Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations
Abstract
:1. Introduction
1.1. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS–CoV–2) at a Glance
1.2. Coronavirus Disease 2019 (COVID–19) at a Glance
1.3. The Aim of the Present Review
2. Hematologic Symptoms of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS–CoV–2) Infection
2.1. White Blood Cells (WBCs)
2.2. Red Blood Cells (RBCs)
2.3. Platelets (PLTs)
2.4. Plasma Hemostatic Parameters
3. Cytokine Storm—A Link between Inflammation and Thrombosis in Coronavirus Disease 2019 (COVID–19)
4. Coronavirus Disease 2019 (COVID–19) in Relation to Sex—A Lack of Data on the Relationship between Hematological Changes
5. Prediction of Severity and Mortality of Coronavirus Disease 2019 (COVID–19)—A Summary on Hematological Changes
6. Conclusions and Further Directions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.who.int/csr/don/12–january–2020–novel–coronavirus–china/en/ (accessed on 3 May 2020).
- Zhou, G.; Chen, S.; Chen, Z. Back to the Spring of 2020: Facts and Hope of COVID–19 Outbreak. Front. Med. 2020, 14, 113–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitworth, J. COVID–19: A Fast Evolving Pandemic. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, H.; Tu, S.; Gao, S.; Shao, A.; Sheng, J. Current Epidemiological and Clinical Features of COVID–19; A Global Perspective from China. J. Infect. 2020, 81, 1–9. [Google Scholar] [CrossRef]
- Jiang, S.; Shi, Z.; Shu, Y.; Song, J.; Gao, G.F.; Tan, W.; Guo, D. A Distinct Name Is Needed for the New Coronavirus. Lancet 2020, 395, 949. [Google Scholar] [CrossRef]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The Species Severe Acute Respiratory Syndrome–Related Coronavirus: Classifying 2019–nCoV and Naming It SARS–CoV–2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Hilgenfeld, R. RNA–virus Proteases Counteracting Host Innate Immunity. FEBS Lett. 2017, 591, 3190–3210. [Google Scholar] [CrossRef] [Green Version]
- Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Hosts and Sources of Endemic Human Coronaviruses. Adv. Virus Res. 2018, 100, 163–188. [Google Scholar]
- Cui, J.; Li, F.; Shi, Z.L. Origin and Evolution of Pathogenic Coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Siddique, R.; Shereen, M.A.; Ali, A.; Liu, J.; Bai, Q.; Bashir, N.; Xue, M. Emergence of a Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2: Biology and Therapeutic Options. J. Clin. Microbiol. 2020, 58, e00187-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.; et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; et al. A Familial Cluster of Pneumonia Associated with the 2019 Novel Coronavirus Indicating Person–To–Person Transmission: A Study of a Family Cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Letko, M.; Marzi, A.; Munster, V. Functional Assessment of Cell Entry and Receptor Usage for SARS–CoV–2 and Other Lineage B Betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo–EM Structure of the 2019–nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade–Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS–CoV–2 Spike Glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine–Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS–CoV–2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of Therapeutic Targets for SARS–CoV–2 and Discovery of Potential Drugs by Computational Methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Liu, Y.H.; Wang, C.Y.; Wang, Y.H.; Hsueh, S.C.; Yen, M.Y.; Ko, W.C.; Hsueh, P.R. Asymptomatic Carrier State, Acute Respiratory Disease, and Pneumonia Due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS–CoV–2): Facts and Myths. J. Microbiol. Immunol. Infect. 2020, 53, 404–412. [Google Scholar] [CrossRef]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID–19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, F.; Xu, S.; Rong, Z.; Xu, R.; Liu, X.; Deng, P.; Liu, H.; Xu, X. Delivery of Infection from Asymptomatic Carriers of COVID–19 in a Familial Cluster. Int. J. Infect. Dis. 2020, 94, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo–Dannenburg, G.; Thompson, H.; Walker, P.; Fu, H.; et al. Estimates of the Severity of Coronavirus Disease 2019: A Model–Based Analysis. Lancet Infect. Dis. 2020, 20, 669–677. [Google Scholar] [CrossRef]
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID–19 Pathophysiology: A Review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef]
- Aguilar, R.B.; Hardigan, P.; Mayi, B.; Sider, D.; Piotrkowski, J.; Mehta, J.; Dev, J.; Seijo, Y.; Camargo, A.L.; Andux, L.; et al. Current Understanding of COVID–19 Clinical Course and Investigational Treatments. medRxiv 2020. [Google Scholar] [CrossRef]
- Chen, J.; Qi, T.; Liu, L.; Ling, Y.; Qian, Z.; Li, T.; Li, F.; Xu, Q.; Zhang, Y.; Xu, S.; et al. Clinical Progression of Patients with COVID–19 in Shanghai, China. J. Infect. 2020, 80, e1–e6. [Google Scholar] [CrossRef]
- Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; et al. Time Course of Lung Changes at Chest CT During Recovery from Coronavirus Disease 2019 (COVID–19). Radiology 2020, 295, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Fang, Y.Y.; Deng, Y.; Liu, W.; Wang, M.F.; Ma, J.P.; Xiao, W.; Wang, Y.N.; Zhong, M.H.; Li, C.H.; et al. Clinical Characteristics of Novel Coronavirus Cases in Tertiary Hospitals in Hubei Province. Chin. Med. J. (Engl.) 2020, 133, 1025–1031. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Lin, M.; Wei, L.; Xie, L.; Zhu, G.; Dela Cruz, C.S.; Sharma, L. Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China. JAMA 2020, 323, 1092–1093. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.W.; Wu, X.X.; Jiang, X.G.; Xu, K.J.; Ying, L.J.; Ma, C.L.; Li, S.B.; Wang, H.Y.; Zhang, S.; Gao, H.N.; et al. Clinical Findings in a Group of Patients Infected with the 2019 Novel Coronavirus (SARS–Cov–2) Outside of Wuhan, China: Retrospective Case Series. BMJ 2020, 368, m606. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical Characteristics of 140 Patients Infected with SARS–CoV–2 in Wuhan, China. Allergy 2020. [Google Scholar] [CrossRef]
- Li, Q.; Ding, X.; Xia, G.; Geng, Z.; Chen, F.; Wang, L.; Wang, Z. A Simple Laboratory Parameter Facilitates Early Identification of COVID–19 Patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Zini, G.; Bellesi, S.; Ramundo, F.; d’Onofrio, G. Morphological Anomalies of Circulating Blood Cells in COVID–19. Am. J. Hematol. 2020, 95, 870–872. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.; Dwyre, D.M.; Schivo, M.; Thompson, G.R., 3rd; Cohen, S.H.; Ku, N.; Graff, J.P. Leukoerythroblastic Reaction in a Patient with COVID–19 Infection. Am. J. Hematol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Cantu, M.D.; Towne, W.S.; Emmons, F.N.; Mostyka, M.; Borczuk, A.; Salvatore, S.P.; Yang, H.S.; Zhao, Z.; Vasovic, L.V.; Racine–Brzostek, S.E. Clinical Significance of Blue–Green Neutrophil and Monocyte Cytoplasmic Inclusions in SARS–CoV–2 Positive Critically Ill Patients. Br. J. Haematol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sood, N.; Narang, V.; Goyal, A. Morphology of COVID–19–affected Cells in Peripheral Blood Film. BMJ Case Rep. 2020, 13, e236117. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal Characteristics of Lymphocyte Responses and Cytokine Profiles in the Peripheral Blood of SARS–CoV–2 Infected Patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.E.; Chong, V.; Chan, S.; Lim, G.H.; Lim, K.; Tan, G.B.; Mucheli, S.S.; Kuperan, P.; Ong, K.H. Hematologic Parameters in Patients with COVID–19 Infection. Am. J. Hematol. 2020, 95, E131–E134. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil–to–lymphocyte Ratio Predicts Critical Illness Patients with 2019 Coronavirus Disease in the Early Stage. J. Transl. Med. 2020, 18, 206. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, X.; Zhu, C.; Feng, F.; Qiu, Y.; Feng, J.; Joa, Q.; Song, Q.; Zhu, B.; Wang, J. Immune Phenotyping Based on Neutrophil–to–lymphocyte Ratio and IgG Predicts Disease Severity and Outcome for Patients with COVID–19. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.P.; Liu, J.P.; Tao, W.Q.; Li, H.M. The Diagnostic and Predictive Role of NLR, d–NLR and PLR in COVID–19 Patients. Int. Immunopharmacol. 2020, 84, 106504. [Google Scholar] [CrossRef]
- Lagunas–Rangel, F.A. Neutrophil–to–lymphocyte Ratio and lymphocyte–to–C–reactive Protein Ratio in Patients with Severe Coronavirus Disease 2019 (COVID–19): A Meta–Analysis. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Ludvigsson, J.F. Systematic Review of COVID–19 in Children Shows Milder Cases and a Better Prognosis Than Adults. Acta Paediatr. 2020, 109, 1088–1095. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia Predicts Disease Severity of COVID–19: A Descriptive and Predictive Study. Signal Transduct. Target. Ther. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiang, X.; Ren, H.; Xu, L.; Zhao, L.; Chen, X.; Long, H.; Wang, Q.; Wu, Q. Serum Amyloid A Is a Biomarker of Severe Coronavirus Disease and Poor Prognosis. J. Infect. 2020, 80, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qiu, Z.; Zhang, L.; Han, Y.; He, W.; Liu, Z.; Ma, X.; Fan, H.; Lu, W.; Xie, J.; et al. Significant Changes of Peripheral T Lymphocyte Subsets in Patients with Severe Acute Respiratory Syndrome. J. Infect. Dis. 2004, 189, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.H.; Park, G.E.; Lee, J.Y.; Lee, J.Y.; Cho, S.Y.; Ha, Y.E.; Kang, C.I.; Kang, J.M.; Kim, Y.J.; Huh, H.J.; et al. Predictive Factors for Pneumonia Development and Progression to Respiratory Failure in MERS–CoV Infected Patients. J. Infect. 2016, 73, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for Potential Pathogenesis of SARS–CoV–2 Infection–A Review of Immune Changes in Patients with Viral Pneumonia. Emerg. Microbes. Infect. 2020, 9, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Xu, W.; Hu, G.; Xia, S.; Sun, Z.; Liu, Z.; Xie, Y.; Zhang, R.; Jiang, S.; Lu, L. SARS–CoV–2 Infects T Lymphocytes Through Its Spike Protein–Mediated Membrane Fusion. Cell. Mol. Immunol. 2020, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional Exhaustion of Antiviral Lymphocytes in COVID–19 Patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; DuBois, D.C.; Almon, R.R.; Jusko, W.J. Pharmacokinetic/pharmacodynamic Modeling of Corticosterone Suppression and Lymphocytopenia by Methylprednisolone in Rats. J. Pharm. Sci. 2008, 97, 2820–2832. [Google Scholar] [CrossRef] [Green Version]
- Veronese, N.; Demurtas, J.; Yang, L.; Tonelli, R.; Barbagallo, M.; Lopalco, P.; Lagolio, E.; Celotto, S.; Pizzol, D.; Zou, L. Use of Corticosteroids in Coronavirus Disease 2019 Pneumonia: A Systematic Review of the Literature. Front. Med. (Lausanne) 2020, 7, 170. [Google Scholar] [CrossRef]
- Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical Evidence Does Not Support Corticosteroid Treatment for 2019–nCoV Lung Injury. Lancet 2020, 395, 473–475. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Wang, Y.; Lv, H.; Guan, Z.; Gu, J. Caution Against Corticosteroid–Based COVID–19 Treatment. Lancet 2020, 395, 1759–1760. [Google Scholar] [CrossRef]
- Cai, Q.; Huang, D.; Ou, P.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Ma, Z.; Zhang, Y.; Li, Z.; et al. COVID–19 in a Designated Infectious Diseases Hospital Outside Hubei Province, China. Allergy 2020. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Mattiuzzi, C. Hemoglobin Value May Be Decreased in Patients with Severe Coronavirus Disease 2019. Hematol. Transfus. Cell Ther. 2020, 42, 116–117. [Google Scholar] [CrossRef]
- Northrop–Clewes, C.A. Interpreting Indicators of Iron Status During an Acute Phase Response––Lessons from Malaria and Human Immunodeficiency Virus. Ann. Clin. Biochem. 2008, 45, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Colafrancesco, S.; Alessandri, C.; Conti, F.; Priori, R. COVID–19 Gone Bad: A New Character in the Spectrum of the Hyperferritinemic Syndrome? Autoimmun. Rev. 2020, 19, 102573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; Fu, Z.; Luo, M.; Zhang, Z.; Zhang, K.; He, Y.; Wan, D.; Zhang, L.; Wang, J.; et al. Potential Factors for Prediction of Disease Severity of COVID–19 Patients. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, B.; Li, Q.; Wen, L.; Zhang, R. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Lapić, I.; Rogić, D.; Plebani, M. Erythrocyte Sedimentation Rate Is Associated with Severe Coronavirus Disease 2019 (COVID–19): A Pooled Analysis. Clin. Chem. Lab. Med. 2020, 58, 1146–1148. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Huang, H.; Li, D.; Gu, D.; Lu, X.; Zhang, Z.; Liu, L.; Liu, T.; Liu, Y.; et al. Relationship between the ABO Blood Group and the COVID–19 Susceptibility. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zietz, M.; Tatonetti, N.P. Testing the Association between Blood Type and COVID–19 Infection, Intubation, and Death. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Handtke, S.; Thiele, T. Large and Small platelets–(When) Do They Differ? J. Thromb. Haemost. 2020, 18, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Plebani, M.; Henry, B.M. Thrombocytopenia Is Associated with Severe Coronavirus Disease 2019 (COVID–19) Infections: A Meta–Analysis. Clin. Chim. Acta 2020, 506, 145–148. [Google Scholar] [CrossRef]
- Thachil, J.; Cushman, M.; Srivastava, A. A Proposal for Staging COVID-19 Coagulopathy. Res. Pract. Thromb. Haemost. 2020. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, Q.; Xu, J. Mechanism of Thrombocytopenia in COVID–19 Patients. Ann. Hematol. 2020, 99, 1205–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amgalan, A.; Othman, M. Hemostatic Laboratory Derangements in COVID–19 with a Focus on Platelet Count. Platelets 2020, 1–6. [Google Scholar] [CrossRef]
- Thachil, J. All Those D–dimers in COVID–19. J. Thromb. Haemost. 2020. [Google Scholar] [CrossRef]
- Lippi, G.; Favaloro, E.J. D–dimer Is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb. Haemost. 2020, 120, 876–878. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Yang, L.; Liu, R.; Liu, F.; Wu, K.L.; Li, J.; Liu, X.H.; Zhu, C.L. Prominent Changes in Blood Coagulation of Patients with SARS–CoV–2 Infection. Clin. Chem. Lab. Med. 2020, 58, 1116–1120. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Weitz, J.I.; Fredenburgh, J.C.; Eikelboom, J.W. A Test in Context: D–Dimer. J. Am. Coll. Cardiol. 2017, 70, 2411–2420. [Google Scholar] [CrossRef]
- Favresse, J.; Lippi, G.; Roy, P.M.; Chatelain, B.; Jacqmin, H.; Ten Cate, H.; Mullier, F. D–dimer: Preanalytical, Analytical, Postanalytical Variables, and Clinical Applications. Crit. Rev. Clin. Lab. Sci. 2018, 55, 548–577. [Google Scholar] [CrossRef]
- Goeijenbier, M.; van Wissen, M.; van de Weg, C.; Jong, E.; Gerdes, V.E.; Meijers, J.C.; Brandjes, D.P.; van Gorp, E.C. Review: Viral Infections and Mechanisms of Thrombosis and Bleeding. J. Med. Virol. 2012, 84, 1680–1696. [Google Scholar] [CrossRef]
- Escher, R.; Breakey, N.; Lämmle, B. Severe COVID–19 Infection Associated with Endothelial Activation. Thromb. Res. 2020, 190, 62. [Google Scholar] [CrossRef] [PubMed]
- Escher, R.; Breakey, N.; Lämmle, B. ADAMTS13 Activity, Von Willebrand Factor, Factor VIII and D–dimers in COVID–19 Inpatients. Thromb. Res. 2020, 192, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Giardini, V.; Carrer, A.; Casati, M.; Contro, E.; Vergani, P.; Gambacorti–Passerini, C. Increased sFLT1/PlGF Ratio in COVID–19: A Novel Link to Angiotensin II–mediated Endothelial Dysfunction. Am. J. Hematol. 2020. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID–19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID–19 Patients in Intensive Care Unit. A Report of Thromboelastography Findings and Other Parameters of Hemostasis. J. Thromb. Haemost. 2020. [Google Scholar] [CrossRef]
- Maier, C.L.; Truong, A.D.; Auld, S.C.; Polly, D.M.; Tanksley, C.L.; Duncan, A. COVID–19–associated Hyperviscosity: A Link between Inflammation and Thrombophilia? Lancet 2020, 395, 1758–1759. [Google Scholar] [CrossRef]
- Spiezia, L.; Boscolo, A.; Poletto, F.; Cerruti, L.; Tiberio, I.; Campello, E.; Navalesi, P.; Simioni, P. COVID–19–Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb. Haemost. 2020, 120, 998–1000. [Google Scholar]
- Pavoni, V.; Gianesello, L.; Pazzi, M.; Stera, C.; Meconi, T.; Frigieri, F.C. Evaluation of Coagulation Function by Rotation Thromboelastometry in Critically Ill Patients with Severe COVID–19 Pneumonia. J. Thromb. Thrombolysis 2020, 1–6. [Google Scholar] [CrossRef]
- Madathil, R.; Tabatabai, A.; Rabin, J.; Menne, A.R.; Henderson, R.; Mazzeffi, M.; Scalea, T.; Tanaka, K. Thromboelastometry and D–dimer Elevation in COVID–19. J Cardiothorac. Vasc. Anesth. 2020. [Google Scholar] [CrossRef]
- Fraissé, M.; Logre, E.; Pajot, O.; Mentec, H.; Plantefève, G.; Contou, D. Thrombotic and Hemorrhagic Events in Critically Ill COVID–19 Patients: A French Monocenter Retrospective Study. Crit. Care 2020, 24, 275. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Chen, S.; Li, X.; Liu, S.; Wang, F. Prevalence of Venous Thromboembolism in Patients with Severe Novel Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
- Llitjos, J.F.; Leclerc, M.; Chochois, C.; Monsallier, J.M.; Ramakers, M.; Auvray, M.; Merouani, K. High Incidence of Venous Thromboembolic Events in Anticoagulated Severe COVID–19 Patients. J. Thromb. Haemost. 2020. [Google Scholar] [CrossRef]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard–Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere–Jehl, R.; Schenck, M.; Fagot Gandet, F.; et al. High Risk of Thrombosis in Patients with Severe SARS–CoV–2 Infection: A Multicenter Prospective Cohort Study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef]
- Klok, F.A.; Kruip, M.; van der Meer, N.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.; van Paassen, J.; Stals, M.; Huisman, M.V. Incidence of Thrombotic Complications in Critically Ill ICU Patients with COVID–19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- Nahum, J.; Morichau–Beauchant, T.; Daviaud, F.; Echegut, P.; Fichet, J.; Maillet, J.M.; Thierry, S. Venous Thrombosis Among Critically Ill Patients with Coronavirus Disease 2019 (COVID–19). JAMA Netw. Open 2020, 3, e2010478. [Google Scholar] [CrossRef]
- Khan, I.H.; Savarimuthu, S.; Leung, M.S.T.; Harky, A. The Need to Manage the Risk of Thromboembolism in COVID–19 Patients. J. Vasc. Surg. 2020. [Google Scholar] [CrossRef]
- Bikdeli, B.; Madhavan, M.V.; Gupta, A.; Jimenez, D.; Burton, J.R.; Der Nigoghossian, C.; Chuich, T.; Nouri, S.N.; Dreyfus, I.; Driggin, E.; et al. Pharmacological Agents Targeting Thromboinflammation in COVID–19: Review and Implications for Future Research. Thromb. Haemost. 2020. [Google Scholar] [CrossRef]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH Interim Guidance on Recognition and Management of Coagulopathy in COVID–19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef]
- Bohn, M.K.; Lippi, G.; Horvath, A.; Sethi, S.; Koch, D.; Ferrari, M.; Wang, C.B.; Mancini, N.; Steele, S.; Adeli, K. Molecular, Serological, and Biochemical Diagnosis and Monitoring of COVID–19: IFCC Taskforce Evaluation of the Latest Evidence. Clin. Chem. Lab. Med. 2020, 58, 1037–1052. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.escardio.org/Education/COVID–19–and–Cardiology/ESC–COVID–19–Guidance (accessed on 5 June 2020).
- Marietta, M.; Ageno, W.; Artoni, A.; De Candia, E.; Gresele, P.; Marchetti, M.; Marcucci, R.; Tripodi, A. COVID–19 and Haemostasis: A Position Paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus. 2020, 18, 167–169. [Google Scholar] [PubMed]
- Flisiak, R.; Horban, A.; Jaroszewicz, J.; Kozielewicz, D.; Pawłowska, M.; Parczewski, M.; Piekarska, A.; Simon, K.; Tomasiewicz, K.; Zarębska–Michaluk, D. Management of SARS–CoV–2 Infection: Recommendations of the Polish Association of Epidemiologists and Infectiologists as of March 31, 2020. Pol. Arch. Int. Med. 2020, 130, 352–357. [Google Scholar]
- Lippi, G.; Plebani, M. The Critical Role of Laboratory Medicine During Coronavirus Disease 2019 (COVID–19) and Other Viral Outbreaks. Clin. Chem. Lab. Med. 2020, 58, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Favaloro, E.J.; Lippi, G. Recommendations for Minimal Laboratory Testing Panels in Patients with COVID–19: Potential for Prognostic Monitoring. Semin. Thromb. Hemost. 2020, 46, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippi, G.; Mattiuzzi, C.; Bovo, C.; Plebani, M. Current Laboratory Diagnostics of Coronavirus Disease 2019 (COVID–19). Acta Biomed. 2020, 91, 137–145. [Google Scholar]
- Galimberti, S.; Baldini, C.; Baratè, C.; Ricci, F.; Balducci, S.; Grassi, S.; Ferro, F.; Buda, G.; Benedetti, E.; Fazzi, R.; et al. The CoV–2 Outbreak: How Hematologists Could Help to Fight Covid–19. Pharmacol. Res. 2020, 157, 104866. [Google Scholar] [CrossRef]
- Jose, R.J.; Manuel, A. COVID–19 Cytokine Storm: The Interplay between Inflammation and Coagulation. Lancet Respir. Med. 2020, 8, e46–e47. [Google Scholar] [CrossRef]
- Kowalewski, M.; Fina, D.; Słomka, A.; Raffa, G.M.; Martucci, G.; Lo Coco, V.; De Piero, M.E.; Ranucci, M.; Suwalski, P.; Lorusso, R. COVID–19 and ECMO: The Interplay between Coagulation and Inflammation—A Narrative Review. Crit. Care 2020, 24, 205. [Google Scholar] [CrossRef]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The Cytokine Storm in COVID–19: An Overview of the Involvement of the chemokine/chemokine–receptor System. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Chau, V.Q.; Oliveros, E.; Mahmood, K.; Singhvi, A.; Lala, A.; Moss, N.; Gidwani, U.; Mancini, D.M.; Pinney, S.P.; Parikh, A. The Imperfect Cytokine Storm: Severe COVID–19 with ARDS in Patient on Durable LVAD Support. JACC Case Rep. 2020. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, S.; Khamis, F.; Pandak, N.; Al Khalili, H.; Said, E.; Petersen, E. A Fatal Case of COVID–19 Due to Metabolic Acidosis Following Dysregulate Inflammatory Response (Cytokine Storm). IDCases 2020, 21, e00829. [Google Scholar] [CrossRef] [PubMed]
- Mo, P.; Xing, Y.; Xiao, Y.; Deng, L.; Zhao, Q.; Wang, H.; Xiong, Y.; Cheng, Z.; Gao, S.; Liang, K.; et al. Clinical Characteristics of Refractory COVID–19 Pneumonia in Wuhan, China. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical Characteristics of 113 Deceased Patients with Coronavirus Disease 2019: Retrospective Study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [Green Version]
- Ulhaq, Z.S.; Soraya, G.V. Interleukin–6 as a Potential Biomarker of COVID–19 Progression. Med. Mal. Infect. 2020, 50, 382–383. [Google Scholar] [CrossRef]
- Aziz, M.; Fatima, R.; Assaly, R. Elevated interleukin–6 and Severe COVID–19: A Meta–Analysis. J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of Anti–Tumour Necrosis Factor Therapy for COVID–19 Are Urgently Needed. Lancet 2020, 395, 1407–1409. [Google Scholar] [CrossRef]
- Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; et al. Effective Treatment of Severe COVID–19 Patients with Tocilizumab. Proc. Natl. Acad. Sci. USA 2020, 117, 10970–10975. [Google Scholar] [CrossRef]
- Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab Treatment in COVID–19: A Single Center Experience. J. Med. Virol. 2020, 92, 814–818. [Google Scholar] [CrossRef]
- Day, J.W.; Fox, T.A.; Halsey, R.; Carpenter, B.; Kottaridis, P.D. Interleukin–1 Blockade with Anakinra in Acute Leukaemia Patients with Severe COVID–19 Pneumonia Appears Safe and May Result in Clinical Improvement. Br. J. Haematol. 2020. [Google Scholar] [CrossRef]
- Cavalli, G.; De Luca, G.; Campochiaro, C.; Della–Torre, E.; Ripa, M.; Canetti, D.; Oltolini, C.; Castiglioni, B.; Tassan Din, C.; Boffini, N.; et al. Interleukin–1 Blockade with High–Dose Anakinra in Patients with COVID–19, Acute Respiratory Distress Syndrome, and Hyperinflammation: A Retrospective Cohort Study. Lancet Rheumatol. 2020, 2, e325–e331. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H.; Levi, M.; Connors, J.M.; Thachil, J. Coagulopathy of Coronavirus Disease 2019. Crit. Care Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- van der Poll, T.; Herwald, H. The Coagulation System and Its Function in Early Immune Defense. Thromb. Haemost. 2014, 112, 640–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.H.; Conway, E.M. Cross Talk Pathways between Coagulation and Inflammation. Circ. Res. 2016, 118, 1392–1408. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Platelet Activation and Prothrombotic Mediators at the Nexus of Inflammation and Atherosclerosis: Potential Role of Antiplatelet Agents. Blood Rev. 2020, 100694. [Google Scholar] [CrossRef] [PubMed]
- de Lusignan, S.; Dorward, J.; Correa, A.; Jones, N.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Byford, R.; Dabrera, G.; Elliot, A.; et al. Risk Factors for SARS–CoV–2 Among Patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre Primary Care Network: A Cross–Sectional Study. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Jin, J.M.; Bai, P.; He, W.; Wu, F.; Liu, X.F.; Han, D.M.; Liu, S.; Yang, J.K. Gender Differences in Patients with COVID–19: Focus on Severity and Mortality. Front. Public Health 2020, 8, 152. [Google Scholar] [CrossRef]
- Serge, R.; Vandromme, J.; Charlotte, M. Are We Equal in Adversity? Does Covid–19 Affect Women and Men Differently? Maturitas 2020. [Google Scholar] [CrossRef]
- Dangis, A.; De Brucker, N.; Heremans, A.; Gillis, M.; Frans, J.; Demeyere, A.; Symons, R. Impact of Gender on Extent of Lung Injury in COVID–19. Clin. Radiol. 2020, 75, 554–556. [Google Scholar] [CrossRef]
- Sharma, G.; Volgman, A.S.; Michos, E.D. Sex Differences in Mortality from COVID–19 Pandemic: Are Men Vulnerable and Women Protected? JACC Case Rep. 2020. [Google Scholar] [CrossRef]
- Swärd, P.; Edsfeldt, A.; Reepalu, A.; Jehpsson, L.; Rosengren, B.E.; Karlsson, M.K. Age and Sex Differences in Soluble ACE2 May Give Insights for COVID–19. Crit. Care 2020, 24, 221. [Google Scholar] [CrossRef]
- Harrison, M. Erythrocyte Sedimentation Rate and C–reactive Protein. Aust. Prescr. 2015, 38, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Welsby, P.D. COVID–19: Some Unanswered Questions. Postgrad. Med J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Maggi, E.; Canonica, G.W.; Moretta, L. COVID–19: Unanswered Questions on Immune Response and Pathogenesis. J. Allergy Clin. Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Merad, M.; Martin, J.C. Pathological Inflammation in Patients with COVID–19: A Key Role for Monocytes and Macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Raucci, F.; Mansour, A.A.; Casillo, G.M.; Saviano, A.; Caso, F.; Scarpa, R.; Mascolo, N.; Iqbal, A.J.; Maione, F. Interleukin–17A (IL–17A), a Key Molecule of Innate and Adaptive Immunity, and Its Potential Involvement in COVID–19–related Thrombotic and Vascular Mechanisms. Autoimmun. Rev. 2020, 19, 102572. [Google Scholar] [CrossRef] [PubMed]
- Amgalan, A.; Othman, M. Exploring Possible Mechanisms for COVID–19 Induced Thrombocytopenia: Unanswered Questions. J. Thromb. Haemost. 2020, 18, 1514–1516. [Google Scholar] [CrossRef] [Green Version]
- Favaloro, E.J.; Thachil, J. Reporting of D–dimer Data in COVID–19: Some Confusion and Potential for Misinformation. Clin. Chem. Lab. Med. 2020. [Google Scholar] [CrossRef]
Parameter [Unit] | Non–Severe COVID–19 | Severe COVID–19 | Probability Value (Non–Severe versus Severe COVID–19) | Reference | |
---|---|---|---|---|---|
White blood cells (WBCs) | WBC count [×109/L] | 5.7 (3.1–7.6) n = 28 | 11.3 (5.8–12.1) n = 13 | 0.001 | [32] |
4.3 (3.3–5.4) n = 102 | 6.6 (3.6–9.8) n = 36 | 0.003 | [33] | ||
4.9 (3.8–6.0) n = 926 | 3.7 (3.0–6.2) n = 173 | not determined | [35] | ||
4.5 (3.5–5.9) n = 82 | 5.3 (4.0–9.0) n = 56 | 0.014 | [38] | ||
4.5 (3.9–5.5) n = 10 | 8.3 (6.2–10.4) n = 11 | 0.003 | [44] | ||
3.9 ± 1.5 n = 27 | 6.6 ± 3.4 n = 13 | not determined | [45] | ||
4.7 (4.0–5.8) n = 58 | 5.1 (3.5–8.2) n = 9 | 0.87 | [46] | ||
6.4 ± 2.4 n = 69 | 9.1 ± 5.6 n = 24 | 0.006 | [49] | ||
4.5 (3.5–5.5) n = 240 | 4.5 (3.7–6.2) n= 58 | 0.442 | [63] | ||
Lymphocyte count [×109/L] | 1.0 (0.7–1.1) n = 28 | 0.4 (0.2–0.8) n = 13 | 0.0041 | [32] | |
0.9 (0.6–1.2) n = 102 | 0.8 (0.5–0.9) n = 36 | 0.03 | [33] | ||
1.0 (0.8–1.4) n = 926 | 0.8 (0.6–1.0) n = 173 | not determined | [35] | ||
0.8 (0.6–1.2) n = 82 | 0.7 (0.5–1.0) n = 56 | 0.048 | [38] | ||
1.1 (1.0–1.2) n = 10 | 0.7 (0.5–0.9) n = 11 | 0.049 | [44] | ||
1.1 (0.8–1.4) n = 27 | 0.6 (0.6–0.8) n = 13 | not determined | [45] | ||
1.3 (0.9–1.7) n = 58 | 0.5 (0.48–0.8) n = 9 | 0.0002 | [46] | ||
1.17 ± 0.63 n = 69 | 0.65 ± 0.54 n = 24 | < 0.001 | [49] | ||
1.3 (1.0–1.8) n = 240 | 0.9 (0.7–1.2) n = 58 | < 0.001 | [63] | ||
Neutrophil count [×109/L] | 4.4 (2.0–6.1) n = 28 | 10.6 (5.0–11.8) n = 13 | 0.00069 | [32] | |
2.7 (1.9–3.9) n = 102 | 4.6 (2.6–7.9) n = 36 | < 0.001 | [33] | ||
2.7 (2.1–3.7) n = 10 | 6.9 (4.9–9.1) n = 11 | 0.002 | [44] | ||
2.0 (1.5–2.9) n = 27 | 4.7 (3.6–5.8) n = 13 | not determined | [45] | ||
2.6 (2.1–3.8) n = 58 | 4.2 (2.1–6.9) n = 9 | 0.17 | [46] | ||
4.55 ± 0.21 n = 69 | 7.73 ± 5.4 n = 24 | < 0.001 | [49] | ||
6.6 (5.3–8.7) n = 240 | 7.3 (5.4–9.6) n = 58 | 0.158 | [63] | ||
Monocyte count [×109/L] | 0.4 (0.3–0.5) n = 102 | 0.4 (0.3–0.5) n = 36 | 0.96 | [33] | |
0.3 (0.2–0.5) n = 27 | 0.2 (0.2–0.5) n = 13 | not determined | [45] | ||
0.5 (0.4–0.6) n = 58 | 0.3 (0.2–0.5) n = 9 | 0.12 | [46] | ||
0.41 ± 0.2 n = 69 | 0.5 ± 0.84 n = 24 | 0.045 | [49] | ||
Eosinophil count [×109/L] | 0.02 (0.008–0.05) n = 82 | 0.01 (0.0–0.06) n = 56 | 0.451 | [38] | |
0.02 (0–0.05) n = 240 | 0.01 (0–0.03) n = 58 | < 0.001 | [63] |
Parameter [Unit] | Non–Severe COVID–19 | Severe COVID–19 | Probability Value (Non–Severe versus Severe COVID–19) | Reference | |
---|---|---|---|---|---|
Red blood cell (RBC)–related parameters | Hemoglobin levels [g/L] | 130.5 (120.0–140.0) n = 28 | 122.0 (111.0–128.0) n = 13 | 0.20 | [32] |
135 (120.0–148.0) n = 926 | 128.0 (112.0–141.0) n = 173 | not determined | [35] | ||
139.5 (132.8–146.0) n = 10 | 136.0 (125.5–144.5) n = 11 | 0.78 | [44] | ||
127.8 ± 13.1 n = 27 | 123.4 ± 14.0 n = 13 | not determined | [45] | ||
142.0 (129.0–152.0) n = 58 | 132.0 (125.0–140.0) n = 9 | 0.07 | [46] | ||
Ferritin levels [µg/L] | 337.4 (286.2–1275.4) n = 10 | 1598.2 (1424.6–2036.0) n = 11 | 0.049 | [44] | |
367.8 (174.7–522.0) n = 27 | 835.5 (635.4–1538.8) n = 13 | not determined | [45] | ||
Erythrocyte sedimentation rate; ESR [mm/h] | 24.0 (13.5–42.5) n = 240 | 45.0 (28.0–61.0) n = 58 | < 0.001 | [63] |
Parameter [Unit] | Non–Severe COVID–19 | Severe COVID–19 | Probability Value (Non–Severe versus Severe COVID–19) | Reference |
---|---|---|---|---|
Platelet (PLT) count [× 109/L] | 149.0 (131.0–263.0) n = 28 | 196.0 (165.0–263.0) n = 13 | 0.45 | [32] |
165.0 (125.0–188.0) n = 102 | 142.0 (119.0–202.0) n = 36 | 0.78 | [33] | |
172.0 (139.0–212.0) n = 926 | 137.5 (99.0–179.5) n = 173 | not determined | [35] | |
175.6 (148.3–194.0) n = 10 | 157.0 (134.0–184.5) n = 11 | 0.88 | [44] | |
181.4 ± 70.7 n = 27 | 186.6 ± 68.1 n = 13 | not determined | [45] | |
201.0 (157.0–263.0) n = 58 | 217.0 (154.0–301.0) n = 9 | 0.81 | [46] | |
Prothrombin time; PT [s] | 10.7 (9.8–12.1) n = 28 | 12.2 (11.2–13.4) n = 13 | 0.012 | [32] |
12.9 (12.3–13.4) n = 102 | 13.2 (12.3–14.5) n = 36 | 0.37 | [33] | |
13.4 (12.8–13.7) n = 10 | 14.3 (13.6–14.6) n = 11 | 0.15 | [44] | |
13.1 ± 0.6 n = 27 | 13.4 ± 0.6 n = 13 | not determined | [45] | |
International normalized ratio (INR) | 1.0 ± 0.1 n = 27 | 1.0 ± 0.1 n = 13 | not determined | [45] |
Activated partial thromboplastin time; aPTT [s] | 27.7 (24.8–34.1) n = 28 | 26.2 (22.5–33.9) n = 13 | 0.57 | [32] |
31.7 (29.6–33.5) n = 102 | 30.4 (28.0–33.5) n = 36 | 0.09 | [33] | |
44.0 (42.6–47.6) n = 10 | 33.7 (32.1–38.4) n = 11 | 0.002 | [44] | |
39.5 ± 4.6 n = 27 | 39.5 ± 4.2 n = 13 | not determined | [45] | |
Fibrinogen levels [g/L] | 4.5 ± 1.4 n = 27 | 6.3 ± 1.3 n = 13 | not determined | [45] |
D–dimer levels [mg/L] | 0.5 (0.3–0.8) n = 28 | 2.4 (0.6–14.4) n = 13 | 0.0042 | [32] |
166 (101–285) n = 102 | 414 (191–1324) n = 36 | < 0.001 | [33] | |
0.2 (0.1–0.3) n = 82 | 0.4 (0.2–2.4) n = 56 | < 0.001 | [38] | |
0.3 (0.3–0.4) n = 10 | 2.6 (0.6–18.7) n = 11 | 0.029 | [44] | |
0.4 (0.2–0.8) n = 27 | 0.9 (0.7–1.5) n = 13 | not determined | [45] | |
0.3 (0.2–0.5) n = 240 | 0.5 (0.3–0.9) n = 58 | < 0.001 | [63] |
Parameter | Clinical Value | Reference | |
---|---|---|---|
White blood cell (WBC) –related parameters | WBC count | ↑ in severe cases | [32,33,38,44,45,49] |
Lymphocyte count | ↓ in severe cases Early prognosis of severity | [32,33,35,38,44,45,46,49,52,53,63] | |
CD3+, CD4+, CD8+ T cell count | ↓ in severe patients | [44,45,46,67] | |
Neutrophil to CD8+ T cell ratio (N8R) | ↑ in severe cases Early prognosis of severity | [45,67] | |
Neutrophil to lymphocyte ratio (NLR) | ↑ in severe cases Early prognosis of severity | [45,47,48,49,50,67] | |
Lymphocyte to C–reactive protein ratio (LCR) | ↓ in severe cases | [50] | |
Red blood cell (RBC) –related parameters | Ferritin levels | ↑ in severe cases | [44,45] |
Erythrocyte sedimentation rate (ESR) | ↑ in severe cases Early prognosis of severity | [63,67,68,69] | |
Platelet (PLT) count | ↓ in severe patients Early prognosis of severity and mortality | [35,73] | |
D–dimer levels | ↑ in severe cases | [32,33,38,44,45,63] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słomka, A.; Kowalewski, M.; Żekanowska, E. Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations. Pathogens 2020, 9, 493. https://doi.org/10.3390/pathogens9060493
Słomka A, Kowalewski M, Żekanowska E. Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations. Pathogens. 2020; 9(6):493. https://doi.org/10.3390/pathogens9060493
Chicago/Turabian StyleSłomka, Artur, Mariusz Kowalewski, and Ewa Żekanowska. 2020. "Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations" Pathogens 9, no. 6: 493. https://doi.org/10.3390/pathogens9060493
APA StyleSłomka, A., Kowalewski, M., & Żekanowska, E. (2020). Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations. Pathogens, 9(6), 493. https://doi.org/10.3390/pathogens9060493