The Influence of Temperament on Body Temperature Response to Handling in Angus Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Body Temperature
2.3. Handling Procedure
2.4. Temperament Assessments
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vetters, M.D.D.; Engle, T.E.; Ahola, J.K.; Grandin, T. Comparison of flight speed and exit score as measurements of temperament in beef cattle. J. Anim. Sci. 2013, 91, 374–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cafe, L.M.; Robinson, D.L.; Ferguson, D.M.; McIntyre, B.L.; Geesink, G.H.; Greenwood, P.L. Cattle temperament: Persistence of assessments and associations with productivity, efficiency, carcass and meat quality traits. J. Anim. Sci. 2011, 89, 1452–1465. [Google Scholar] [CrossRef]
- Voisinet, B.D.; Grandin, T.; O’Connor, S.F.; Tatum, J.D.; Deesing, M.J. Bos indicus-cross feedlot cattle with excitable temperaments have tougher meat and a higher incidence of borderline dark cutters. Meat Sci. 1997, 46, 367–377. [Google Scholar] [CrossRef]
- Fell, L.R.; Colditz, I.G.; Walker, K.H.; Watson, D.L. Associations between temperament, performance and immune function in cattle entering a commercial feedlot. Aust. J. Exp. Agric. 1999, 39, 795–802. [Google Scholar] [CrossRef]
- Hine, B.C.; Ingham, A.B.; Dominik, S.; Colditz, I.G. Ian Colditz—Mentor for Postdoctoral Fellow. MLA Final Report B. STU. 0244; Meat and Livestock Australia: Sydney, Australia, 2016. [Google Scholar]
- Burdick, N.C.; Carroll, J.A.; Hulbert, L.E.; Dailey, J.W.; Ballou, M.A.; Randel, R.D.; Willard, S.T.; Vann, R.C.; Welsh, T.H. Temperament influences endotoxin-induced changes in rectal temperature, sickness behavior, and plasma epinephrine concentrations in bulls. Innate Immun. 2011, 17, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Burdick, N.C.; Carroll, J.A.; Hulbert, L.E.; Dailey, J.W.; Willard, S.T.; Vann, R.C.; Welsh, T.H.; Randel, R.D. Relationships between temperament and transportation with rectal temperature and serum concentrations of cortisol and epinephrine in bulls. Livest. Sci. 2010, 129, 166–172. [Google Scholar] [CrossRef]
- Curley, K.O.; Neuendorff, D.A.; Lewis, A.W.; Cleere, J.J.; Welsh, T.H.; Randel, R.D. Functional characteristics of the bovine hypothalamic–pituitary–adrenal axis vary with temperament. Horm. Behav. 2008, 53, 20–27. [Google Scholar] [CrossRef]
- Cafe, L.M.; Robinson, D.L.; Ferguson, D.M.; Geesink, G.H.; Greenwood, P.L. Temperament and hypothalamic-pituitary-adrenal axis function are related and combine to affect growth, efficiency, carcass, and meat quality traits in Brahman steers. Domest. Anim. Endocrinol. 2011, 40, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.F.; Bill, E. Kunkle Interdisciplinary Beef Symposium: Temperament and acclimation to human handling influence growth, health, and reproductive responses in Bos taurus and Bos indicus cattle. J. Anim. Sci. 2014, 92, 5325–5333. [Google Scholar] [CrossRef] [Green Version]
- Collier, R.J.; Renquist, B.J.; Xiao, Y. A 100-Year Review: Stress physiology including heat stress. J. Dairy Sci. 2017, 100, 10367–10380. [Google Scholar] [CrossRef] [PubMed]
- King, D.A.; Schuehle Pfeiffer, C.E.; Randel, R.D.; Welsh, T.H.; Oliphint, R.A.; Baird, B.E.; Curley, K.O.; Vann, R.C.; Hale, D.S.; Savell, J.W. Influence of animal temperament and stress responsiveness on the carcass quality and beef tenderness of feedlot cattle. Meat Sci. 2006, 74, 546–556. [Google Scholar] [CrossRef]
- Burrow, H.M. Variances and covariances between productive and adaptive traits and temperament in a composite breed of tropical beef cattle. Livest. Prod. Sci. 2001, 70, 213–233. [Google Scholar] [CrossRef]
- Porto-Neto, L.R.; Reverter, A.; Prayaga, K.C.; Chan, E.K.F.; Johnston, D.J.; Hawken, R.J.; Fordyce, G.; Garcia, J.F.; Sonstegard, T.S.; Bolormaa, S.; et al. The Genetic Architecture of Climatic Adaptation of Tropical Cattle. PLoS ONE 2014, 9, e113284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, M.J.; Simm, G.; Turner, S.P. Genetic selection for temperament traits in dairy and beef cattle. Front. Genet. 2014, 5, 368. [Google Scholar] [CrossRef] [PubMed]
- Prayaga, K.C.; Henshall, J.M. Adaptability in tropical beef cattle: Genetic parameters of growth, adaptive and temperament traits in a crossbred population. Aust. J. Exp. Agric. 2005, 45, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Kadel, M.J.; Johnston, D.J.; Burrow, H.M.; Graser, H.-U.; Ferguson, D.M. Genetics of flight time and other measures of temperament and their value as selection criteria for improving meat quality traits in tropically adapted breeds of beef cattle. Aust. J. Agric. Res. 2006, 57, 1029–1035. [Google Scholar] [CrossRef]
- Burrow, H.M.; Corbet, N.J. Genetic and environmental factors affecting temperament of zebu and zebu-derived beef cattle grazed at pasture in the tropics. Aust. J. Agric. Res. 2000, 51, 155–162. [Google Scholar] [CrossRef]
- Dikmen, S.; Cole, J.B.; Null, D.J.; Hansen, P.J. Heritability of rectal temperature and genetic correlations with production and reproduction traits in dairy cattle. J. Dairy Sci. 2012, 95, 3401–3405. [Google Scholar] [CrossRef] [Green Version]
- Turner, H.G. Variation in rectal temperature of cattle in a tropical environment and its relation to growth rate. Anim. Sci. 1984, 38, 417–427. [Google Scholar] [CrossRef]
- Robertshaw, D. Heat Loss of Cattle. In Stress Physiology in Livestock; Yousef, M.K., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1985; Volume I, pp. 55–66. [Google Scholar]
- Mader, T.L.; Davis, M.S.; Kreikemeier, W.M. Case Study: Tympanic Temperature and Behavior Associated with Moving Feedlot Cattle. Prof. Anim. Sci. 2005, 21, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Czerkawski, J.W. A novel estimate of the magnitude of heat produced in the rumen. Br. J. Nutr. 1980, 42, 239–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose-Dye, T.K.; Burciaga-Robles, L.O.; Krehbiel, C.R.; Step, D.L.; Fulton, R.W.; Confer, A.W.; Richards, C.J. Rumen temperature change monitored with remote rumen temperature boluses after challenges with bovine viral diarrhea virus and Mannheimia haemolytica. J. Anim. Sci. 2011, 89, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.L.; Gaughan, J.B.; Johnson, L.J.; Hahn, G.L. Tympanic temperature in confined beef cattle exposed to excessive heat load. Int. J. Biometeorol. 2010, 54, 629–635. [Google Scholar] [CrossRef]
- Bouwknecht, J.A.; Olivier, B.; Paylor, R.E. The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: A review of pharmacological and genetic studies in the mouse. Neurosci. Biobehav. Rev. 2007, 31, 41–59. [Google Scholar] [CrossRef]
- Oka, T.; Oka, K. Mechanisms of psychogenic fever. Adv. Neuroimmune Biol. 2012, 3, 3–17. [Google Scholar] [CrossRef]
- Sanger, M.E.; Doyle, R.E.; Hinch, G.N.; Lee, C. Sheep exhibit a positive judgement bias and stress-induced hyperthermia following shearing. Appl. Anim. Behav. Sci. 2011, 131, 94–103. [Google Scholar] [CrossRef]
- Pedernera-Romano, C.; De La Torre, J.R.; Badiella, L.; Manteca, X. Associations between open-field behaviour and stress-induced hyperthermia in two breeds of sheep. Anim. Welf. 2011, 20, 339–346. [Google Scholar]
- Lee, C.; Cafe, L.M.; Robinson, S.L.; Doyle, R.E.; Lea, J.M.; Small, A.H.; Colditz, I.G. Anxiety influences attention bias but not flight speed and crush score in beef cattle. Appl. Anim. Behav. Sci. 2018, 205, 210–215. [Google Scholar] [CrossRef]
- Boivin, X.; Lensink, J.; Tallet, C.; Veissier, I. Stockmanship and farm animal welfare. Anim. Welf. 2003, 12, 479–492. [Google Scholar]
- Grandin, T. Assessment of stress during handling and transport. J. Anim. Sci. 1997, 75, 249–257. [Google Scholar] [CrossRef] [Green Version]
- National Health and Medical Research Council. Australian Code for the Care and Use of Animals for Scientific Purposes, 8th ed.; National Health and Medical Research Council: Canberra, ACT, Australia, 2013.
- Lea, J.M.; Niemeyer, D.D.O.; Reed, M.T.; Fisher, A.D.; Ferguson, D.M. Development and validation of a simple technique for logging body temperature in free-ranging cattle. Aust. J. Exp. Agric. 2008, 48, 741–745. [Google Scholar] [CrossRef]
- Lee, C.; Fisher, A.D.; Reed, M.T.; Henshall, J.M. The effect of low energy electric shock on cortisol, β-endorphin, heart rate and behaviour of cattle. Appl. Anim. Behav. Sci. 2008, 113, 32–42. [Google Scholar] [CrossRef]
- Blache, D.; Ferguson, D. Increasing Sheep Meat Production Efficiency and Animal Welfare by Selection for Temperament; MLA Final Report SHGEN.025; Meat and Livestock Australia Sydney: Sydney, Australia, 2005. [Google Scholar]
- Grandin, T. Behavioral agitation during handling of cattle is persistent over time. Appl. Anim. Behav. Sci. 1993, 36, 1–9. [Google Scholar] [CrossRef]
- Voisinet, B.D.; Grandin, T.; Tatum, J.D.; O’Connor, S.F.; Struthers, J.J. Feedlot cattle with calm temperaments have higher average daily gains than cattle with excitable temperaments. J. Anim. Sci. 1997, 75, 892–896. [Google Scholar] [CrossRef] [Green Version]
- Burdick, N.C.; Agado, B.; White, J.C.; Matheney, K.J.; Neuendorff, D.A.; Riley, D.G.; Vann, R.C.; Welsh, J.T.H.; Randel, R.D. Technical note: Evolution of exit velocity in suckling Brahman calves. J. Anim. Sci. 2011, 89, 233–236. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 18 January 2020).
- Curley, K.O.; Paschal, J.C.; Welsh, T.H.; Randel, R.D. Technical note: Exit velocity as a measure of cattle temperament is repeatable and associated with serum concentration of cortisol in Brahman bulls. J. Anim. Sci. 2006, 84, 3100–3103. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. nlme: Linear and Non-Linear Mixed-Effects Models. 2019. Available online: https://CRAN.R-project.org/package=nlme (accessed on 18 January 2020).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: London, UK, 2013. [Google Scholar]
- Spooren, W.P.J.M.; Schoeffter, P.; Gasparini, F.; Kuhn, R.; Gentsch, C. Pharmacological and endocrinological characterisation of stress-induced hyperthermia in singly housed mice using classical and candidate anxiolytics (LY314582, MPEP and NKP608). Eur. J. Pharmacol. 2002, 435, 161–170. [Google Scholar] [CrossRef]
- Vinkers, C.H.; Groenink, L.; van Bogaert, M.J.V.; Westphal, K.G.C.; Kalkman, C.J.; van Oorschot, R.; Oosting, R.S.; Olivier, B.; Korte, S.M. Stress-induced hyperthermia and infection-induced fever: Two of a kind? Physiol. Behav. 2009, 98, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Burdick, N.C.; Randel, R.D.; Carroll, J.A.; Welsh, T.H. Interactions between Temperament, Stress, and Immune Function in Cattle. Int. J. Zool. 2011, 2011, 373197. [Google Scholar] [CrossRef] [Green Version]
- Beatty, D.T.; Barnes, A.; Fleming, P.A.; Taylor, E.; Maloney, S.K. The effect of fleece on core and rumen temperature in sheep. J. Therm. Biol. 2008, 33, 437–443. [Google Scholar] [CrossRef]
- Sebastian, T.; Watts, J.; Stookey, J.; Buchanan, F.; Waldner, C. Temperament in beef cattle: Methods of measurement and their relationship to production. Can. J. Anim. Sci. 2011, 91, 557–565. [Google Scholar] [CrossRef]
- Stookey, J.; Nickel, T.; Hanson, J.; Vandenbosch, S. A movement-measuring-device for objectively measuring temperament in beef cattle and for use in determining factors that influence handling. J. Anim. Sci. 1994, 72, 207. [Google Scholar]
- Plush, K.J.; Hebart, M.L.; Brien, F.D.; Hynd, P.I. The genetics of temperament in Merino sheep and relationships with lamb survival. Appl. Anim. Behav. Sci. 2011, 134, 130–135. [Google Scholar] [CrossRef]
- Doughty, A.K.; Horton, B.J.; Huyen, N.T.D.; Ballagh, C.R.; Corkrey, R.; Hinch, G.N. The influence of lameness and individuality on movement patterns in sheep. Behav. Process. 2018, 151, 34–38. [Google Scholar] [CrossRef]
- Parham, J.T.; Tanner, A.E.; Barkley, K.; Pullen, L.; Wahlberg, M.L.; Swecker, W.S.; Lewis, R.M. Temperamental cattle acclimate more substantially to repeated handling. Appl. Anim. Behav. Sci. 2019, 212, 36–43. [Google Scholar] [CrossRef]
- Bruno, K.A.; Vanzant, E.S.; Vanzant, K.A.; McLeod, K.R. Relationships of a novel objective chute score and exit velocity with growth performance of receiving cattle. J. Anim. Sci. 2016, 94, 4819–4831. [Google Scholar] [CrossRef]
- MacKay, J.R.D.; Turner, S.P.; Hyslop, J.; Deag, J.M.; Haskell, M.J. Short-term temperament tests in beef cattle relate to long-term measures of behavior recorded in the home pen. J. Anim. Sci. 2013, 91, 4917–4924. [Google Scholar] [CrossRef]
- Kilgour, R.J.; Melville, G.J.; Greenwood, P.L. Individual differences in the reaction of beef cattle to situations involving social isolation, close proximity of humans, restraint and novelty. Appl. Anim. Behav. Sci. 2006, 99, 21–40. [Google Scholar] [CrossRef]
- Burrow, H. Measurements of temperament and their relationships with performance traits. Anim. Breed. Abstr. 1997, 65, 477–495. [Google Scholar]
- Burdick, N.C.; Banta, J.P.; Neuendorff, D.A.; White, J.C.; Vann, R.C.; Laurenz, J.C.; Welsh, J.T.H.; Randel, R.D. Interrelationships among growth, endocrine, immune, and temperament variables in neonatal Brahman calves. J. Anim. Sci. 2009, 87, 3202–3210. [Google Scholar] [CrossRef]
- Gibbons, J.M.; Lawrence, A.B.; Haskell, M.J. Consistency of flight speed and response to restraint in a crush in dairy cattle. Appl. Anim. Behav. Sci. 2011, 131, 15–20. [Google Scholar] [CrossRef]
- Stockman, C.A.; McGilchrist, P.; Collins, T.; Barnes, A.L.; Miller, D.; Wickham, S.L.; Greenwood, P.L.; Cafe, L.M.; Blache, D.; Wemelsfelder, F.; et al. Qualitative Behavioural Assessment of Angus steers during pre-slaughter handling and relationship with temperament and physiological responses. Appl. Anim. Behav. Sci. 2012, 142, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.P.; Navajas, E.A.; Hyslop, J.J.; Ross, D.W.; Richardson, R.I.; Prieto, N.; Bell, M.; Jack, M.C.; Roehe, R. Associations between response to handling and growth and meat quality in frequently handled Bos taurus beef cattle. J. Anim. Sci. 2011, 89, 4239–4248. [Google Scholar] [CrossRef]
- Dowling, D. An experimental study of heat tolerance of cattle. Aust. J. Agric. Res. 1956, 7, 469–481. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Nienaber, J.A.; Hahn, G.L. Dynamic Response Indicators of Heat Stress in Shaded and Non-shaded Feedlot Cattle, Part 1: Analyses of Indicators. Biosyst. Eng. 2005, 90, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Bitman, J.; Lefcourt, A.; Wood, D.L.; Stroud, B. Circadian and Ultradian Temperature Rhythms of Lactating Dairy Cows. J. Dairy Sci. 1984, 67, 1014–1023. [Google Scholar] [CrossRef]
- Piccione, G.; Caola, G.; Refinetti, R. Daily and estrous rhythmicity of body temperature in domestic cattle. BMC Physiol. 2003, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Lefcourt, A.M.; Huntington, J.B.; Akers, R.M.; Wood, D.L.; Bitman, J. Circadian and ultradian rhythms of body temperature and peripheral concentrations of insulin and nitrogen in lactating dairy cows. Domest. Anim. Endocrinol. 1999, 16, 41–55. [Google Scholar] [CrossRef]
Score | Classification | Descriptor |
---|---|---|
1 | Calm | standing still, head mostly still, and slow, calm movements |
2 | Slightly restless | looking around more quickly, moving feet, and shifting weight |
3 | Restless | moving backward and forward, and some slight movement of crush |
4 | Nervous | continuous vigorous movement backward and forward, snorting, and some movement of crush |
5 | Very Nervous | violent movements, rearing, and attempting to jump out |
Item | Heifers | Steers | Pooled |
---|---|---|---|
AG | 64.9 ± 5.11 | 60.9 ± 6.80 | 62.9 ± 6.04 |
CS | 2.5 ± 0.14 a | 1.8 ± 0.12 b | 2.1 ± 0.14 |
FS | 2.3 ± 0.09 a | 1.8 ± 0.07 b | 2.1 ± 0.09 |
Item | T0 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 |
---|---|---|---|---|---|---|---|---|---|---|---|
AG | −0.001 | −0.004 | −0.01 | 0.001 | 0.01 | 0.03 | 0.01 | 0.01 | 0.003 | 0.003 | 0.004 |
FS | 0.53 ** | 0.52 ** | 0.53 ** | 0.52 ** | 0.53 ** | 0.56 ** | 0.58 ** | 0.57 ** | 0.59 ** | 0.59 ** | 0.58 ** |
CS 2 | 0.34 * | 0.34 * | 0.32 * | 0.31 * | 0.34 * | 0.34 * | 0.37 * | 0.35 * | 0.36 * | 0.37 * | 0.37 * |
Item | AGCAT 1 | CS30 2 | FSCAT 3 |
---|---|---|---|
Time | <0.0001 | <0.0001 | <0.0001 |
Temperament trait | 0.087 | 0.007 | 0.080 |
Sex | 0.178 | 0.306 | 0.126 |
Time × sex | 0.712 | 0.633 | 0.676 |
Time × temperament trait | 0.667 | 0.112 | 0.243 |
Temperament trait × sex | 0.915 | 0.190 | 0.961 |
Time × temperament trait × sex | 0.618 | 0.0003 | 0.043 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lees, A.M.; Salvin, H.E.; Colditz, I.G.; Lee, C. The Influence of Temperament on Body Temperature Response to Handling in Angus Cattle. Animals 2020, 10, 172. https://doi.org/10.3390/ani10010172
Lees AM, Salvin HE, Colditz IG, Lee C. The Influence of Temperament on Body Temperature Response to Handling in Angus Cattle. Animals. 2020; 10(1):172. https://doi.org/10.3390/ani10010172
Chicago/Turabian StyleLees, Angela M., Hannah E. Salvin, Ian. G. Colditz, and Caroline Lee. 2020. "The Influence of Temperament on Body Temperature Response to Handling in Angus Cattle" Animals 10, no. 1: 172. https://doi.org/10.3390/ani10010172
APA StyleLees, A. M., Salvin, H. E., Colditz, I. G., & Lee, C. (2020). The Influence of Temperament on Body Temperature Response to Handling in Angus Cattle. Animals, 10(1), 172. https://doi.org/10.3390/ani10010172