Global Prevalence Estimates of Toxascaris leonina Infection in Dogs and Cats
Abstract
:1. Introduction
2. Results
2.1. Eligible Studies, Their Characteristics and Data Sets
2.2. Global and Regional Prevalence Rates of Toxascaris leonina Infection in Dogs
2.3. Global and Regional Prevalence Rates of Toxascaris leonina Infection in Cats
2.4. Prevalence According to Type of Animals and Selected Study Characteristics
2.5. Impact of Socio-demographic, Geographical and Climatic Parameters on Prevalence
3. Discussion
4. Methodology
4.1. Search Strategy and Selection Criteria
4.2. Data Extraction and Quality Assessment
4.3. Meta-Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gee, N.R.; Mueller, M.K. A systematic review of research on pet ownership and animal interactions among older adults. Anthrozoös 2019, 32, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-d.; Zhai, W.; Yang, H.-c.; Fan, R.-x.; Cao, X.; Zhong, L.; Wang, L.; Liu, F.; Wu, H.; Cheng, L.-G.; et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sprent, J.; Barrett, M.G. Large roundworms of dogs and cats differentiation of Toxocara canis and Toxascaris leonina. Aust. Vet. J. 1964, 40, 166–171. [Google Scholar] [CrossRef]
- Serpell, J.; Barrett, P. The Domestic Dog: Its Evolution, Behavior and Interactions with People, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016; pp. 247–270. [Google Scholar]
- Campbell, K.L.; Corbin, J.E.; Campbell, J.R. Companion animals: Their Biology, Care Health, and Management, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Macpherson, C.N. Dog zoonoses and human health: A global perspective. CAB Mini Rev. 2013, 8, 1–2. [Google Scholar]
- Zeagler, C.; Byrne, C.; Valentin, G.; Freil, L.; Kidder, E.; Crouch, J.; Starner, T.; Jackson, M.M. Search and rescue: Dog and handler collaboration through wearable and mobile interfaces. In Proceedings of Proceedings of the Third International Conference on Animal-Computer Interaction, Association for Computing Machinery, New York, NY, USA, 15–17 November 2016. [Google Scholar]
- Paul, M.; King, L.; Carlin, E.P. Zoonoses of people and their pets: A US perspective on significant pet-associated parasitic diseases. Trends Parasitol. 2010, 26, 153–154. [Google Scholar] [CrossRef] [PubMed]
- Doke, S.K.; Dhawale, S.C. Alternatives to animal testing: A review. Saudi Pharm. J. 2015, 23, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, A.M.; Dow, S.W. Concise review: Stem cell trials using companion animal disease models. Stem Cells 2016, 34, 1709–1729. [Google Scholar] [CrossRef]
- Pirrone, F.; Albertini, M. Olfactory detection of cancer by trained sniffer dogs: A systematic review of the literature. J. Vet. Behav. 2017, 19, 105–117. [Google Scholar] [CrossRef]
- Jurgel, J.; Filipiak, K.J.; Szarpak, Ł.; Jaguszewski, M.; Smerka, J.; Dzieciątkowski, T. Do pets protect their owners in the COVID-19 era? Med. Hypotheses 2020, 142, 109831. [Google Scholar] [CrossRef]
- Guay, D.R. Pet-assisted therapy in the nursing home setting: Potential for zoonosis. Am. J. Infect. Control 2001, 29, 178–186. [Google Scholar] [CrossRef]
- Robertson, I.D.; Thompson, R.C. Enteric parasitic zoonoses of domesticated dogs and cats. Microbes Infect. 2002, 4, 867–873. [Google Scholar] [CrossRef]
- Otranto, D.; Dantas-Torres, F.; Mihalca, A.D.; Traub, R.J.; Lappin, M.; Baneth, G. Zoonotic parasites of sheltered and stray dogs in the era of the global economic and political crisis. Trends Parasitol. 2017, 33, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Rostami, A.; Riahi, S.M.; Hofmann, A.; Ma, G.; Wang, T.; Behniafar, H.; Taghipour, A.; Fakhri, Y.; Spotin, A.; Chang, B.C.H.; et al. Global prevalence of Toxocara infection in dogs. Adv. Parasitol. 2020, 109, 561–583. [Google Scholar] [PubMed]
- Rostami, A.; Sepidarkish, M.; Ma, G.; Wang, T.; Ebrahimi, M.; Fakhri, Y.; Mirjalali, H.; Hofmann, A.; Macpherson, C.N.; Hotez, P.J.; et al. Global prevalence of Toxocara infection in cats. Adv. Parasitol. 2020, 109, 615–639. [Google Scholar] [PubMed]
- Ma, G.; Rostami, A.; Wang, T.; Hofmann, A.; Hotez, P.J.; Gasser, R.B. Global and regional seroprevalence estimates for human toxocariasis: A call for action. Adv. Parasitol. 2020, 109, 273–288. [Google Scholar]
- Zhu, X.Q.; Jacobs, D.E.; Chilton, N.B.; Sani, R.A.; Cheng, N.A.B.Y.; Gasser, R.B. Molecular characterization of a Toxocara variant from cats in Kuala Lumpur, Malaysia. Parasitology 1998, 117, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, L.M.; Jacobs, D.E.; Sani, R.A. Toxocara malaysiensis n. sp. (Nematoda: Ascaridoidea) from the domestic cat (Felis catus Linnaeus, 1758). J. Parasitol. 2001, 87, 660–665. [Google Scholar] [CrossRef]
- Li, M.-W.; Zhu, X.-Q.; Gasser, R.B.; Lin, R.-Q.; Sani, R.A.; Lun, Z.-R.; Jacobs, D.E. The occurrence of Toxocara malaysiensis in cats in China, confirmed by sequence-based analyses of ribosomal DNA. Parasitol. Res. 2006, 99, 554–557. [Google Scholar] [CrossRef]
- Le, T.H.; Anh, N.T.L.; Nguyen, K.T.; Nguyen, N.T.B.; Gasser, R.B. Toxocara malaysiensis infection in domestic cats in Vietnam—An emerging zoonotic issue? Infect. Genet. Evol. 2016, 37, 94–98. [Google Scholar] [CrossRef]
- Parsons, J.C. Ascarid infections of cats and dogs. Vet. Clin. North Am. Small Anim. Pract. 1987, 17, 1307–1339. [Google Scholar] [CrossRef]
- Wright, W. Observations on the life history of Toxascaris leonina (Nematoda: Ascaridae). Proc. Helminthol. Soc. Wash. 1935, 2, 56. [Google Scholar]
- Okoshi, S.; Usui, M. Experimental studies on Toxascaris leonina. I. Incidence of T. leonina among dogs and cats in Japan. Jpn. J. Vet. Sci. 1967, 29, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Okoshi, S.; Usui, M. Experimental studies on Toxascaris leonina. II. Diagnosis and treatment of toxascariasis in dogs and cats. Jpn. J. Vet. Sci. 1967, 29, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Okoshi, S.; Usui, M. Experimental studies on Toxascaris leonina. III. Morphology of worms and eggs obtained from various animals. Jpn. J. Vet. Sci. 1967, 29, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Okoshi, S.; Usui, M. Experimental studies on Toxascaris leonina. IV. Development of eggs of three ascarids, T. leonina, Toxocara canis and Toxocara cati, in dogs and cats. Jpn. J. Vet. Sci. 1968, 30, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Okoshi, S.; Usui, M. Experimental studies on Toxascaris leonina. V. Experimental infection of dogs and cats with eggs of canine, feline and Felidae strains. Jpn. J. Vet. Sci. 1968, 30, 81–91. [Google Scholar] [CrossRef]
- Okoshi, S.; Usui, M. Experimental studies on Toxascaris leonina. VI. Experimental infection of mice, chickens and earthworms with Toxascaris leonina, Toxocara canis and Toxocara cati. Jpn. J. Vet. Sci. 1968, 30, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Sprent, J.F. The life history and development of Toxascaris leonina (von Linstow 1902) in the dog and cat. Parasitology 1959, 49, 330–371. [Google Scholar] [CrossRef]
- Schulz, R. Ascaris joffi n. sp. und A. tarbagan n. sp.—zwei neue Askariden der Nagetiere. Zool. Anz. 1931, 94, 238–245. [Google Scholar]
- Nichols, R.L. The etiology of visceral larva migrans: I. Diagnostic morphology of infective second-stage Toxocara larvae. J. Parasitol. 1956, 42, 349–362. [Google Scholar] [CrossRef]
- Dubey, J.P. Migration and development of Toxascaris leonina larvae in mice. Trop. Geogr. Med. 1969, 21, 214–218. [Google Scholar] [PubMed]
- Karbach, G.; Stoye, M. Zum Vorkommen pränataler und galaktogener Infektionen mit Toxascaris leonina Leiper 1907 (Ascaridae) bei der Maus. Zentralbl. Veterinarmed. Reihe B 1982, 29, 219–230. [Google Scholar] [CrossRef]
- Rostami, A.; Ma, G.; Wang, T.; Koehler, A.V.; Hofmann, A.; Chang, B.C.; Macpherson, C.N.; Gasser, R.B. Human toxocariasis–a look at a neglected disease through an epidemiological ‘prism’. Infect. Genet. Evol. 2019, 104002. [Google Scholar] [CrossRef]
- Beaver, P.C.; Bowman, D.D. Ascaridoid larva (Nematoda) from the eye of a child in Uganda. Am. J. Trop. Med. Hyg. 1984, 33, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Rausch, R.L.; Fay, F.H. Toxascaris leonina in rodents, and relationship to eosinophilia in a human population. Comp. Parasitol. 2011, 78, 236–244. [Google Scholar] [CrossRef]
- Hoberg, E.P.; Galbreath, K.E.; Cook, J.A.; Kutz, S.J.; Polley, L. Northern host-parasite assemblages: History and biogeography on the borderlands of episodic climate and environmental transition. Adv. Parasitol. 2012, 79, 1–97. [Google Scholar] [PubMed]
- Okulewicz, A.; Perec-Matysiak, A.; Buńkowska, K.; Hildebrand, J. Toxocara canis, Toxocara cati and Toxascaris leonina in wild and domestic carnivores. Helminthologia 2012, 49, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.-C.; Rohen, M.; Epe, C.; Schnieder, T. Prevalence of endoparasites in stray and fostered dogs and cats in Northern Germany. Parasitol. Res. 2012, 111, 849–857. [Google Scholar] [CrossRef]
- Taetzsch, S.; Bertke, A.; Gruszynski, K. Zoonotic disease transmission associated with feral cats in a metropolitan area: A geospatial analysis. Zoonoses Public Health 2018, 65, 412–419. [Google Scholar] [CrossRef]
- Deplazes, P.; van Knapen, F.; Schweiger, A.; Overgaauw, P.A. Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis. Vet. Parasitol. 2011, 182, 41–53. [Google Scholar] [CrossRef]
- Traversa, D. Pet roundworms and hookworms: A continuing need for global worming. Parasites Vectors. 2012, 5, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami, A.; Riahi, S.M.; Holland, C.V.; Taghipour, A.; Khalili-Fomeshi, M.; Fakhri, Y.; Omrani, V.F.; Hotez, P.J.; Gasser, R.B. Seroprevalence estimates for toxocariasis in people worldwide: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007809. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, Y.; Gasser, R.; Rostami, A.; Fan, C.; Ghasemi, S.; Javanian, M.; Bayani, M.; Armoon, B.; Moradi, B. Toxocara eggs in public places worldwide — A systematic review and meta-analysis. Environ. Pollut. 2018, 242, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Paez, A. Gray literature: An important resource in systematic reviews. J. Evid. Based Med. 2017, 10, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Veroniki, A.A.; Jackson, D.; Viechtbauer, W.; Bender, R.; Bowden, J.; Knapp, G.; Kuss, O.; Higgins, J.P.; Langan, D.; Salanti, G. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res. Synth. Methods 2016, 7, 55–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami, A.; Riahi, S.M.; Gamble, H.R.; Fakhri, Y.; Shiadeh, M.N.; Danesh, M.; Behniafar, H.; Paktinat, S.; Foroutan, M.; Mokdad, A.H. Global prevalence of latent toxoplasmosis in pregnant women: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 673–683. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). List of Member States by WHO region and mortality stratum. World Health Report 2003, 2003, 182. [Google Scholar]
- Munn, Z.; Moola, S.; Riitano, D.; Lisy, K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int. J. Health Policy Manag. 2014, 3, 123–128. [Google Scholar] [CrossRef] [Green Version]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Foroutan, M.; Fakhri, Y.; Riahi, S.M.; Ebrahimpour, S.; Namroodi, S.; Taghipour, A.; Spotin, A.; Gamble, H.R.; Rostami, A. The global seroprevalence of Toxoplasma gondii in pigs: A systematic review and meta-analysis. Vet. Parasitol. 2019, 269, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, J.P.; Saratzis, A.; Sutton, A.J.; Boucher, R.H.; Sayers, R.D.; Bown, M.J. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J. Clin. Epidemiol. 2014, 67, 897–903. [Google Scholar] [CrossRef] [PubMed]
WHO Region/Country | Number of Data Sets | Total Number of Samples | Number of Test-Positive Samples | Pooled Prevalence (%) Established Using Meta-Analysis (95 % CI) | Heterogeneity I2 (%) |
---|---|---|---|---|---|
Global | 117 | 119,317 | 3229 | 2.9 (2.2–3.8) | 98.0 |
Eastern Mediterranean | 19 | 3409 | 188 | 7.2 (3.5–12.0) | 94.6 |
Iran | 12 | 2639 | 167 | 10.8 (4.7–19.0) | 96.2 |
Egypt | 5 | 337 | 11 | 2.9 (0.1–10.9) | 87.4 |
Jordan | 1 | 340 | 9 | 2.6 (1.2–5.0) | na |
Iraq | 1 | 93 | 1 | 1.1 (0.0–5.8) | na |
South-East Asia | 6 | 1576 | 69 | 5.7 (1.4–12.2) | 94.0 |
Sri Lanka | 2 | 90 | 11 | 9.5 (4.0–16.7) | 98.5 |
India | 4 | 1486 | 58 | 5.3 (1.0–12.3) | 95.4 |
Africa | 10 | 2577 | 73 | 3.6 (1.2–6.9) | 91.5 |
Nigeria | 4 | 1418 | 17 | 1.3 (0.1–3.3) | 71.9 |
South Africa | 2 | 303 | 21 | 3.0 (1.3–5.4) | 90.6 |
Gabon | 1 | 198 | 1 | 0.5 (0.0–2.8) | na |
Malawi | 1 | 40 | 5 | 12.5 (4.2–26.8) | na |
Ethiopia | 1 | 326 | 9 | 2.8 (1.3–5.2) | na |
Zambia | 1 | 292 | 20 | 6.8 (4.2–10.4) | na |
Europe | 55 | 74,794 | 2532 | 2.6 (1.6–3.9) | 98.6 |
Italy | 7 | 4799 | 33 | 0.7 (0.2–1.4) | 68.9 |
Spain | 6 | 3595 | 374 | 5.3 (2.0–10.0) | 95.2 |
Poland | 5 | 4842 | 311 | 3.0 (0.9–6.2) | 91.3 |
Germany | 4 | 36,889 | 219 | 0.6 (0.4–0.9) | 77.6 |
Belgium | 4 | 3483 | 249 | 2.5 (0.0–9.2) | 98.1 |
Greece | 4 | 1915 | 70 | 3.2 (1.1–6.3) | 87.0 |
Slovakia | 4 | 1305 | 63 | 5.0 (2.9–7.6) | 71.3 |
Portugal | 3 | 494 | 3 | 0.3 (0.0–1.2) | 0.0 |
Czech Republic | 3 | 4778 | 46 | 1.0 (0.6–1.4) | 31.1 |
Romania | 2 | 1314 | 14 | 1.0 (0.5–1.6) | 0.0 |
Hungary | 2 | 490 | 6 | 0.8 (0.1–1.9) | 95.7 |
Albania | 2 | 713 | 6 | 0.7 (0.2–1.6) | 97.7 |
Turkey | 2 | 524 | 143 | 27.0 (23.2–30.9) | 99.0 |
Russia | 1 | 8140 | 970 | 11.9 (11.2–12.6) | na |
Switzerland | 1 | 505 | 7 | 1.4 (0.6–2.8) | na |
Netherland | 1 | 445 | 3 | 0.7 (0.1–2.0) | na |
Denmark | 1 | 178 | 1 | 0.6 (0.0–3.1) | na |
England | 1 | 171 | 0 | 0.1 (0.0–2.1) | na |
Serbia | 1 | 134 | 13 | 9.7 (5.3–16.0) | na |
Bulgaria | 1 | 80 | 1 | 1.3 (0.0–6.8) | na |
North America | 11 | 30,880 | 204 | 2.0 (1.1–3.2) | 96.4 |
Canada | 6 | 2647 | 94 | 3.6 (1.1–7.3) | 93.9 |
USA | 4 | 27,855 | 101 | 0.6 (0.2–1.1) | 94.0 |
Mexico | 1 | 378 | 9 | 2.4 (1.1–4.5) | na |
Western Pacific | 15 | 5736 | 161 | 1.0 (0.1–3.4) | 97.3 |
Japan | 8 | 3150 | 11 | 0.2 (0.0–0.6) | 39.2 |
Australia | 4 | 1893 | 3 | 0.1 (0.0–0.3) | 12.5 |
China | 2 | 616 | 143 | 19.8 (16.8–23.1) | 96.9 |
Malaysia | 1 | 77 | 4 | 5.2 (1.4–12.8) | 0.0 |
South America | 1 | 345 | 2 | 0.6 (0.1–2.1) | 0.0 |
Brazil | 1 | 345 | 2 | 0.6 (0.1–2.1) | 0.0 |
WHO Regions/Country | Number of Data Sets | Total Number of Samples | Number of Test-Positive Samples | Pooled Prevalence (%) Established Using Meta-Analysis (95 % CI) | Heterogeneity I2 (%) |
---|---|---|---|---|---|
Global | 65 | 25,364 | 511 | 3.4 (2.3–4.8) | 95.5 |
Africa | 3 | 319 | 104 | 38.7 (20.9–58.1) | 89.9 |
Nigeria | 3 | 319 | 104 | 38.7 (20.9–58.1) | 89.9 |
Eastern Mediterranean | 10 | 1877 | 155 | 10.0 (3.3–19.4) | 96.8 |
Iran | 4 | 316 | 44 | 13.7 (3.8–28.0) | 89.5 |
Iraq | 2 | 380 | 88 | 22.8 (18.7–27.2) | 96.5 |
Egypt | 2 | 283 | 20 | 7.0 (4.2–10.3) | 95.0 |
Qatar | 1 | 658 | 1 | 0.2 (0.0–0.8) | na |
United Arab Emirates | 1 | 240 | 2 | 0.8 (0.1–3.0) | na |
South America | 5 | 1048 | 58 | 4.3 (0.3–11.9) | 94.2 |
Brazil | 4 | 583 | 17 | 3.3 (0.0–11.6) | 92.1 |
Argentina | 1 | 465 | 41 | 8.8 (6.4–11.8) | na |
Europe | 30 | 15,114 | 155 | 1.9 (0.9–3.3) | 92.6 |
Greece | 5 | 1779 | 16 | 0.9 (0.0–3.3) | 88.3 |
Netherland | 4 | 1018 | 6 | 1.0 (0.0–4.4) | 85.6 |
Spain | 3 | 1008 | 15 | 1.3 (0.5–2.5) | 47.6 |
Germany | 3 | 9523 | 43 | 0.7 (0.0–5.2) | 97.8 |
Russia | 3 | 334 | 14 | 4.0 (2.0–6.5) | 0 |
Italy | 2 | 237 | 12 | 3.8 (1.6–6.7) | 97.1 |
Turkey | 2 | 172 | 17 | 7.8 (4.1–12.4) | 73.8 |
England | 2 | 142 | 10 | 1.5 (0.5–5.0) | 96.5 |
Poland | 2 | 90 | 3 | 0.9 (0.0–4.7) | 95.2 |
Finland | 1 | 411 | 1 | 0.2 (0.0–1.3) | na |
Hungary | 1 | 235 | 17 | 7.2 (4.3–11.3) | na |
Czech Republic | 1 | 135 | 1 | 0.7 (0.0–4.1) | na |
Belgium | 1 | 30 | 0 | 0.1 (0.0–11.6) | na |
Western Pacific | 8 | 2784 | 33 | 1.4 (0.4–2.8) | 80.2 |
Australia | 5 | 1707 | 27 | 1.6 (0.5–3.2) | 75.5 |
Japan | 1 | 942 | 2 | 0.2 (0.0–0.8) | na |
Taiwan | 1 | 96 | 1 | 1.0 (0.0–5.7) | na |
China | 1 | 39 | 3 | 7.7 (1.6–20.9) | na |
North America | 9 | 4222 | 6 | 0.01 (0.0–0.1) | 28.4 |
Canada | 5 | 976 | 3 | 0.0 (0.0–0.4) | 8.0 |
USA | 2 | 2888 | 2 | 0.0 (0.0–0.2) | 77.0 |
Mexico | 2 | 358 | 1 | 0.2 (0.0–1.1) | 77.0 |
South-East Asian | 0 | 0 | 0 | na | na |
Parameters/Subgroups | Number of Datasets | Total Number of Samples | Number of Test-Positive Samples | Pooled Prevalence (%) Estimated using REM (95% CI) | Heterogeneity I2 (%) |
---|---|---|---|---|---|
Type of dogs | |||||
Pet (domestic) dogs | 64 | 96,187 | 1852 | 1.5 (0.9–2.3) | 98.1 |
Working (domestic) dogs | 16 | 7133 | 324 | 3.9 (1.9–7.2) | 97.4 |
Stray (wild) dogs | 28 | 10,031 | 674 | 7.0 (4.3–10.3) | 96.7 |
Indeterminate (not specified type) | 9 | 5966 | 379 | 3.0 (0.8–6.5) | 97.5 |
Type of cats | |||||
Pet (Domestic) cats | 36 | 19,200 | 211 | 1.8 (0.9–2.9) | 93.9 |
Stray (wild) cats | 25 | 4169 | 292 | 7.5 (4.0–11.8) | 95.7 |
Indeterminate (not specified type) | 4 | 1995 | 8 | 3.3 (2.2–4.6) | 83.6 |
Sample size | |||||
≤500 | 140 | 26,003 | 1246 | 4.0 (3.0–5.1) | 94.2 |
501–1000 | 21 | 13,909 | 181 | 1.0 (0.6–1.6) | 87.7 |
1001–5000 | 14 | 27,408 | 1068 | 2.5 (0.9–4.9) | 99.1 |
≥5000 | 7 | 77,361 | 1245 | 1.0 (0.1–3.0) | 99.8 |
Implementation year | |||||
1990–1995 | 19 | 16,966 | 374 | 1.9 (0.6–3.8) | 96.7 |
1996–2000 | 6 | 5252 | 129 | 6.2 (1.8–12.8) | 97.3 |
2001–2005 | 28 | 23,770 | 1005 | 4.7 (2.7–7.2) | 98.3 |
2006–2010 | 57 | 68,842 | 689 | 2.3 (1.6–3.1) | 96.5 |
2011–2015 | 64 | 25,298 | 1450 | 3.2 (2.0–4.7) | 96.3 |
2016–2019 | 8 | 4553 | 93 | 2.4 (0.6–5.2) | 95.4 |
Risk of bias | |||||
Low risk | 139 | 141,450 | 3481 | 2.4 (1.8–3.0) | 97.9 |
Moderate risk | 43 | 3231 | 259 | 7.5 (4.4–11.2) | 91.6 |
Parameter/Subgroup | Number of Data Sets | Total Number of Samples | Number of Test-Positive Samples | Pooled Prevalence (%) Established Using REM (95% CI) | Heterogeneity I2 (%) |
---|---|---|---|---|---|
Income level | |||||
Low | 30 | 516 | 15 | 3.2 (0.2–8.6) | 79.7 |
Lower middle | 20 | 4075 | 240 | 7.5 (3.8–12.2) | 95.4 |
Upper middle | 48 | 17,962 | 1684 | 7.4 (5.0–10.3) | 97.1 |
High | 111 | 122,128 | 1801 | 1.4 (1.0–1.8) | 96.4 |
Latitude | |||||
0–10° | 10 | 2062 | 136 | 9.7 (2.7–19.9) | 97.1 |
10–20° | 9 | 2005 | 58 | 2.1 (0.7–4.1) | 81.6 |
20–30° | 25 | 6076 | 261 | 3.6 (1.3–6.8) | 96.4 |
30–40° | 52 | 19,708 | 916 | 4.9 (3.1–7.1) | 97.4 |
40–50° | 50 | 81,457 | 871 | 1.8 (1.2–2.4) | 95.8 |
> 50° | 36 | 33,373 | 1498 | 2.0 (0.7–3.7) | 98.5 |
Longitude | |||||
0–10° | 43 | 48,820 | 1028 | 2.8 (1.6–4.2) | 97.7 |
10–20° | 27 | 24,516 | 240 | 1.6 (1.0–2.4) | 97.6 |
20–30° | 22 | 10,374 | 458 | 2.9 (1.4–4.8) | 95.2 |
30–40° | 10 | 1500 | 133 | 7.3 (2.5–14.1) | 93.7 |
40–50° | 15 | 3330 | 291 | 11.5 (5.6–19.0) | 96.9 |
50–60° | 14 | 2709 | 143 | 6.5 (2.3–12.4) | 96.0 |
60–70° | 0 | 0 | 0 | na | na |
70–80° | 9 | 31,920 | 148 | 1.0 (0.5–1.8) | 95.6 |
80–90° | 3 | 399 | 24 | 5.6 (0.1–17.0) | 86.1 |
90–100° | 0 | 0 | 0 | na | na |
100–110° | 12 | 11,816 | 1070 | 2.8 (0.5–6.6) | 98.0 |
110–120° | 7 | 1655 | 164 | 3.8 (0.1–14.0) | 73.8 |
> 120° | 20 | 7642 | 41 | 0.4 (0.1–0.8) | 67.5 |
Relative humidity (%) | |||||
< 40 | 7 | 797 | 96 | 6.4 (0.8–15.9) | 94.4 |
41–59 | 30 | 7106 | 315 | 6.9 (4.3–9.9) | 94.9 |
60–79 | 127 | 129,310 | 3166 | 2.4 (1.8–3.2) | 98.0 |
≥ 80 | 18 | 7468 | 163 | 2.1 (0.7–3.9) | 92.7 |
Mean temperature (°C) | |||||
≤ 7.0 | 18 | 12,535 | 1139 | 3.5 (1.1–7.0) | 97.8 |
7.1–13.0 | 68 | 94,938 | 1447 | 2.6 (1.9–3.4) | 97.8 |
13.1–19.0 | 58 | 29,815 | 781 | 2.2 (1.2–3.4) | 97.2 |
19.1–25.0 | 26 | 3815 | 277 | 6.9 (3.5–11.1) | 94.9 |
25.1–30.0 | 12 | 3578 | 96 | 2.7 (0.7–5.8) | 94.1 |
Precipitation (mm) | |||||
0–250 | 18 | 3992 | 184 | 4.1 (1.6–7.6) | 94.9 |
251–500 | 40 | 14,289 | 565 | 5.4 (3.5–7.7) | 96.1 |
501–1000 | 80 | 74,762 | 2540 | 2.7 (1.8–3.7) | 97.9 |
1001–2000 | 40 | 51,130 | 444 | 1.8 (1.1–2.6) | 96.6 |
> 2000 | 4 | 508 | 6 | 1.0 (0.1–3.4) | 68.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostami, A.; Riahi, S.M.; Fallah Omrani, V.; Wang, T.; Hofmann, A.; Mirzapour, A.; Foroutan, M.; Fakhri, Y.; Macpherson, C.N.L.; Gasser, R.B. Global Prevalence Estimates of Toxascaris leonina Infection in Dogs and Cats. Pathogens 2020, 9, 503. https://doi.org/10.3390/pathogens9060503
Rostami A, Riahi SM, Fallah Omrani V, Wang T, Hofmann A, Mirzapour A, Foroutan M, Fakhri Y, Macpherson CNL, Gasser RB. Global Prevalence Estimates of Toxascaris leonina Infection in Dogs and Cats. Pathogens. 2020; 9(6):503. https://doi.org/10.3390/pathogens9060503
Chicago/Turabian StyleRostami, Ali, Seyed Mohammad Riahi, Vahid Fallah Omrani, Tao Wang, Andreas Hofmann, Aliyar Mirzapour, Masoud Foroutan, Yadolah Fakhri, Calum N. L. Macpherson, and Robin B. Gasser. 2020. "Global Prevalence Estimates of Toxascaris leonina Infection in Dogs and Cats" Pathogens 9, no. 6: 503. https://doi.org/10.3390/pathogens9060503
APA StyleRostami, A., Riahi, S. M., Fallah Omrani, V., Wang, T., Hofmann, A., Mirzapour, A., Foroutan, M., Fakhri, Y., Macpherson, C. N. L., & Gasser, R. B. (2020). Global Prevalence Estimates of Toxascaris leonina Infection in Dogs and Cats. Pathogens, 9(6), 503. https://doi.org/10.3390/pathogens9060503