Effect of Sodium Silicate on the Hydration of Alkali-Activated Copper-Nickel Slag Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Alkali Dissolution of Copper-Nickel Slag
2.2.2. Sample Preparation
2.3. Tests
3. Results
3.1. Alkali Dissolution Experiment of Copper-Nickel Slag
3.1.1. XRD
3.1.2. FT-IR
3.2. The Influence of Sodium Silicate Solution Modulus
3.2.1. XRD
3.2.2. FT-IR
3.2.3. SEM
3.3. The Influence of Sodium Silicate Dosage
3.3.1. XRD
3.3.2. FT-IR
3.3.3. SEM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, K.Q.; Zhang, Y.Y.; Zhao, P.; Feng, L. Activating of Nickel Slag and Preparing of Cementitious Materials for Backfilling. Adv. Mater. Res. 2014, 936, 1624–1629. [Google Scholar] [CrossRef]
- Wang, L.J.; Wei, Y.K.; Lv, G.C.; Liao, L.; Zhang, D. Experimental Studies on Chemical Activation of Cementitious Materials from Smelting Slag of Copper and Nickel Mine. Materials 2019, 12, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, W.T.; Wu, A.X.; Yu, P. Development of a new controlled low strength filling material from the activation of copper slag: Influencing factors and mechanism analysis. J. Clean. Prod. 2020, 246, 119060. [Google Scholar] [CrossRef]
- Al-Jabri, K.S.; Hisada, M.; Al-Oraimi, S.K.; Al-Saidy, A.H. Copper slag as sand replacement for high performance concrete. Cem. Concr. Compos. 2009, 31, 483–488. [Google Scholar] [CrossRef]
- Ding, G.Y.; Xu, J.; Wei, Y.; Chen, R.; Li, X. Engineered reclamation fill material created from excavated soft material and granulated blast furnace slag. Resour. Conserv. Recycl. 2019, 150, 104428. [Google Scholar] [CrossRef]
- Aydın, S.; Baradan, B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos. B Eng. 2014, 57, 166–172. [Google Scholar] [CrossRef]
- Palomo, Á.; Alonso, S.; Fernandez-Jiménez, A.; Sobrados, I.; Sanz, J. Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products. J. Am. Ceram. Soc. 2004, 87, 1141–1145. [Google Scholar] [CrossRef]
- Burciaga-Díaz, O.; Magallanes-Rivera, R.X.; Escalante-García, J.I. Alkali-activated slag-metakaolin pastes: Strength, structural, and microstructural characterization. J. Sustain. Cem. Based Mater. 2013, 2, 111–127. [Google Scholar] [CrossRef]
- Chen, W.W.; Li, B.; Wang, J.; Thom, N. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste. Cem. Concr. Res. 2021, 141, 106322. [Google Scholar] [CrossRef]
- Luukkonen, T.; Sreenivasan, H.; Abdollahnejad, Z.; Yliniemi, J.; Kantola, A.; Telkki, V.-V.; Kinnunen, P.; Illikainen, M. Influence of sodium silicate powder silica modulus for mechanical and chemical properties of dry-mix alkali-activated slag mortar. Constr. Build. Mater. 2020, 233, 117354. [Google Scholar] [CrossRef]
- Bocullo, V.; Vitola, L.; Vaiciukyniene, D.; Kantautas, A.; Bajare, D. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash. Mater. Chem. Phys. 2021, 258, 123846. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zhi, S.W.; Li, T.; Zhou, Z.Y.; Li, M.; Han, J.N.; Li, W.C.; Zhang, D.; Guo, L.J.; Wu, Z.L. Alkali activation of copper and nickel slag composite cementitious materials. Materials 2020, 13, 1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Kero, J.; Yang, Q.X.; Chen, Q.S.; Engström, F.; Samuelsson, C.; Qi, C.C. Mechanical Activation of Granulated Copper Slag and Its Influence on Hydration Heat and Compressive Strength of Blended Cement. Materials 2019, 12, 772. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, V.F.F.; MacKenzie, K.J.D.; Thaumaturgo, C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000, 2, 309–317. [Google Scholar] [CrossRef]
- Puertas, F.; Fernández-Jiménez, A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Compos. 2003, 25, 287–292. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; Macphee, D.E. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Bernal, S.A.; de Gutierrez, R.M.; Provis, J.L.; Rose, V. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 2010, 40, 898–907. [Google Scholar] [CrossRef]
- Allahverdi, A.; Mahinroosta, M. Mechanical activation of chemically activated high phosphorous slag content cement. Powder Technol. 2013, 245, 182–188. [Google Scholar] [CrossRef]
- Ma, H.Q.; Li, X.M.; Zheng, X.; Niu, X.Y.; Fang, Y.L. Effect of active mgO on the hydration kinetics characteristics and microstructures of alkali-activated fly ash-slag materials. Constr. Build. Mater. 2022, 361, 129677. [Google Scholar] [CrossRef]
- Abdalqader, A.F.; Jin, F.; Al-Tabbaa, A. Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends. Constr. Build. Mater. 2015, 93, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Gong, K.; White, C.E. Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes. Cem. Concr. Res. 2016, 89, 310–319. [Google Scholar] [CrossRef] [Green Version]
- Zachariasen, W.H. The atomic arrangement in glass. J. Am. Chem. Soc. 1932, 54, 3841–3851. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; van Deventer, J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Brantley, S.L.; Pantano, C.G.; Criscenti, L.J.; Kubicki, J.D. Dissolution of nepheline, jadeite and albite glasses: Toward better models for aluminosilicate dissolution. Geochim. Cosmochim. Acta 2001, 65, 3683–3702. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Gislason, S.R. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25 °C and pH = 3 and 11. Geochim. Cosmochim. Acta 2001, 65, 3671–3681. [Google Scholar] [CrossRef]
- Alonso, S.; Palomo, A. Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures. Cem. Concr. Res. 2001, 31, 25–30. [Google Scholar] [CrossRef]
Component | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
GGFBS | 46.27 | 19.20 | 15.43 | 14.74 | 0.73 | 0.62 | - | - | - | - |
CNS | 1.66 | 1.18 | 32.37 | 6.53 | 53.87 | 0.56 | 1.00 | 0.54 | 0.49 | 0.43 |
Number | CNS/% | GGBFS/% | Sodium Silicate/% | Modulus | Water/Cement Ratio |
---|---|---|---|---|---|
M1.0 | 50 | 43 | 7.0 | 1.0 | 0.23 |
M1.5 | 50 | 43 | 7.0 | 1.5 | 0.23 |
M2.0 | 50 | 43 | 7.0 | 2.0 | 0.23 |
M2.5 | 50 | 43 | 7.0 | 2.5 | 0.23 |
M3.0 | 50 | 43 | 7.0 | 3.0 | 0.23 |
M3.2 | 50 | 43 | 7.0 | 3.2 | 0.23 |
Number | CNS/% | GGBFS/% | Sodium Silicate/% | Water/Cement Ratio |
---|---|---|---|---|
C1 | 50 | 49 | 1.0 | 0.23 |
C2 | 50 | 47 | 3.0 | 0.23 |
C3 | 50 | 45 | 5.0 | 0.23 |
C4 | 50 | 43 | 7.0 | 0.23 |
C5 | 50 | 41 | 9.0 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhang, T.; Guo, L.; Zhi, S.; Han, J. Effect of Sodium Silicate on the Hydration of Alkali-Activated Copper-Nickel Slag Materials. Metals 2023, 13, 596. https://doi.org/10.3390/met13030596
Yang J, Zhang T, Guo L, Zhi S, Han J. Effect of Sodium Silicate on the Hydration of Alkali-Activated Copper-Nickel Slag Materials. Metals. 2023; 13(3):596. https://doi.org/10.3390/met13030596
Chicago/Turabian StyleYang, Jie, Tingting Zhang, Lijie Guo, Shiwei Zhi, and Junnan Han. 2023. "Effect of Sodium Silicate on the Hydration of Alkali-Activated Copper-Nickel Slag Materials" Metals 13, no. 3: 596. https://doi.org/10.3390/met13030596
APA StyleYang, J., Zhang, T., Guo, L., Zhi, S., & Han, J. (2023). Effect of Sodium Silicate on the Hydration of Alkali-Activated Copper-Nickel Slag Materials. Metals, 13(3), 596. https://doi.org/10.3390/met13030596