51.69 2.86 39.63 0.99 17.61 3.30 53.88 27.61 248.25
SD 271.88 35.36 11.92 3.48 6.17 28.58 1.07 20.21 0.39 8.63 1.51 26.71 13.92 140.23
CV 54.85 56.57 54.90 53.28 45.36 55.29 37.42 51.01 39.91 49.03 45.89 49.58 50.42 56.49

AMAZ 66 445 60 26.3 6.4 16.6 47.3 2 38.7 1.2 20.8 3.38 68 27.8 232
AMAZ 63 485 60 24.3 4.6 14.2 54.2 2 40.3 1 19.8 3.63 57 29.9 179
AMAZ 62 600 70 29.1 5.3 16.5 64.3 4 44.1 1.1 21.8 3.75 68 34.4 198
AMAZ 52 625 120 34.7 5.3 17.1 74.5 3 44.3 1.2 24.3 4.06 95 34.9 190
AMAZ 51 659 90 34 5.3 17.2 75.2 4 43.6 1.1 24.4 4.26 82 37.4 189
AMAZ 49 276 80 14.4 20.2 19.7 26 2 24.8 1.3 17.9 3.91 48 27.8 798
AMAZ 39 446 60 25 3.5 11.6 52.6 3 28.3 0.9 18.1 2.94 67 26 129
AMAZ 38 494 70 29.1 3.9 13.4 62 3 34.3 0.8 20.4 3.52 75 28.2 141
AMAZ 37 81.9 30 4.2 9.7 5.2 8.1 1 9.6 0.2 5.47 1.67 79 17.9 394
AMAZ 29 549 70 28.9 3.9 14 65.3 3 43.8 0.8 21.3 3.63 78 30.8 147

Mean 466.09 71 24.24 5.83 10.87 40.35 2.7 29.23 0.7 15.72 2.94 71.7 25.725 259.7
SD 174.16 23.31 11.65 3.35 4.92 27.91 0.95 17.65 0.35 8.89 1.10 13.25 5.57 203.48
CV 37.37 32.83 48.06 57.41 45.25 69.17 35.14 60.39 49.49 56.55 37.46 18.48 21.67 78.35

AMAZ 18 746 50 18.9 8.3 12.9 69.1 2 119.5 0.7 13 2.64 95 30.4 315
AMAZ 17 456 30 14.7 8.7 13.8 64.6 2 105 0.9 10.15 2.63 72 26.8 339
AMAZ 13 522 40 15 9 13 73.4 2 131.5 0.7 10.05 2.54 66 26.7 342
AMAZ 10 625 60 21.7 7.9 18.3 104 3 140 1.1 14.45 3.51 105 36.1 306

XIN 10 252 50 7.2 6.9 8.2 34.7 2 63.7 0.5 5.31 1.63 33 15.7 257
XIN 09 479 70 14 10.7 15.8 82.6 3 161 1.1 10.55 2.68 68 30.6 421
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Table 2. Cont.

Sample Ba Cr Ga Hf Nb Rb Sn Sr Ta Th U V Y Zr

XIN 08 512 80 16.8 13.7 18.5 96.8 3 163.5 1.4 12.45 3.66 92 36.7 525
XIN 11 511 80 15.4 10.2 17.9 94.7 4 166.5 1.3 11.9 3.21 88 36.3 360
XIN 14 45.1 20 1.7 1.4 1.1 4.6 1 3.9 0.1 1.8 0.53 <5 3.3 44
XIN 13 79.8 30 3.7 3.4 2.9 12.2 1 25.4 0.1 3.28 0.84 14 6.4 136

AMAZ 3 524 50 17.9 10.4 15.9 92.6 3 168 0.9 11.5 3.06 86 30.4 404

Mean 431.99 50.91 13.36 8.24 12.57 66.30 2.36 113.45 0.80 9.49 2.45 71.90 25.40 313.55
SD 217.71 20.23 6.40 3.42 6.03 34.51 0.92 58.24 0.44 4.15 1.03 28.69 11.77 132.47
CV 50.40 39.73 47.85 41.58 47.98 52.05 39.11 51.34 54.49 43.75 42.09 39.90 46.34 42.25

3.3. Rare Earth Elements and Normalization

No substantial variations were seen in the quantities of Rare Earth Elements (REEs)
along the ria; the table with REE concentrations can be found in the Supplementary Materi-
als (Table S1). Nevertheless, when we removed the samples from the river edges charac-
terized by a significant amount of sand and minimal sequestration of rare earth elements
(REEs), there was a noticeable decline in the values of HREEs in the upstream–downstream
direction. With an average of 331.5 mg·kg−1, the Upper sector had the highest HREE con-
centrations (253.5–372.7 mg·kg−1), followed by the Middle sector (153.8–353.1 mg·kg−1)
with an average of 287.8 mg·kg−1, and the Lower sector (168.3–257.1 mg·kg−1), with an
average of 201.5 mg·kg−1. All sectors exhibited relative enrichment in comparison to the
Upper Continental Crust (UCC), with the exception of sandy samples in the Middle and
Upper sectors (Figure 4). The rare earth elements (REEs) were conventionally categorized
as Light Rare Earth Elements (LREE, La to Eu) and Heavy Rare Earth Elements (HREE, Gd
to Lu). LREE, particularly La and Ce, were more prevalent than HREE. The high positive
correlation (r = 0.91) between Al2O3 and HREE suggests they are mainly associated with
Al-silicate fractions, typically clay.
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3.4. Principal Component Analysis (PCA)

One approach to elucidate pathways for geochemical interpretation of sediments in
the Xingu River involved Principal Component Analysis (PCA). For major elements, the
two principal components (PC) (Figure 5) collectively accounted for 80.72% (F1: 42.17%;
F2: 38.55%) of the total variance, revealing a certain level of alignment between samples
located in the Lower sector and elements such as CaO and Na2O. However, samples from
the Upper and Middle sectors were predominantly and strongly associated with Fe2O3,
Al2O3, P2O5, MnO, and the phi scale to a lesser extent.
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Based on the weighting of each variable’s contribution, there is a high positive load
for SiO2 and a high negative load for MnO, P2O3, Al2O3, Fe2O3, and, to a lesser extent,
TiO2 and the phi scale in F1. F2 is characterized by a high positive load for K2O, MgO,
CaO, Na2O, and the mineralogical group. The actor analysis is found in the Supplementary
Materials (Table S3).

Samples Amaz-105, Amaz-98, and Amaz-91 from the Upper sector, samples Amaz-
49 and Amaz-37 from the Middle sector, and samples Xin-10 and Xin-13 from the Lower
sector showed a certain degree of correlation with silicon content (Figure 5A). The PCA
analysis effectively discriminated between two groups, the Lower sector and the Middle
and Upper sectors, in terms of elemental geochemistry and other associated variables, such
as the mineralogical group and the phi scale.

For trace elements, the two principal components (F1 and F2) collectively accounted
for 87.36% (F1: 71.84%; F2: 15.52%) of the total variance.

Based on the weighting of each variable’s contribution, there is a high positive load
for V, Rb, Nb, Cs, Er, Y, Dy, Ho, Ba, Cr, and U in F1 (Figure 5B). F2 is characterized by a
high positive load of Zr, Hf, location sector, and, to a lesser extent, Sr and the mineralogical
group. Only the phi scale exhibits a negative load.

4. Discussion
4.1. Effects of Reworking Grain and the Amazon River

Based on textural and mineralogical characteristics as well as sediment geochemistry,
a cluster of samples in the upstream areas (Upper and Middle sectors) has been mineralogi-
cally identified as Group 1 (Figure 2). The samples from this category consist mainly of
quartz and exhibit varied textural patterning, mainly sand, suggesting limited sediment
reworking. The results for these samples suggest a substantial influence from the banks,
possibly by erosional action and predominance of quartz.
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The main channel of the ria, representing the Middle sector, regardless of the method
used, exhibited a finer textural pattern composed mainly of silt and clay. Associated miner-
alogy also indicated greater diversity and distinctive geochemistry in terms of elements
associated with immobile ratios, suggesting more significant grain reworking.

Despite some mineralogical homogeneity, primarily marked by the presence of quartz
often associated with feldspars; the more pronounced appearance of feldspars was limited
to the Lower sector when compared to the Middle and Upper sectors, which exhibited
peaks in samples located near the confluence with the Amazon River and little-to-none
upstream. Samples from the Middle and Upper sectors were primarily marked by the
presence of quartz, kaolinite, and anatase and the absence of feldspars, indicating a more
mature and leached mineralogical assemblage compared to the downstream area. In the
latter, the presence of feldspars and smectite suggests mineralogical immaturity.

In a thorough geochemical study of the Amazon River, covering a distance from its
mouth to about 2500 km upstream, Martinelli et al. (1993) [13] found a significant decrease
in the amount of quartz and a significant increase in the amounts of smectite/vermiculite
downstream of the Xingu River confluence.

Mineli (2013) [33] and Souza (2018) [34] underscored significant disparities in the
heavy mineral assemblage observed in the lower reaches of the Xingu River, attributing
these differences to sediment input from varied origins. Their findings further revealed a
pronounced presence of both tourmaline and zircon in the sand samples from the Volta
Grande region (the research area’s upstream) as well as the downstream portion of the
Xingu River. This suggests a sedimentary source predominantly influenced by igneous rock
contributions. In a multifaceted study employing mineralogical, geochemical, and isotopic
signatures, Medeiros Filho et al. (2016) [20] delved into the hydrodynamic processes
influencing recent bottom sediments in the lower stretches of the Tapajós River. The impact
of the Amazon River on bottom sediment deposition and their subsequent mixing appeared
to be restricted predominantly to the confluence region. Observations from the Xingu River
mirrored this trend, thus proposing a consistent sedimentary deposition model for the
lower tributaries of the Amazon.

Principal Component Analysis (PCA) further strengthens investigative techniques
by using geochemical indicators of elemental ratios to distinguish the bottom sector well.
A potential contribution of the Amazon River to the main channel of the Xingu River
was suggested by the more pronounced separation observed in major elements (oxides).
The samples from all sectors examined exhibited distinct divisions in the Lower sector
(Amaz105, Amaz98, and Amaz91), Middle sector (Amaz49 and Amaz37), and Lower sector
(Xin10, Xin13, and Xin14), segregated into discrete quadrants during the PCA analysis.
The presented data support the mineralogical assemblages depicted in Figure 2. This
collection of samples exhibits the greatest silica concentration and displays a granulometric
composition of sandy material, suggesting a lower degree of sediment reworking.

4.2. Chemical Weathering

In a comprehensive geochemical analysis of the Amazon River, spanning from its
mouth to nearly 2500 km upstream, Martinelli et al. (1993) [13] observed a marked decline
in quartz abundance coupled with a notable rise in the smectite/vermiculite abundances
downstream of the Xingu River confluence.

The composition of major elements in river sediments is utilized to estimate the
chemical and physical weathering, to determine the relationships between elements and
rock classifications, as well as to evaluate the geochemical processes operating in the river
basin [35,36].

For the interpretation of the intensity of chemical weathering, proxies were applied,
which tend to reflect the alteration of sediment particles. The K2O/Al2O3 ratio is commonly
interpreted as a proxy for alteration because potassium is a water-soluble element released
during the breakdown of K-feldspar and has been applied to the study of sediments in
continental margins [37–39].
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The K2O/Al2O3 ratio showed a negative correlation with SiO2/Al2O3, implying that
sandier sediments are generally less altered than mud-rich sediments, suggesting formation
processes between the Middle and Upper sectors of the lower ria (Figure 6).
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Figure 6. K2O and SiO2 normalized to Al2O3 (A), and CIA compared to SiO2/Al2O3 indicate field
separation (B). Fe2O3 and Al2O3 normalized to SiO2 linearly separate the fields (C) as well as DF2
vs. DF1 diagrams, indicate source provenance (D). Roser and Korsch (1985) [40] proposed the use of
discriminant functions (DF1 = 30.68 × TiO2/Al2O3 − 12.54 × Fe2O3/Al2O3 + 7.33 × MgO/Al2O3 +
12.03 × Na2O/Al2O3 + 35.40 × K2O/Al2O3 − 6.38 e DF2 = 56.5 × TiO2/Al2O3 − 10.88 × FeO3 +
30.87 × MgO/Al2O3 − 5.40 × Na2O/Al2O3 + 11.11 × K2O/Al2O3 − 3.89) to divide the fields related
to the different provenances of sedimentary rocks (source rocks: quartzose, intermediate, felsic, and
mafic sedimentary).

If we consider a progressive increase in the K2O/Al2O3 ratio downstream, we can
observe that the state of chemical weathering in the lower course of the Xingu River differs
significantly from that in much of the main channel. Although sediments in the Upper and
Middle sectors of the ria appear to be slightly more altered than those of the Lower sector,
greater alteration may reflect slower transport times in the Upper sectors, with downstream
sediment dilution due to a greater supply of fresher sources.

Nesbitt and Young (1982) [30] proposed the quantification of chemical weathering
intensity expressed as a chemical index of alteration (CIA) using the formula:

CIA = [Al2O3/(Al2O3 + CaO* + Na2O + K2O)] × 100

A correction for CaO from carbonate contribution was not done, as CO2 was not
determined. So, to compute CaO*, the assumption proposed by McLennan (1993) [40] was
adopted. After subtracting the amount of CaO due to apatite, CaO values were always
greater than Na2O; consequently, it was assumed that the concentration of CaO is equal
to that of Na2O. The CIA was developed for use in soil profiles, but its application has
commonly been extended to river sediments and cores [36,39,41].



Minerals 2024, 14, 1101 12 of 19

The CIA and K2O/Al2O3 ratio highlighted the Lower sector (confluence) from the
Middle and Upper sectors when crossed with the Si2/Al2O3 ratio (Figure 6), although
they show little correlation. It also distinguishes the Middle and Upper sectors from the
Lower sector. There is clear evidence of a degree of correlation between the sample location,
degree of alteration, or grain size. Additionally, grain size appears to be a primary control
in the alteration proxy for understanding weathering in the system.

The Fe2O3/SiO2 vs. Al2O3/SiO2 plot (Figure 6) exhibited a strong correlation between
the ratios, making it possible to discriminate two groups. One group primarily consisted of
samples from the Lower sector, while the other group, mostly from the Middle and Upper
sectors, indicated higher concentrations of clay minerals.

In the Roser and Korsch (1988) [40] provenance discrimination diagram, the discrimi-
nant functions formulated (i.e., bivariate) are based on concentrations of immobile major
elements and variables. In this diagram (Figure 6D), the sediments from this study were
situated in the field of intermediate igneous provenance, with some samples from the
Middle sector suggesting a provenance from mafic igneous rocks, likely associated with the
presence of metavolcanic sequences near Volta Grande upstream. However, the samples
were essentially derived from mixed-source rocks.

The Xingu Complex presents a lithological diversity composed of mafic, felsic and
intermediate rocks, such as amphibolites, metagabbros, granites, and gneisses. The erosion
of these rocks upstream of the lower course of the Xingu River generates sediments with
a rich mineralogical mixture, with mafic minerals such as pyroxenes and amphiboles, in
addition to quartz and feldspar from felsic sources, resulting in deposits with intermediate
igneous signatures. Downstream, the Amazon River increases the heterogeneity of the
sediments by mixing materials brought from different geological regions. The Amazon
contributes allochthonous sediments, which amplify the mineralogical and lithological
diversity in the lower Xingu, combining mafic, felsic, and sedimentary sources and further
enriching the composition of the deposits.

One way to assess chemical weathering was to plot the calculated Chemical Index
of Alteration (CIA) for various samples within a triangular diagram (Figure 7). Another
objective was to demonstrate how the Xingu River samples compare to the Upper Con-
tinental Crust (UCC, Taylor and McLennan 1985) [41], Average Post-Archean Australian
Shale (PAAS, Taylor and McLennan 1985), and the average of established studies on the
Amazon River [16,20]. The sediments in the Lower sector stand apart from the main river
channel, showing lower CIA values, indicating lesser alteration. The Amazon River is a
higher hydrodynamic environment, but its sediment originates from the Andes, covering a
long path beneath Phanerozoic units. If its contribution to the Lower sector is confirmed, it
would explain the presence of less altered sediments. This reduced state of alteration also
reflects fast transport through floodplains, where most chemical weathering occurs.

According to Ahmad and Chandra (2013) [22], Figure 7 shows the computed CIA
values for several samples in a triangle Al2O3-CaO + Na2O-K2O diagram and shows how
the samples from the Xingu River relate to those from other significant rivers. Less-changed
patterns are indicated by lower CIA scores. The trend suggests that the less-changed
material is contributing to the main flow from other sources or that we are sampling
progressively sandier material downstream.

The weathering index showed a progressive reduction downstream, with higher rates
at the beginning of the ria and a decreasing trend as the Amazon River approaches. This
situation demonstrates a natural recycling pattern. The results suggest that source rocks
in the upper reaches may be more susceptible to chemical weathering compared to rocks
present in the lower areas of the basin. As the river progresses, it may cross less weathered
geological formations, such as the transition from the Xingu complex (Archean) to the Alter
do Chão formation (Phanerozoic). This geological transition along the Xingu River is well
marked by the diversity of landscapes, which vary from rocky escarpments and waterfalls
in the Volta Grande of the Xingu River (upstream of the ria) to broad and fertile alluvial
plains closer to the Amazon River.
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Figure 7. A-CN-K ternary diagram (Fedo et al., 1995 [31]; Nesbit and Young 1982 [30]) showing
the influence of weathering on sediment compositional history. The blue star represents the bottom
sediments of the Amazon River downstream from Santarém (about 230 km upstream from the mouth
of the Xingu River) obtained by Medeiros Filho et al., 2016 [20], and the yellow stars represent data
from suspended material essentially from the Xingu River by Baturin, 2019 [16].

In general, chemical weathering in tributaries exhibits more diversity than in the
main flow, particularly when considering the CIA. Smaller tributary basins display greater
local variation [42,43]. The CIA allows for the assessment of the intensity of chemical
weathering, but it can also be seen in conjunction with the mineralogical maturity of the
sediments. This is important because more immature sediments, with a greater presence
of feldspars and easily weatherable minerals (such as smectite), indicate less exposure to
weathering and less prolonged transport. On the other hand, the predominance of quartz
and more resistant minerals reflects more mature sediments, which have undergone greater
reworking and weathering.

4.3. Conservation of Trace Elements and REE

The composition of trace elements in river sediments results from the interplay of
various factors, including provenance, weathering, diagenesis, sediment sorting, and the
aqueous geochemistry of individual elements [35]. Zirconium is particularly valuable for
provenance characterization due to its low solubility, relative immobility, and transport as
terrigenous components. Zirconium showed a specific correlation with Th, with restricted
heavy mineral enrichment, whereas high Zr contents were mainly attributed to zircon and
possibly rutile content. Quartz, being a more abundant and resistant mineral, generally
does not significantly influence the concentration of zirconium in sediments. However, its
presence as a dominant component in sediments can affect the fraction of heavy minerals
and, therefore, indirectly influence the concentration of zirconium (Figure 8).

Elemental geochemistry facilitates the tracing of sediment and sedimentary rock
provenance. This is achieved by analyzing immobile elements (Al, Ti, Zr, Hf, and Th)
and rare earth elements (REEs), which are less fractionated during weathering processes
and tend to concentrate in bottom sediments, as opposed to the dissolved fraction in
rivers [43,44].
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The La/Sm ratio indicated some fractionation of REEs, showing a higher enrichment of
light REEs (LREE) in Xingu River samples. REE fractionation in Amazon River sediments
has been previously observed by Goldstein and Jacobsen (1988) [45], which exhibited
patterns of heavy REE (HREE) depletion.

The chemistry of riverbed sediments often does not accurately reflect their source
rocks after weathering [32]. However, REE abundance and patterns have been reason-
ably well preserved during weathering, reflecting their relatively immobile nature during
sedimentary and hydrological processes.

In summary, REE mobility and fractionation may or may not have a direct relationship
with chemical weathering. Although the REE composition of river sediments may differ
from the source regions (weathering profile), it may not be widely indicative of total
weathering processes. Fine river sediments reflect the average of weathered crust in river
basins and tend to exhibit uniform REE patterns normalized by the Upper Continental
Crust (UCC) [46]. Therefore, sediments in large rivers, despite their different catchment
sizes and geological provenance, may all represent the average terrigenous matter delivered
to the ocean in terms of REE compositions.

Once again, the relative enrichment of LREE in the samples, compared to HREE,
indicates predominantly felsic sources. The relative abundance of source rocks, weathering
conditions in the source regions, and hydraulic sorting processes are considered the main
controlling factors of REE contents in sediments [45].

Previous studies have emphasized the pH condition as an important control factor and
suggested that REEs are easily removed from clays under acidic conditions (weathering)
but become stable under neutral or alkaline conditions (erosion and transport). According
to the diagram proposed by Su et al., 2019 [47], sediment samples tend to align with
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a profile more associated with river transport and erosion (Figure 9), as shown by the
LREE/HREEUCC ratio (normalized to the Upper Continental Crust). The LREE/HREEUCC
ratios predominantly showed values below 1 in the Lower sector and above 1 in the Middle
and Upper sectors.
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REE fractionation in siliciclastic sediments is primarily controlled by the degree of
chemical weathering, while river processes (i.e., hydraulic sorting) can homogenize weath-
ering, thereby weakening REE fractionation in river sediments. In other words, mineral
partitioning induced by hydraulic sorting further controls REE composition by altering the
proportion of fine-grained REE components [47].

This trade-off between weathering and river movement is reinforced by the LREE/
HREEUCC/Phi relationship. Clays and other fine sediments typically develop in conditions
characterized by a predominance of chemical weathering and low transport energy; conse-
quently, REE fractionation appears to be more effective in evaluating chemical degradation
in environments that are less dynamic (lentic). Coarser sediments, such as sands, are com-
monly linked to ecosystems with higher energy, characterized by more efficient movement
and less significant chemical weathering conditions.

Dynamic sediments are characterized by continuous movement caused by substantial
hydrodynamic forces. Lower sector units are generally less susceptible to chemical weath-
ering. The continuous process of reworking and migration poses challenges for minerals to
undergo chemical modification, as the grains are frequently excluded from settings where
chemical weathering would be more efficient. This phenomenon can be attributed to the
inherent dynamics of the Xingu River and the seasonal cycle of the Amazon River, with the
potential exacerbation of this situation by tidal effects.

4.4. Provenance and Geochemical Assignment of Sediments

The Amazon River Basin is distinguished by vigorous dynamics of water flow and
rapid deposition of sediment, mostly consisting of Phanerozoic layers. The continuous
movements of rivers can lead to the intermixing of sediments originating from many
sources. The existence of younger Phanerozoic depositions indicates that the process of
weathering may be comparatively less severe in comparison to older, more extensively
weathered regions. The assemblage of sediments originating from many sources can
increase the complexity of interpretation, yet the existence of primary minerals may suggest
a reduced degree of weathering.
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The geology in the Xingu Basin is well-preserved, mostly consisting of crystalline
shields originating from Central Brazil (Precambrian terranes). These regions consist of
older, less modified rocks. Precambrian terranes typically have a more extensive and
intricate weathering history, leading to more significant chemical composition changes.
The vast and dynamic flow of water in the Amazon Basin can lead to the formation of
sediments that reflect a combination of many origins and phases of weathering. In the
Xingu Basin, the well-preserved and ancient geology can result in sediments that exhibit
more distinct indications of deep weathering and their genesis in ancient rocks.

In general, a geochemical pattern of element mobility, whether by enrichment or de-
pletion of major and trace elements, is expected. Considering that the study area represents
only a small stretch of a river nearly 1000 km in length, investigating its lower course to
its mouth refines the geochemical balance, in addition to the significant contribution from
the river receiving its discharge. Considering physical variables such as river discharge
and tides, these effects may be further enhanced. A schematic model for the Xingu River,
considering the ria extent, a small upstream section, and the downstream section to the
mouth of the Amazon River regarding geochemical mobility, is presented in Figure 10.
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Depletion patterns of elements such as SiO2, K2O, CaO, Na2O, Zr, and Hf are expected
for river transport, considering the presence of secondary minerals in the Lower sector and
the dissolution of silica and potassium in primary minerals. However, the influence of the
Amazon River, possibly associated with seasonal hydrology, reshapes the geochemistry in
its lower course, as well as textural and mineralogical patterns for nearly one-third of the
ria, encompassing its contribution to almost, if not the entire, Lower sector.

5. Conclusions

The downstream section of the Xingu ria (Lower sector) was distinguished from the
main channel and the upstream section (Middle and Upper sector), indicating the presence
of non-exclusive sources other than the Xingu River itself. There may be sediment input
from the Amazon River in this location towards the confluence sector or even material
exchange at the Xingu-Amazonas confluence, highlighting mixing patterns.

The assessment of chemical weathering and river transport in the geochemical com-
position of Xingu ria sediments indicated a depletion of elements such as SiO2, K2O,
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CaO, Na2O, Zr, and Hf. There was an alignment between the Chemical Alteration In-
dex (CIA) and ΣREE, with LREE enrichment, a pattern already established by Amazon
River tributaries.

A connection was seen between the mobility of major and trace elements and the
zonation of the ria, resembling that of estuaries. Specifically, the bottom sector exhibited a
more distinct differentiation from the Middle and Upper sectors. The REEs demonstrated
relative preservation in their concentrations due to the action of chemical weathering and
river transport from upstream to downstream.

The sediments in the main channel of the Xingu ria provide insights into geology
and fluvial sediment transport and have much to reveal about the material drained from
a drainage basin. The evaluated data allowed for the development of models for the
depletion and enrichment of less conservative elements, hydrological processes, and the
geochemical balance.

The zoning pattern observed through granulometry, along with associated mineralogy
and geochemistry, corroborated with multivariate statistics (PCA) to confirm the formation
of well-individualized groups between the upstream sector (Upper and Middle) and the
downstream sector of the ria (lower). There were also clear indications of sediments
originating from the ria’s banks, possibly a product of erosion from adjacent regions.

An analysis of geochemical indicators derived from basic ratios proved to be successful
in determining the origin of sediments. Hence, the most effective approach was to analyze
the movement, transportation, and accumulation of sediment in the Xingu River using
geochemical indicators and mineralogical analysis. The lower section of the Amazon
River serves as both the source and sink of several amounts of depositional material.
Consequently, the presence of several events clearly indicates the impact of the Amazon
River on the sediments of the lower Xingu.

The geochemistry of bottom sediments in the lower Xingu River, despite draining the
cratonic regions in higher elevations, reaffirms that the bedload is derived from heteroge-
neous sources with predominantly intermediate igneous compositions and has undergone
significant recycling during river transport.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min14111101/s1, Table S1: Concentrations of trace elements ana-
lyzed for the sediments with opening by fusion with lithium metaborate and reading by ICP-MS;
Table S2: Correlation matrix between the analyzed elements; Table S3: Factor analysis in addition to
PCA analysis.
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