Sensorimotor Processing in Elite and Sub-Elite Adolescent Sprinters during Sprint Starts: An Electrophysiological Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Performance Assessment
2.3. Electrophysiological Recordings
2.3.1. Auditory and Visual Evoked Potentials
2.3.2. Brain Activities and Audiomotor Reaction Time during Sprint Start
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Variation of Auditory and Visual Evoked Potentials
3.3. Alternations of Brain Activities Following Three Commands during a Sprint Start
3.4. Alternations of Audiomotor Reaction Time Following the Gunshot Cue of a Sprint Start
3.5. Correlations of Electrophysiological Measurements and Adolescent Athlete’s Race Time
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harland, M.J.; Steele, J.R. Biomechanics of the sprint start. Sports Med. 1997, 23, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Crotty, E.D.; Hayes, K.; Harrison, A.J. Sprint start performance: The potential influence of triceps surae electromechanical delay. Sports Biomech. 2022, 21, 604–621. [Google Scholar] [CrossRef]
- Brown, A.M.; Kenwell, Z.R.; Maraj, B.K.; Collins, D.F. “Go” signal intensity influences the sprint start. Med. Sci. Sports Exerc. 2008, 40, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Aerenhouts, D.; Clarys, P.; Taeymans, J.; Van Cauwenberg, J. Estimating Body Composition in Adolescent Sprint Athletes: Comparison of Different Methods in a 3 Years Longitudinal Design. PLoS ONE 2015, 10, e0136788. [Google Scholar] [CrossRef]
- Song, Y.H.; Ha, S.M.; Yook, J.S.; Ha, M.S. Interactive Improvements of Visual and Auditory Function for Enhancing Performance in Youth Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 4909. [Google Scholar] [CrossRef]
- Zhai, S.S.; Wen, D.T.; Liu, T.Y.; Hou, W.Q. A warm-up performed with proper-weight sandbags on the leg improves the speed and RPE performance of 100m-sprint in collegiate male sprinters. J. Sports Med. Phys. Fitness 2020, 61, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sandamas, P.; Gutierrez-Farewik, E.M.; Arndt, A. The relationships between pelvic range of motion, step width and performance during an athletic sprint start. J. Sports Sci. 2020, 38, 2200–2207. [Google Scholar] [CrossRef]
- Gleadhill, S.; Nagahara, R. Kinetic and kinematic determinants of female sprint performance. J. Sports Sci. 2020, 39, 609–617. [Google Scholar] [CrossRef]
- Tanaka, T.; Suga, T.; Imai, Y.; Ueno, H.; Misaki, J.; Miyake, Y.; Otsuka, M.; Nagano, A.; Isaka, T. Characteristics of lower leg and foot muscle thicknesses in sprinters: Does greater foot muscles contribute to sprint performance? Eur. J. Sport. Sci. 2019, 19, 442–450. [Google Scholar] [CrossRef]
- Wang, W.; Hu, L.; Cui, H.; Xie, X.; Hu, Y. Spatio-temporal measures of electrophysiological correlates for behavioral multisensory enhancement during visual, auditory and somatosensory stimulation: A behavioral and ERP study. Neurosci. Bull. 2013, 29, 715–724. [Google Scholar] [CrossRef]
- Pancar, Z.; Özdal, M.; Pancar, S.; Biçer, M. Investigation of visual and auditory simple reaction time of 11-18 aged youth. Eur. J. Phys. Educ. Sport Sci. 2016, 2, 145–152. [Google Scholar]
- Ozmerdivenli, R.; Bulut, S.; Bayar, H.; Karacabey, K.; Ciloglu, F.; Peker, I.; Tan, U. Effects of exercise on visual evoked potentials. Int. J. Neurosci. 2005, 115, 1043–1050. [Google Scholar] [CrossRef]
- Kaplan, D.S.; Akcan, F.; Çakir, Z.; Kilic, T.; Yildirim, C. Visuomotor and audiomotor reaction time in elite and non-elite badminton players. Eur. J. Phys. Educ. Sport Sci. 2017, 3, 84–92. [Google Scholar]
- Hülsdünker, T.; Strüder, H.K.; Mierau, A. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players. Med. Sci. Sports Exerc. 2017, 49, 1097–1110. [Google Scholar] [CrossRef]
- Schumacher, N.; Schmidt, M.; Wellmann, K.; Braumann, K.M. General perceptual-cognitive abilities: Age and position in soccer. PLoS ONE 2018, 13, e0202627. [Google Scholar] [CrossRef] [PubMed]
- Szpala, A.; Rutkowska-Kucharska, A. Electromechanical response times in the knee muscles in young and old women. Muscle Nerve 2017, 56, E147–E153. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, U.; Taubert, M.; Ragert, P.; Krug, J.; Villringer, A. Functional and structural correlates of motor speed in the cerebellar anterior lobe. PLoS ONE 2014, 9, e96871. [Google Scholar] [CrossRef]
- Sur, S.; Sinha, V.K. Event-related potential: An overview. Ind. Psychiatry J. 2009, 18, 70–73. [Google Scholar] [CrossRef]
- Cone-Wesson, B.; Wunderlich, J. Auditory evoked potentials from the cortex: Audiology applications. Curr. Opin. Otolaryngol. Head. Neck Surg. 2003, 11, 372–377. [Google Scholar] [CrossRef]
- Brigell, M.G.; Celesia, G.G. Visual evoked potentials: Advances in clinical and basic sciences. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 49, 95–102. [Google Scholar]
- Hulsdunker, T.; Ostermann, M.; Mierau, A. Motion-Onset Visual Potentials Evoked in a Sport-Specific Visuomotor Reaction Task. J. Sport. Exerc. Psychol. 2020, 42, 280–291. [Google Scholar] [CrossRef]
- Taddei, F.; Viggiano, M.P.; Mecacci, L. Pattern reversal visual evoked potentials in fencers. Int. J. Psychophysiol. 1991, 11, 257–260. [Google Scholar] [CrossRef]
- Martin, F.; Delpoint, E.; Suisse, G.; Dolisi, C. Brainstem auditory evoked potentials. Differences related to physical activity. Int. J. Sports Med. 1993, 14, 427–432. [Google Scholar] [CrossRef]
- Itoh, K.; Iwaoki, H.; Konoike, N.; Igarashi, H.; Nakamura, K. Noninvasive scalp recording of the middle latency responses and cortical auditory evoked potentials in the alert common marmoset. Hear. Res. 2021, 405, 108229. [Google Scholar] [CrossRef]
- Plourde, G. Auditory evoked potentials. Best Pract. Res. Clin. Anaesthesiol. 2006, 20, 129–139. [Google Scholar] [CrossRef]
- McFadden, D.; Champlin, C.A.; Pho, M.H.; Pasanen, E.G.; Maloney, M.M.; Leshikar, E.M. Auditory evoked potentials: Differences by sex, race, and menstrual cycle and correlations with common psychoacoustical tasks. PLoS ONE 2021, 16, e0251363. [Google Scholar] [CrossRef] [PubMed]
- Milloz, M.; Hayes, K.; Harrison, A.J. Sprint Start Regulation in Athletics: A Critical Review. Sports Med. 2021, 51, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Pain, M.T.; Hibbs, A. Sprint starts and the minimum auditory reaction time. J. Sports Sci. 2007, 25, 79–86. [Google Scholar] [CrossRef]
- Winter, E.M.; Brookes, F.B. Electromechanical response times and muscle elasticity in men and women. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 63, 124–128. [Google Scholar] [CrossRef]
- Collet, C. Strategic aspects of reaction time in world-class sprinters. Percept. Mot. Skills 1999, 88, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Guissard, N.; Duchateau, J.; Hainaut, K. EMG and mechanical changes during sprint starts at different front block obliquities. Med. Sci. Sports Exerc. 1992, 24, 1257–1263. [Google Scholar] [CrossRef]
- Ricard, M.D.; Ugrinowitsch, C.; Parcell, A.C.; Hilton, S.; Rubley, M.D.; Sawyer, R.; Poole, C.R. Effects of rate of force development on EMG amplitude and frequency. Int. J. Sports Med. 2005, 26, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Borysiuk, Z.; Waskiewicz, Z.; Piechota, K.; Pakosz, P.; Konieczny, M.; Blaszczyszyn, M.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Coordination Aspects of an Effective Sprint Start. Front. Physiol. 2018, 9, 1138. [Google Scholar] [CrossRef]
- Sessa, F.; Messina, G.; Valenzano, A.; Messina, A.; Salerno, M.; Marsala, G.; Bertozzi, G.; Daniele, A.; Monda, V.; Russo, R. Sports training and adaptive changes. Sport. Sci. Health 2018, 14, 705–708. [Google Scholar] [CrossRef]
- Ciacci, S.; Merni, F.; Bartolomei, S.; Di Michele, R. Sprint start kinematics during competition in elite and world-class male and female sprinters. J. Sports Sci. 2017, 35, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Bezodis, N.E.; Willwacher, S.; Salo, A.I.T. The Biomechanics of the Track and Field Sprint Start: A Narrative Review. Sports Med. 2019, 49, 1345–1364. [Google Scholar] [CrossRef]
- Haugen, T.A.; Tonnessen, E.; Seiler, S.K. The difference is in the start: Impact of timing and start procedure on sprint running performance. J. Strength Cond. Res. 2012, 26, 473–479. [Google Scholar] [CrossRef]
- Buckolz, E.; Vigars, B. Sprint start reaction time: On the advisability of sensory vs motor sets. Can. J. Sport Sci. 1987, 12, 51–53. [Google Scholar]
- Mero, A.; Komi, P.V. Reaction time and electromyographic activity during a sprint start. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 61, 73–80. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.B.; Uthoff, A.M.; Johnston, M.; Knicker, A.J. Role of Arm Mechanics During Sprint Running: A Review of the Literature and Practical Applications. Strength Cond. J. 2018, 40, 14–23. [Google Scholar] [CrossRef]
- Slawinski, J.; Bonnefoy, A.; Levêque, J.-M.; Ontanon, G.; Riquet, A.; Dumas, R.; Chèze, L. Kinematic and Kinetic Comparisons of Elite and Well-Trained Sprinters During Sprint Start. J. Strength Cond. Res. 2010, 24, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Tonnessen, E.; Haugen, T.; Shalfawi, S.A. Reaction time aspects of elite sprinters in athletic world championships. J. Strength Cond. Res. 2013, 27, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Mero, A.; Komi, P.V.; Gregor, R.J. Biomechanics of sprint running. A review. Sports Med. 1992, 13, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Zwierko, T.; Czepita, D.; Lubiński, W. The effect of physical effort on retinal activity in the human eye: Rod and cone flicker electroretinogram studies. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010, 248, 659–666. [Google Scholar] [CrossRef]
- Grego, F.; Vallier, J.M.; Collardeau, M.; Bermon, S.; Ferrari, P.; Candito, M.; Bayer, P.; Magnié, M.N.; Brisswalter, J. Effects of long duration exercise on cognitive function, blood glucose, and counterregulatory hormones in male cyclists. Neurosci. Lett. 2004, 364, 76–80. [Google Scholar] [CrossRef]
- Polich, J.; Kok, A. Cognitive and biological determinants of P300: An integrative review. Biol. Psychol. 1995, 41, 103–146. [Google Scholar] [CrossRef]
- Abbott, S.; Moulds, K.; Salter, J.; Romann, M.; Edwards, L.; Cobley, S. Testing the application of corrective adjustment procedures for removal of relative age effects in female youth swimming. J. Sports Sci. 2020, 38, 1077–1084. [Google Scholar] [CrossRef]
Elite Group | Sub-Elite Group | a p Value | |||||
---|---|---|---|---|---|---|---|
Female (n = 7) | Male (n = 9) | Female (n = 6) | Male (n = 7) | Group | Sex | Group × Sex | |
Age (years) | 14.71 ± 1.25 | 15.00 ± 1.12 | 14.00 ± 1.10 | 14.43 ± 0.79 | 0.13 | 0.39 | 0.86 |
Height (cm) | 162.71 ± 6.48 | 171.40 ± 5.11 # | 160.17 ± 8.13 | 166.57 ± 8.73 # | 0.18 | <0.01 | 0.67 |
Weight (Kg) | 48.86 ± 6.44 | 61.11 ± 4.78 # | 47.67 ± 6.68 | 65.06 ± 7.27 # | 0.71 | <0.01 | 0.50 |
BMI | 18.37 ± 1.15 | 20.78 ± 0.96 # | 18.52 ± 1.70 | 23.17 ± 4.74 # | 0.20 | <0.01 | 0.25 |
100 m race time (s) | 12.77 ± 0.11 † | 11.50 ± 0.10 #,† | 13.62 ± 0.13 | 12.50 ± 0.17 # | <0.01 | <0.01 | 0.52 |
Elite Group | Sub-Elite Group | F Value | ||||||
---|---|---|---|---|---|---|---|---|
Female (N = 7) | Male (N = 9) | Female (N = 6) | Male (N = 7) | Group | Sex | Group × Sex | ||
Auditory evoked potentials (AEP) | ||||||||
Short-latency | Wave I | 1.83 ± 0.40 | 1.96 ± 0.34 | 1.87 ± 0.29 | 1.95 ± 0.22 | 0.01 | 0.74 | 0.04 |
Wave II | 2.90 ± 0.50 | 2.91 ± 0.40 | 2.81 ± 0.53 | 3.06 ± 0.45 | 0.02 | 0.55 | 0.44 | |
Wave III | 3.65 ± 0.56 | 4.18 ± 0.24 # | 3.79 ± 0.34 | 3.96 ± 0.26 | 0.09 | 6.74 ‡ | 1.71 | |
Wave IV | 4.77 ± 0.41 | 5.48 ± 0.43 # | 4.55 ± 0.44 | 4.85 ± 0.38 † | 7.36 ‡ | 10.77 ‡ | 1.68 | |
Wave V | 5.92 ± 0.27 | 6.19 ± 0.46 | 5.73 ± 0.17 | 5.95 ± 0.08 # | 3.61 | 4.74 ‡ | 0.04 | |
Mid-latency | P0 | 11.63 ± 0.74 | 12.08 ± 0.64 | 12.02 ± 0.74 | 12.84 ± 0.88 | 4.28 ‡ | 5.18 ‡ | 0.45 |
Na | 15.92 ± 1.28 | 17.36 ± 1.51 | 16.28 ± 0.95 | 17.61 ± 0.93 # | 0.43 | 9.04 ‡ | 0.01 | |
Pa | 21.36 ± 2.74 | 21.59 ± 2.31 | 20.99 ± 0.74 | 22.27 ± 0.81 # | 0.05 | 1.06 | 0.52 | |
Nb | 38.13 ± 2.40 | 38.87 ± 1.15 | 39.03 ± 1.60 | 40.13 ± 1.23 | 3.11 | 2.23 | 0.08 | |
Pb | 61.84 ± 9.01 | 62.08 ± 16.27 | 60.29 ± 14.52 | 64.74 ± 15.57 | 0.01 | 0.15 | 5.32 ‡ | |
Long-latency | N1 | 84.16 ± 9.71 | 79.17 ± 17.95 | 82.72 ± 15.16 | 77.31 ± 18.95 | 0.08 | 0.74 | 0.00 |
P2 | 123.18 ± 11.34 | 108.56 ± 14.76 | 114.32 ± 10.66 | 112.35 ± 15.20 | 0.26 | 2.73 | 1.59 | |
N2 | 173.57 ± 25.71 | 154.83 ± 13.78 | 168.75 ± 9.59 † | 167.43 ± 17.81 | 0.34 | 2.27 | 1.71 | |
P3 | 218.71 ± 15.26 | 226.17 ± 22.81 | 245.50 ± 27.55 | 248.36 ± 27.83 | 7.60 ‡ | 0.34 | 0.07 | |
Visual evoked potential (VEP) | ||||||||
N75 | 84.29 ± 6.66 | 87.03 ± 5.69 | 84.43 ± 5.38 | 85.44 ± 5.45 | 0.11 | 0.74 | 0.16 | |
P100 | 109.16 ± 7.64 | 110.17 ± 6.78 | 109.56 ± 5.95 | 111.78 ± 5.77 | 0.16 | 0.42 | 0.06 | |
N145 | 146.86 ± 21.61 | 141.83 ± 16.01 | 141.00 ± 19.66 | 144.79 ± 10.68 | 0.05 | 0.01 | 0.46 |
Within Subjects Comparison | Between Subjects Comparison | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Signal Input (Time) | Time | Time × Group | Time × Gender | Time × Gender × Group | Group | Gender | Group × Gender | |||||||
Wave | Group | Sex | N | Ready | Set | Gunshot | F Value | F Value | F Value | F Value | F Value | F Value | F Value | |
N1 | Latency | Elite | Female | 7 | 75.13 ± 7.37 | 76.15 ± 5.36 | 75.75 ± 7.08 | 0.35 | 0.09 | 0.25 | 0.28 | 0.00 | 1.19 | 1.26 |
(ms) | Male | 9 | 75.69 ± 4.80 | 76.31 ± 6.86 | 75.15 ± 7.27 | |||||||||
Subelite | Female | 6 | 75.29 ± 12.97 | 79.54 ± 6.68 | 76.75 ± 10.85 | |||||||||
Male | 7 | 73.89 ± 7.41 | 73.80 ± 6.29 | 75.05 ± 8.73 | ||||||||||
Amplitude | Elite | Female | 7 | 18.31 ± 16.15 | 17.22 ± 12.09 | 2.64 ± 16.09 * | 1.69 | 0.51 | 1.55 | 1.35 | 0.80 | 0.06 | 0.73 | |
(μV) | Male | 9 | 8.96 ± 24.47 | 16.02 ± 10.51 | 5.32 ± 21.20 | |||||||||
Subelite | Female | 6 | 13.50 ± 26.90 † | 8.29 ± 6.53 | 16.91 ± 16.88 | |||||||||
Male | 7 | 9.10 ± 20.20 | 14.17 ± 12.09 | 9.33 ± 17.51 | ||||||||||
P2 | Latency | Elite | Female | 7 | 114.89 ± 10.78 | 117.13 ± 10.79 | 111.89 ± 13.48 | 0.26 | 4.48 ‡ | 0.45 | 0.81 | 0.73 | 1.16 | 0.02 |
(ms) | Male | 9 | 115.98 ± 12.14 | 112.56 ± 9.83 | 109.44 ± 12.61 | |||||||||
Subelite | Female | 6 | 111.08 ± 22.48 | 108.50 ± 21.20 | 119.83 ± 16.55 | |||||||||
Male | 7 | 108.86 ± 11.36 | 109.75 ± 9.03 † | 113.07 ± 15.15 | ||||||||||
Amplitude | Elite | Female | 7 | 46.14 ± 29.66 | 10.21 ± 16.70 * | 27.17 ± 27.57 | 9.96 ‡ | 1.01 | 1.70 | 2.09 | 4.62 ‡ | 0.52 | 0.00 | |
(μV) | Male | 9 | 47.71 ± 12.50 | 7.45 ± 20.70 | 16.46 ± 23.41 * | |||||||||
Subelite | Female | 6 | 20.18 ± 10.95 | 21.27 ± 16.76 † | 16.25 ± 19.04 | |||||||||
Male | 7 | 29.20 ± 27.96 | 21.45 ± 21.77 | 17.87 ± 14.06 | ||||||||||
N2 | Latency | Elite | Female | 7 | 156.32 ± 8.10 | 155.12 ± 11.09 | 156.63 ± 14.70 | 1.06 | 0.42 | 0.60 | 1.84 | 0.01 | 1.12 | 1.15 |
(ms) | Male | 9 | 158.50 ± 14.25 | 155.66 ± 15.12 | 154.03 ± 16.58 | |||||||||
Subelite | Female | 6 | 163.71 ± 16.76 | 161.29 ± 20.48 | 149.50 ± 21.41 | |||||||||
Male | 7 | 163.06 ± 8.90 | 162.94 ± 13.11 | 154.82 ± 12.12 | ||||||||||
Amplitude | Elite | Female | 7 | 20.52 ± 17.48 | 20.82 ± 25.45 | 20.52 ± 22.98 | 1.00 | 3.33 ‡ | 0.35 | 1.88 | 1.87 | 0.04 | 0.13 | |
(μV) | Male | 9 | 22.88 ± 23.61 | 14.08 ± 16.84 | 28.21 ± 22.49 | |||||||||
Subelite | Female | 6 | 37.81 ± 21.74 | 34.23 ± 22.67 | 24.14 ± 31.69 | |||||||||
Male | 7 | 24.08 ± 22.90 | 49.03 ± 12.22 | 12.28 ± 19.76 | ||||||||||
P3 | Latency | Elite | Female | 7 | 215.77 ± 27.29 | 235.49 ± 22.83 | 230.06 ± 22.85 | 4.53 ‡ | 1.24 | 0.76 | 1.75 | 2.71 | 1.38 | 1.64 |
(ms) | Male | 9 | 221.22 ± 22.20 | 231.74 ± 21.23 | 229.80 ± 26.09 | |||||||||
Subelite | Female | 6 | 244.67 ± 11.88 | 250.25 ± 24.97 | 225.83 ± 24.58 | |||||||||
Male | 7 | 235.56 ± 18.95 | 242.99 ± 21.30 | 229.12 ± 18.64 | ||||||||||
Amplitude | Elite | Female | 7 | 60.55 ± 25.50 | 50.11 ± 10.47 | 25.54 ± 12.41 * | 11.32 ‡ | 0.75 | 0.23 | 3.66 ‡ | 0.06 | 0.00 | 1.90 | |
(μV) | Male | 9 | 58.76 ± 28.92 | 26.81 ± 11.78 *# | 24.71 ± 21.96 * | |||||||||
Subelite | Female | 6 | 54.53 ± 25.00 | 21.29 ± 11.36 | 38.95 ± 17.35 † | |||||||||
Male | 7 | 57.30 ± 35.80 | 52.28 ± 15.82 | 31.13 ± 26.87 |
Elite Group | Sub-Elite Group | Group | Sex | Group × Sex | ||||
---|---|---|---|---|---|---|---|---|
Female (n = 7) | Male (n = 9) | Female (n = 6) | Male (n = 7) | F Value | F Value | F Value | ||
Premotor time (ms) | Upper extremity | 399.71 ± 29.99 | 449.96 ± 30.07 # | 475.87 ± 33.17 † | 457.27 ± 79.55 | 5.51 ‡ | 0.79 | 3.75 |
Lower extremity | 394.48 ± 51.81 | 434.71 ± 27.2 | 477.38 ± 45.80 † | 402.89 ± 39.43 # | 2.77 | 1.25 | 13.96 ‡ | |
Motor time (ms) | Upper extremity | 240.39 ± 38.17 | 235.95 ± 34.49 | 255.57 ± 66.43 | 230.68 ± 32.74 | 0.09 | 0.82 | 0.40 |
Lower extremity | 246.42 ± 54.51 | 244.03 ± 88.99 | 301.27 ± 42.20 | 256.71 ± 45.30 | 1.98 | 0.95 | 0.77 | |
Total reaction time (ms) | Upper extremity | 640.1 ± 54.03 | 685.90 ± 52.33 | 731.43 ± 66.65 † | 687.95 ± 94.99 | 3.34 | 0.00 | 3.06 |
Lower extremity | 640.9 ± 80.40 | 678.74 ± 104.59 | 778.65 ± 57.36 † | 659.60 ± 77.85 # | 3.48 | 1.63 | 6.10 ‡ |
Elite Female Sprinter | Elite Male Sprinter | |||||
---|---|---|---|---|---|---|
r | p | r | p | |||
Evoked potentials | Short-term auditory evoked potentials | Wave I | −0.24 | 0.60 | 0.78 ** | 0.01 |
Wave II | 0.08 | 0.87 | 0.82 ** | 0.01 | ||
Wave III | −0.16 | 0.73 | 0.36 | 0.35 | ||
Wave IV | 0.52 | 0.23 | 0.03 | 0.94 | ||
Wave V | 0.84 * | 0.02 | 0.31 | 0.41 | ||
Mid-term auditory evoked potentials | P0 | −0.78 * | 0.04 | −0.52 | 0.16 | |
Na | −0.56 | 0.19 | 0.59 | 0.09 | ||
Pa | −0.01 | 0.98 | 0.62 | 0.08 | ||
Nb | 0.37 | 0.41 | −0.09 | 0.81 | ||
Pb | −0.59 | 0.16 | −0.03 | 0.95 | ||
Long-term auditory evoked potentials | N1 | −0.27 | 0.56 | 0.04 | 0.91 | |
P2 | −0.21 | 0.65 | 0.46 | 0.21 | ||
N2 | 0.26 | 0.57 | −0.27 | 0.48 | ||
P3 | −0.57 | 0.18 | −0.50 | 0.18 | ||
Visual evoked potentials | N75 | −0.09 | 0.84 | −0.42 | 0.27 | |
P100 | −0.47 | 0.29 | −0.36 | 0.34 | ||
N145 | 0.06 | 0.89 | −0.08 | 0.83 | ||
Electroencephalography | Ready | N1 | −0.64 | 0.12 | −0.27 | 0.49 |
P2 | −0.27 | 0.56 | 0.19 | 0.62 | ||
N2 | −0.04 | 0.93 | −0.34 | 0.37 | ||
P3 | 0.26 | 0.57 | 0.36 | 0.34 | ||
Set | N1 | 0.49 | 0.27 | 0.54 | 0.13 | |
P2 | −0.24 | 0.61 | −0.16 | 0.69 | ||
N2 | −0.77 * | 0.04 | −0.15 | 0.71 | ||
P3 | −0.71 | 0.07 | 0.59 | 0.10 | ||
Gunshot | N1 | 0.31 | 0.49 | 0.31 | 0.41 | |
P2 | 0.23 | 0.62 | −0.13 | 0.74 | ||
N2 | 0.29 | 0.53 | 0.03 | 0.94 | ||
P3 | 0.33 | 0.48 | −0.18 | 0.64 | ||
Electromyography | Upper extremity | Premotor time | 0.25 | 0.59 | 0.01 | 0.99 |
Motor time | −0.08 | 0.87 | −0.49 | 0.18 | ||
Total motor time | 0.09 | 0.86 | −0.32 | 0.41 | ||
Lower extremity | Premotor time | 0.48 | 0.27 | −0.18 | 0.64 | |
Motor time | −0.05 | 0.92 | −0.40 | 0.29 | ||
Total motor time | 0.28 | 0.55 | −0.38 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, Y.-L.; Yen, S.-W.; Chang, C.-M.; Li, W.-C.; Yang, N.-P.; Chen, H.-Y. Sensorimotor Processing in Elite and Sub-Elite Adolescent Sprinters during Sprint Starts: An Electrophysiological Study. Sports 2024, 12, 222. https://doi.org/10.3390/sports12080222
Hsieh Y-L, Yen S-W, Chang C-M, Li W-C, Yang N-P, Chen H-Y. Sensorimotor Processing in Elite and Sub-Elite Adolescent Sprinters during Sprint Starts: An Electrophysiological Study. Sports. 2024; 12(8):222. https://doi.org/10.3390/sports12080222
Chicago/Turabian StyleHsieh, Yueh-Ling, Shiuk-Wen Yen, Chia-Ming Chang, Wei-Chun Li, Nian-Pu Yang, and Han-Yu Chen. 2024. "Sensorimotor Processing in Elite and Sub-Elite Adolescent Sprinters during Sprint Starts: An Electrophysiological Study" Sports 12, no. 8: 222. https://doi.org/10.3390/sports12080222
APA StyleHsieh, Y. -L., Yen, S. -W., Chang, C. -M., Li, W. -C., Yang, N. -P., & Chen, H. -Y. (2024). Sensorimotor Processing in Elite and Sub-Elite Adolescent Sprinters during Sprint Starts: An Electrophysiological Study. Sports, 12(8), 222. https://doi.org/10.3390/sports12080222