Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Food Waste and Types
3. Nutritive Attributes of FWs
4. Food Waste in Animal Feed Production
5. Methods of Converting FWs into Animal Feed
5.1. Solar Drying
5.2. Spray Drying
5.3. Dehydration
5.4. Freeze Drying
5.5. Microwave Drying
5.6. Silage
6. Meat Quality and Animal Growth
7. Energy Consumed to Produce Animal Feed
8. Types of FWs to Animal Feeds
8.1. Poultry Feed
8.2. Fish Feed
8.3. Cattle Feed
8.4. Swine Feed
9. Safety Policies
10. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding food loss and waste—Why are we losing and wasting food? Foods 2019, 8, 297. [Google Scholar] [CrossRef]
- Li, M.; Jia, N.; Lenzen, M.; Malik, A.; Wei, L.; Jin, Y.; Raubenheimer, D. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 2022, 3, 445–453. [Google Scholar] [CrossRef]
- Hoang, A.T.; Varbanov, P.S.; Nižetić, S.; Sirohi, R.; Pandey, A.; Luque, R.; Ng, K.H. Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. J. Clean. Prod. 2022, 359, 131897. [Google Scholar] [CrossRef]
- Elechi, J.O.G.; Nwiyi, I.U.; Adamu, C.S. Global food system transformation for resilience. In Food Systems Resilience; Intech open: London, UK, 2022; p. 21. [Google Scholar]
- Granato, D.; Carocho, M.; Barros, L.; Zabetakis, I.; Mocan, A.; Tsoupras, A.; Cruz, A.G.; Pimentel, T.C. Implementation of Sustainable Development Goals in the dairy sector: Perspectives on the use of agro-industrial side-streams to design functional foods. Trends Food Sci. Technol. 2022, 124, 128–139. [Google Scholar] [CrossRef]
- Bertocci, F.; Mannino, G. Can agri-food waste be a sustainable alternative in aquaculture? A bibliometric and meta-analytic study on growth performance, innate immune system, and antioxidant defenses. Foods 2022, 11, 1861. [Google Scholar] [CrossRef]
- Sarker, A.; Ghosh, M.K.; Islam, T.; Bilal, M.; Nandi, R.; Raihan, M.L.; Hossain, M.N.; Rana, J.; Barman, S.K.; Kim, J.-E. Sustainable Food Waste Recycling for the Circular Economy in Developing Countries, with Special Reference to Bangladesh. Sustainability 2022, 14, 12035. [Google Scholar] [CrossRef]
- Directorate-General for Research and Innovation (European Commission). A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment. 2018. Available online: https://ec.europa.eu/research/bioeconomy/pdf/ec_bioeconomy_strategy_2018.pdf (accessed on 25 February 2020).
- Murillo-Roos, M.; Uribe-Lorío, L.; Fuentes-Schweizer, P.; Vidaurre-Barahona, D.; Brenes-Guillén, L.; Jiménez, I.; Arguedas, T.; Liao, W.; Uribe, L. Biogas production and microbial communities of mesophilic and thermophilic anaerobic co-digestion of animal manures and food wastes in Costa Rica. Energies 2022, 15, 3252. [Google Scholar] [CrossRef]
- Visco, A.; Scolaro, C.; Facchin, M.; Brahimi, S.; Belhamdi, H.; Gatto, V.; Beghetto, V. Agri-food wastes for bioplastics: European prospective on possible applications in their second life for a circular economy. Polymers 2022, 14, 2752. [Google Scholar] [CrossRef] [PubMed]
- Alagappan, S.; Hoffman, L.C.; Mantilla, S.M.O.; Mikkelsen, D.; James, P.; Yarger, O.; Cozzolino, D. Near Infrared Spectroscopy as a Traceability Tool to Monitor Black Soldier Fly Larvae (Hermetia illucens) Intended as Animal Feed. Appl. Sci. 2022, 12, 8168. [Google Scholar] [CrossRef]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects 2022, 13, 831. [Google Scholar] [CrossRef]
- Mangindaan, D.; Kaburuan, E.R.; Meindrawan, B. Black Soldier Fly Larvae (Hermetia illucens) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis. Sustainability 2022, 14, 13993. [Google Scholar] [CrossRef]
- Abeliotis, K.; Lasaridi, K. Food Waste Prevention: Reduction, Reuse, and Recycling. Resources 2022, 12, 3. [Google Scholar] [CrossRef]
- Shurson, G.C. “What a waste”—Can we improve sustainability of food animal production systems by recycling food waste streams into animal feed in an era of health, climate, and economic crises? Sustainability 2020, 12, 7071. [Google Scholar] [CrossRef]
- Bartali, E.H.; Boutfirass, M.; Yigezu, Y.A.; Niane, A.A.; Boughlala, M.; Belmakki, M.; Halila, H. Estimates of Food Losses and Wastes at Each Node of the Wheat Value Chain in Morocco: Implications on Food and Energy Security, Natural Resources, and Greenhouse Gas Emissions. Sustainability 2022, 14, 16561. [Google Scholar] [CrossRef]
- Nath, P.C.; Nandi, N.B.; Tiwari, A.; Das, J.; Roy, B. Applications of nanotechnology in food sensing and food packaging. In Nanotechnology Applications for Food Safety and Quality Monitoring; Elsevier: Amsterdam, The Netherlands, 2023; pp. 321–340. [Google Scholar]
- Sharma, R.; Kannan, D.; Darbari, J.D.; Jha, P. Analysis of Collaborative Sustainable Practices in multi-tier food supply chain using integrated TISM-Fuzzy MICMAC model: A supply chain practice view. J. Clean. Prod. 2022, 354, 131271. [Google Scholar] [CrossRef]
- Conrad, Z.; Blackstone, N.T. Identifying the links between consumer food waste, nutrition, and environmental sustainability: A narrative review. Nutr. Rev. 2021, 79, 301–314. [Google Scholar] [CrossRef]
- Brennan, A.; Browne, S. Food waste and nutrition quality in the context of public health: A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 5379. [Google Scholar] [CrossRef]
- Schanes, K.; Dobernig, K.; Gözet, B. Food waste matters—A systematic review of household food waste practices and their policy implications. J. Clean. Prod. 2018, 182, 978–991. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Cross, H.R. Land-based production of animal protein: Impacts, efficiency, and sustainability. Ann. N. Y. Acad. Sci. 2014, 1328, 18–28. [Google Scholar] [CrossRef]
- Esteban, J.; Ladero, M. Food waste as a source of value-added chemicals and materials: A biorefinery perspective. Int. J. Food Sci. Technol. 2018, 53, 1095–1108. [Google Scholar] [CrossRef]
- Miranda, C.D.; Cammack, J.A.; Tomberlin, J.K. Life-history traits of the black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), reared on three manure types. Animals 2019, 9, 281. [Google Scholar] [CrossRef]
- Wadhwa, M.; Bakshi, M. Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. Rap Publ. 2013, 4, 67. [Google Scholar]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Diaconeasa, Z.; Iuhas, C.I.; Ayvaz, H.; Mortas, M.; Farcaş, A.; Mihai, M.; Danciu, C.; Stanilă, A. Anthocyanins from Agro-Industrial Food Waste: Geographical Approach and Methods of Recovery—A Review. Plants 2023, 12, 74. [Google Scholar] [CrossRef]
- Hoehn, D.; Vázquez-Rowe, I.; Kahhat, R.; Margallo, M.; Laso, J.; Fernández-Ríos, A.; Ruiz-Salmón, I.; Aldaco, R. A critical review on food loss and waste quantification approaches: Is there a need to develop alternatives beyond the currently widespread pathways? Resour. Conserv. Recycl. 2023, 188, 106671. [Google Scholar] [CrossRef]
- Edwards, F. Food Waste Activism in Australia. In Food Resistance Movements: Journeying through Alternative Food Networks; Springer: Berlin/Heidelberg, Germany, 2023; pp. 29–48. [Google Scholar]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Messner, R.; Johnson, H.; Richards, C. From surplus-to-waste: A study of systemic overproduction, surplus and food waste in horticultural supply chains. J. Clean. Prod. 2021, 278, 123952. [Google Scholar] [CrossRef]
- Gonçalves, M.L.M.; Maximo, G.J. Circular Economy in the Food Chain: Production, Processing and Waste Management. Circ. Econ. Sustain. 2022, 1–19. [Google Scholar] [CrossRef]
- Liu, C.; Mao, C.; Bunditsakulchai, P.; Sasaki, S.; Hotta, Y. Food waste in Bangkok: Current situation, trends and key challenges. Resour. Conserv. Recycl. 2020, 157, 104779. [Google Scholar] [CrossRef]
- Ramakrishna, V.; Subrahmanyam, C.N.; Bhanuchand, S.; Rao, B.S.; Kumar, A.A. Municipal solid waste quantification, characterization and management in Mylavaram. IOSR J. Mech. Civ. Eng. 2016, 13, 77–87. [Google Scholar] [CrossRef]
- Sahoo, A.; Dwivedi, A.; Madheshiya, P.; Kumar, U.; Sharma, R.K.; Tiwari, S. Insights into the management of food waste in developing countries: With special reference to India. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Arcadis, N.J.A. National Food Waste Baseline: Final Assessment Report; Australian Government National Environmental Science Program: Amsterdam, The Netherlands, 2019.
- Zhang, H.; Liu, G.; Xue, L.; Zuo, J.; Chen, T.; Vuppaladadiyam, A.; Duan, H.J. Anaerobic digestion based waste-to-energy technologies can halve the climate impact of China’s fast-growing food waste by 2040. J. Clean. Prod. 2020, 277, 123490. [Google Scholar] [CrossRef]
- Diana, R.; Martianto, D.; Baliwati, Y.F.; Sukandar, D.; Hendriadi, A. Household Food Waste Policy: A Literature Review. J. Environ. Health 2022, 14, 218–228. [Google Scholar] [CrossRef]
- Vetter-Gindele, J.; Braun, A.; Warth, G.; Bui, T.T.Q.; Bachofer, F.; Eltrop, L.J. Assessment of household solid waste generation and composition by building type in Da Nang, Vietnam. Resources 2019, 8, 171. [Google Scholar] [CrossRef]
- Alsabbagh, M.J.C. Mitigation of CO2e emissions from the municipal solid waste sector in the Kingdom of Bahrain. Climate 2019, 7, 100. [Google Scholar] [CrossRef]
- Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.J. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS ONE 2014, 9, e90972. [Google Scholar] [CrossRef]
- Furbeck, R. The Invisible Meat Microcosmos-Investigations of Processed Meats’ Specific Spoilage Organisms. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2022. [Google Scholar]
- Baseline, S.S.F. Food Loss & Waste Index in Kingdom of Saudi Arabia; Saudi Grains Organization: Riyadh, Saudi Arabia, 2019.
- Lourenco, C.E.; Porpino, G.; Araujo, C.M.L.; Vieira, L.M.; Matzembacher, D.E. We need to talk about infrequent high volume household food waste: A theory of planned behaviour perspective. Sustain. Prod. Consum. 2022, 33, 38–48. [Google Scholar] [CrossRef]
- Leverenz, D.; Schneider, F.; Schmidt, T.; Hafner, G.; Nevárez, Z.; Kranert, M.J. Food waste generation in Germany in the scope of European legal requirements for monitoring and reporting. Sustainability 2021, 13, 6616. [Google Scholar] [CrossRef]
- Kasza, G.; Dorkó, A.; Kunszabó, A.; Szakos, D.J. Quantification of household food waste in Hungary: A replication study using the FUSIONS methodology. Sustainability 2020, 12, 3069. [Google Scholar] [CrossRef]
- Giordano, C.; Alboni, F.; Falasconi, L.J. Quantities, determinants, and awareness of households’ food waste in Italy: A comparison between diary and questionnaires quantities. Sustainability 2019, 11, 3381. [Google Scholar] [CrossRef]
- Van Dooren, C. Synthesis Report on Food Waste in Dutch Households in 2019; The Netherlands Nutrition Centre Foundation: The Hague, The Netherlands, 2019; Volume 202019. [Google Scholar]
- de Araujo, G.; Lourenço, C.; de Araújo, C.; Bastos, A. Intercâmbio Brasil-União Europeia Sobre Desperdício de Alimentos: Relatório Final. 2018. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1105525/intercambio-brasil-uniao-europeia-sobre-desperdicio-de-alimentos-relatorio-final (accessed on 3 March 2023).
- Orhorhoro, E.K.; Ebunilo, P.O.; Sadjere, E.G. Determination and quantification of household solid waste generation for planning suitable sustainable waste management in Nigeria. Int. J. Emerg. Eng. Res. Technol. 2017, 5, 1–9. [Google Scholar]
- Ramukhwatho, F.R. An Assessment of the Household Food Wastage in a Developing Country: A Case Study of Five Areas in the City of Tshwane Metropolitan Municipality, Gauteng Province, South Africa. Ph.D. Thesis, University of South Africa, Pretoria, South Africa, 2016. [Google Scholar]
- Caldeira, C.; Barco, H.; De Laurentiis, V.; Sala, S. Review of Studies on Food Waste Accounting at Member State Level; Publications Office of the European Union: Luxembourg, 2019.
- Pinotti, L.; Manoni, M.; Fumagalli, F.; Rovere, N.; Luciano, A.; Ottoboni, M.; Ferrari, L.; Cheli, F.; Djuragic, O. Reduce, reuse, recycle for food waste: A second life for fresh-cut leafy salad crops in animal diets. Animals 2020, 10, 1082. [Google Scholar] [CrossRef] [PubMed]
- Rajeh, C.; Saoud, I.P.; Kharroubi, S.; Naalbandian, S.; Abiad, M.G. Food loss and food waste recovery as animal feed: A systematic review. J. Mater. Cycles Waste Manag. 2021, 23, 1–17. [Google Scholar] [CrossRef]
- Rohini, C.; Geetha, P.; Vijayalakshmi, R.; Mini, M.; Pasupathi, E. Global effects of food waste. J. Pharmacogn. Phytochem. 2020, 9, 690–699. [Google Scholar]
- Truong, L.; Morash, D.; Liu, Y.; King, A. Food waste in animal feed with a focus on use for broilers. Int. J. Recycl. Org. Waste Agric. 2019, 8, 417–429. [Google Scholar] [CrossRef]
- Pinto, J.; Boavida-Dias, R.; Matos, H.A.; Azevedo, J. Analysis of the food loss and waste valorisation of animal by-products from the retail sector. Sustainability 2022, 14, 2830. [Google Scholar] [CrossRef]
- Gadisa, B.; Taffa, G. Assessment of beef cattle production, slaughtering and marketing practice in Haramaya University, Ethiopia. World 2019, 3, 26–31. [Google Scholar]
- Patsios, S.I.; Dedousi, A.; Sossidou, E.Ν.; Zdragas, A. Sustainable animal feed protein through the cultivation of Yarrowia lipolytica on agro-industrial wastes and by-products. Sustainability 2020, 12, 1398. [Google Scholar] [CrossRef]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- Moult, J.; Allan, S.; Hewitt, C.; Berners-Lee, M. Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy 2018, 77, 50–58. [Google Scholar] [CrossRef]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Wang, Y.; Levis, J.W.; Barlaz, M.A. Life-Cycle Assessment of a regulatory compliant US municipal solid waste landfill. Environ. Sci. Technol. 2021, 55, 13583–13592. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.C. MicrobiologicalAssociated Vegetables, with Nuts, Fruits, Issues and Grains. In Food Microbiology: Fundamentals and Frontiers; ASM Press: Washington, DC, USA, 2020; p. 179. [Google Scholar]
- Bunditsakulchai, P.; Liu, C.J. Integrated strategies for household food waste reduction in Bangkok. Sustainability 2021, 13, 7651. [Google Scholar] [CrossRef]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef] [PubMed]
- Afreen, M.; Ucak, I. Fish processing wastes used as feed ingredient for animal feed and aquaculture feed. J. Surv. Fish. Sci. 2023, 6, 55–64. [Google Scholar] [CrossRef]
- Peng, X.; Jiang, Y.; Chen, Z.; Osman, A.I.; Farghali, M.; Rooney, D.W.; Yap, P.-S. Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review. Environ. Chem. Lett. 2023, 21, 765–801. [Google Scholar] [CrossRef]
- Rahmani, M.; Azadbakht, M.; Dastar, B.; Esmaeilzadeh, E. Production of animal feed from food waste or corn? Analyses of energy and exergy. Bioresour. Technol. Rep. 2022, 20, 101213. [Google Scholar] [CrossRef]
- Bulgakov, V.; Sevostianov, I.; Kaletnik, G.; Babyn, I.; Ivanovs, S.; Holovach, I.; Ihnatiev, Y. Theoretical studies of the vibration process of the dryer for waste of food. Rural Sustain. Res. 2020, 44, 32–45. [Google Scholar] [CrossRef]
- Song, D.B.; Lim, K.H.; Jung, D.H.; Yoon, J.H. Analysis of drying characteristics and cost of high-capacity vacuum-drying food waste disposal system using steam. J. Biosyst. Eng. 2020, 45, 126–132. [Google Scholar] [CrossRef]
- Filková, I.; Mujumdar, A.S. Industrial spray drying systems. In Handbook of Industrial Drying; CRC Press: Boca Raton, FL, USA, 2020; pp. 263–307. [Google Scholar]
- Koç, M.; Elmas, F.; Baysan, U.; Nadeem, H.Ş.; Ertekin, F.K. Spray Drying for Production of Food Colors from Natural Sources. In Handbook on Spray Drying Applications for Food Industries; CRC Press: Boca Raton, FL, USA, 2019; pp. 132–179. [Google Scholar]
- López-Pedrouso, M.; Bursać Kovačević, D.; Oliveira, D.; Putnik, P.; Moure, A.; Lorenzo, J.M.; Domínguez, H.; Franco, D. In vitro and in vivo Antioxidant Activity of Anthocyanins. In Anthocyanins—Aantioxidant Properties, Sources and Health Benefits; Lorenzo, J.M., Barba, F.J., Munekata, P., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2020; pp. 169–204. [Google Scholar]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D.J.M. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Despoudi, S.; Bucatariu, C.; Otles, S.; Kartal, C. Food waste management, valorization, and sustainability in the food industry. In Food Waste Recovery; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–19. [Google Scholar]
- Betz, A.; Buchli, J.; Göbel, C.; Müller, C.J. Food waste in the Swiss food service industry—Magnitude and potential for reduction. Waste Manag. 2015, 35, 218–226. [Google Scholar] [CrossRef]
- RedCorn, R.; Fatemi, S.; Engelberth, A.S. Comparing end-use potential for industrial food-waste sources. Engineering 2018, 4, 371–380. [Google Scholar] [CrossRef]
- Goodman-Smith, F.; Mirosa, M.; Skeaff, S.J. A mixed-methods study of retail food waste in New Zealand. Food Policy 2020, 92, 101845. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.J.E.j.o.p. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Bystrzejewski, M.; De Adhikari, A.; Huczko, A.; Wang, N.J. Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Prog. Energy Combust. Sci. 2022, 92, 101023. [Google Scholar] [CrossRef]
- Sotiropoulos, A.; Malamis, D.; Loizidou, M.J. Dehydration of domestic food waste at source as an alternative approach for food waste management. Waste Biomass Valorization 2015, 6, 167–176. [Google Scholar] [CrossRef]
- Yaashikaa, P.; Kumar, P.S.; Saravanan, A.; Varjani, S.; Ramamurthy, R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Sci. Total Environ. 2020, 748, 141312. [Google Scholar] [CrossRef]
- Onyeaka, H.; Anumudu, C.K.; Okpe, C.; Okafor, A.; Ihenetu, F.; Miri, T.; Odeyemi, O.A.; Anyogu, A. Single Cell Protein for Foods and Feeds: A Review of Trends. Open Microbiol. J. 2022, 16, e187428582206160. [Google Scholar] [CrossRef]
- Türker, M.; Selimoğlu, S.M.; Taşpınar-Demir, H. Waste (water) to feed protein: Effluent characteristics, protein recovery, and single-cell protein production from food industry waste streams. Clean Energy Resour. Recovery 2022, 2, 201–244. [Google Scholar]
- Carrillo-Nieves, D.; Alanís, M.J.R.; de la Cruz Quiroz, R.; Ruiz, H.A.; Iqbal, H.M.; Parra-Saldívar, R. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew. Sustain. Energy Rev. 2019, 102, 63–74. [Google Scholar] [CrossRef]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Fortatos, S.; Manios, T.; Lasaridi, K.; Fegeros, K.; Tsiplakou, E.; Zervas, G. Redefining the Future of Catering Waste Application in Animal Diets. A Review on the Minimization of Potential Hazards in Catering Waste Prior to Application in Animal Diets. Anim. Feed Sci. Technol. 2022, 289, 115334. [Google Scholar] [CrossRef]
- Gao, S.; Bao, J.; Li, R.; Liu, X.; Wu, C. Drivers and reduction solutions of food waste in the Chinese food service business. Sustain. Prod. Consum. 2021, 26, 78–88. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, S.; Zhao, H.; Li, L.; Li, Y.; Tu, Y.; Jiang, L.; Zhao, G. Lipidomic profiling using GC and LC-MS/MS revealed the improved milk quality and lipid composition in dairy cows supplemented with citrus peel extract. Food Res. Int. 2022, 161, 111767. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, S.; Zhang, S.; Li, Y.; Tu, Y.; Liu, M.; Jiang, L. Microbiome-Metabolomics Insights into the Milk of Lactating Dairy Cows to Reveal the Health-Promoting Effects of Dietary Citrus Peel Extracts on the Mammary Metabolism. Foods 2022, 11, 4119. [Google Scholar] [CrossRef]
- Hoka, A.I.; Gicheru, M.; Otieno, S. Effect of cow parity and calf characteristics on milk production and reproduction of friesian dairy cows. Exp. Anim. 2019, 9. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Ogana, G.; Abang, F.; Carew, S. Effect of Cocoa Husk Meal Based Diets on the Growth Performance and Nutrient Digestibility of Weaned Rabbits. Am. Res. J. Humanit. Soc. Sci. 2020, 3, 1–9. [Google Scholar]
- Hassan, F.A.; Shalaby, A.G.; Elkassas, N.E.M.; El-Medany, S.A.; Hamdi Rabie, A.; Mahrose, K.; Abd El-Aziz, A.; Bassiony, S. Efficacy of ascorbic acid and different sources of orange peel on growth performance, gene expression, anti-oxidant status and microbial activity of growing rabbits under hot conditions. Anim. Biotechnol. 2022, 1–12. [Google Scholar] [CrossRef]
- Ahmad, F.; Tauqir, N.; Faraz, A.; Asghar, I.; Wadood, F.; Tahir, M.; Mujahid, M. Performance of Lactating Sahiwal Cows Fed Corn Stovers Ensiled with Molasses, Urea and Lime Solution. Iran. J. Appl. Anim. Sci. 2021, 11, 59–66. [Google Scholar]
- Hifizah, A. Horticultural Harvest Waste as an Alternative Feed with Anti-Methanogenic Properties for Ruminants: In Vitro Evaluation. Ph.D. Thesis, University of Western Australia, Perth, Australia, 2019. [Google Scholar]
- Wang, H.; Xu, J.; Sheng, L. Study on the comprehensive utilization of city kitchen waste as a resource in China. Energy 2019, 173, 263–277. [Google Scholar] [CrossRef]
- Banožić, M.; Vladić, J.; Banjari, I.; Velić, D.; Aladić, K.; Jokić, S. Spray Drying as a Method of Choice for Obtaining High Quality Products from Food Wastes–A Review. Food Rev. Int. 2021, 1–33. [Google Scholar] [CrossRef]
- Farias, N.N.P.; Freitas, E.R.; Nepomuceno, R.C.; Gomes, H.M.; Souza, D.H.; de Oliveira Costa, M.K.; da Costa, H.S.; Fernandes, D.R.; Araújo, L.R.S.; do Nascimento, G.A.J. Ethanolic extract of mango seed in broiler feed: Effect on productive performance, segments of the digestive tract and blood parameters. Anim. Feed Sci. Technol. 2021, 279, 114999. [Google Scholar] [CrossRef]
- Admasu, S.; Wondifraw, Z.; Gash, M. Effects of replacing maize with boiled mango (Mangifera indica) seed kernel on feed intake, body weight gain and feed conversion ratio of Cobb 500 Broiler Chicken. Poult. Fish. Wildl. Sci. 2020, 8, 211. [Google Scholar] [CrossRef]
- Brancoli, P.; Bolton, K.; Eriksson, M. Environmental impacts of waste management and valorisation pathways for surplus bread in Sweden. Waste Manag. 2020, 117, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Janmaat, K.R.; Ban, S.D.; Boesch, C. Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons. Anim. Behav. 2013, 86, 1183–1205. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional compounds from olive pomace to obtain high-added value foods—A review. J. Sci. Food Agric. 2021, 101, 15–26. [Google Scholar] [CrossRef]
- Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rando, R.; Di Bella, G. Aquafeed production from fermented fish waste and lemon peel. Fermentation 2021, 7, 272. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, H. Controlled freezing and freeze drying: A versatile route for porous and micro-/nano-structured materials. J. Chem. Technol. Biotechnol. 2011, 86, 172–184. [Google Scholar] [CrossRef]
- Assegehegn, G.; Brito-de la Fuente, E.; Franco, J.M.; Gallegos, C. The importance of understanding the freezing step and its impact on freeze-drying process performance. J. Pharm. Sci. 2019, 108, 1378–1395. [Google Scholar] [CrossRef]
- Korolev, A.; Leisner, T.J.A.C. Review of experimental studies of secondary ice production. Atmos. Chem. Phys. 2020, 20, 11767–11797. [Google Scholar] [CrossRef]
- Khalida, A.; Arumugam, V.; Abdullah, L.C.; Abd, L. Dehydrated Food Waste for Composting: An Overview. Sci. Technol 2022, 30, 2933–2960. [Google Scholar] [CrossRef]
- Wheeler, R.R., Jr.; Hadley, N.M.; Dahl, R.W.; Williams, T.W.; Zavala, D.B., Jr.; Akse, J.R.; Fisher, J.W. Microwave enhanced freeze drying of solid waste. SAE Trans. 2007, 116, 510–537. [Google Scholar]
- Nayak, A.; Bhushan, B.J. An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.C.; Petit, J.; Zimmer, D.; Djantou, E.B.; Scher, J. Effects of drying and grinding in production of fruit and vegetable powders: A review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Bai, Y.; Rahman, M.S.; Perera, C.O.; Smith, B.; Melton, L.D. Structural changes in apple rings during convection air-drying with controlled temperature and humidity. J. Agric. Food Chem. 2002, 50, 3179–3185. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, S.V. Osmotic dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2014, 51, 1654–1673. [Google Scholar] [CrossRef]
- Pu, H.; Li, Z.; Hui, J.; Raghavan, G.V. Effect of relative humidity on microwave drying of carrot. J. Food Eng. 2016, 190, 167–175. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Link, J.V.; Tribuzi, G.; Carciofi, B.A.; Laurindo, J.B. Microwave vacuum drying and multi-flash drying of pumpkin slices. J. Food Eng. 2018, 232, 1–10. [Google Scholar] [CrossRef]
- Jödicke, K.; Arendt, S.; Hofacker, W.; Speckle, W.J.D.T. The influence of process parameters on the quality of dried agricultural products determined using the cumulated thermal load. Dry. Technol. 2019, 38, 321–332. [Google Scholar] [CrossRef]
- Stanton, R.; Morrissey, C.A.; Clark, R.G.J. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Ecosyst. Environ. 2018, 254, 244–254. [Google Scholar] [CrossRef]
- Wilkinson, J.; Rinne, M.J.G.; Science, F. Highlights of progress in silage conservation and future perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 2020, 40, 24. [Google Scholar] [CrossRef]
- Henderson, N. Silage additives. Anim. Feed. Sci. Technol. 1993, 45, 35–56. [Google Scholar]
- Wilkanowska, A.; Kokoszyński, D. Effect of diet and physical activity of farm animals on their health and reproductive performance. In Handbook of Fertility; Elsevier: Amsterdam, The Netherlands, 2015; pp. 159–171. [Google Scholar]
- Shinde, A.; Mahanta, S.K. Nutrition of small ruminants on grazing lands in dry zones of India. Range Manag. Agrofor. 2020, 41, 1–14. [Google Scholar]
- Makokha, M.P.; Muliro, P.S.; Ngoda, P.N.; Ghemoh, C.J.; Xavier, C.; Tanga, C.M. Nutritional quality of meat from hen fed diet with full-fat black soldier fly (Hermetia illucens) larvae meal as a substitute to fish meal. J. Funct. Foods 2023, 101, 105430. [Google Scholar] [CrossRef]
- He, Y.; Li, J.; Wang, F.; Na, W.; Tan, Z. Dynamic Changes in the Gut Microbiota and Metabolites during the Growth of Hainan Wenchang Chickens. Animals 2023, 13, 348. [Google Scholar] [CrossRef]
- Fan, K.; Liu, H.; Pei, Z.; Brown, P.B.; Huang, Y. A study of the potential effect of dietary fishmeal replacement with cricket meal (Gryllus bimaculatus) on growth performance, blood health, liver antioxidant activities, intestinal microbiota and immune-related gene expression of juvenile channel catfish. Anim. Feed Sci. Technol. 2023, 295, 115542. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.; Mohamed, E.M.; Hassan, H.A.; Eldeek, A.A.; Lohakare, J. Effect of substituting hydroponic barley forage with or without enzymes on performance of growing rabbits. Sci. Rep. 2023, 13, 943. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, X.; Chen, L.; Mustapha, A.T.; Yu, X.; Zhou, C.; Okonkwo, C.E. Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 615–642. [Google Scholar] [CrossRef]
- Banday, M.T.; Adil, S.; Sheikh, I.U.; Hamadani, H.; Qadri, F.I.; Sahfi, M.E.; Sait, H.S.; Abd El-Mageed, T.A.; Salem, H.M.; Taha, A.E. The use of silkworm pupae (Bombyx mori) meal as an alternative protein source for poultry. World’s Poult. Sci. J. 2023, 79, 119–134. [Google Scholar] [CrossRef]
- Parrini, S.; Aquilani, C.; Pugliese, C.; Bozzi, R.; Sirtori, F. Soybean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals 2023, 13, 494. [Google Scholar] [CrossRef]
- Guo, J.; Sun, Y.; Zhao, Y.; Huang, L.; Peng, D.; Hao, H.; Tao, Y.; Chen, D.; Cheng, G.; Wang, X. Metabolic Disposition and Elimination of Tritum-Labeled Sulfamethoxazole in Pigs, Chickens and Rats. Metabolites 2023, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Iori, E.; Masotti, M.; Falasconi, L.; Risso, E.; Segrè, A.; Vittuari, M. Tell Me What You Waste and I’ll Tell You Who You Are: An Eight-Country Comparison of Consumers’ Food Waste Habits. Sustainability 2023, 15, 430. [Google Scholar] [CrossRef]
- Katajajuuri, J.-M.; Silvennoinen, K.; Hartikainen, H.; Heikkilä, L.; Reinikainen, A. Food waste in the Finnish food chain. J. Clean. Prod. 2014, 73, 322–329. [Google Scholar] [CrossRef]
- Giamouri, E.; Papadomichelakis, G.; Pappas, A.C.; Simitzis, P.E.; Galliou, F.; Paßlack, N.; Zentek, J.; Lasaridi, K.; Fegeros, K.; Manios, T. Μeat Quality Traits as Affected by the Dietary Inclusion of Food Waste in Finishing Pigs. Sustainability 2022, 14, 6593. [Google Scholar] [CrossRef]
- Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Simitzis, P.E.; Manios, T.; Zentek, J.; Lasaridi, K.; Tsiplakou, E.; Zervas, G. The Food for Feed Concept: Redefining the Use of Hotel Food Residues in Broiler Diets. Sustainability 2022, 14, 3659. [Google Scholar] [CrossRef]
- Hilborn, R.; Banobi, J.; Hall, S.J.; Pucylowski, T.; Walsworth, T.E. The environmental cost of animal source foods. Front. Ecol. Environ. 2018, 16, 329–335. [Google Scholar] [CrossRef]
- Banaeian, N.; Zangeneh, M. Study on energy efficiency in corn production of Iran. Energy 2011, 36, 5394–5402. [Google Scholar] [CrossRef]
- Bakshi, M.; Wadhwa, M.; Makkar, H.P. Waste to worth: Vegetable wastes as animal feed. CABI Rev. 2016, 11, 1–26. [Google Scholar] [CrossRef]
- Murugesan, K.; Srinivasan, K.R.; Paramasivam, K.; Selvam, A.; Wong, J. Conversion of Food Waste to Animal Feeds. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 305–324. [Google Scholar]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 2014, 51, 3527–3545. [Google Scholar] [CrossRef] [PubMed]
- Manju Wadhwa, M.W.; Bakshi, M.P.; Makkar, H.P. Waste to worth: Fruit wastes and by-products as animal feed. CABI Rev. 2015, 2015, 1–26. [Google Scholar] [CrossRef]
- Kumar, S.; Sangwan, P.; Dhankhar, R.M.V.; Bidra, S. Utilization of rice husk and their ash: A review. Res. J. Chem. Env. Sci 2013, 1, 126–129. [Google Scholar]
- Siva Sankari, M.; Vivekanandhan, S.; Misra, M.; Mohanty, A. Oil Cakes as Sustainable Agro-Industrial Feedstock for Biocarbon Materials. ChemBioEng Rev. 2022, 9, 21–41. [Google Scholar] [CrossRef]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef]
- Chen, Y.; Barzee, T.J.; Zhang, R.; Pan, Z. Citrus. In Integrated Processing Technologies for Food and Agricultural by-Products; Elsevier: Amsterdam, The Netherlands, 2019; pp. 217–242. [Google Scholar]
- Mamma, D.; Christakopoulos, P. Biotransformation of citrus by-products into value added products. Waste Biomass Valorization 2014, 5, 529–549. [Google Scholar] [CrossRef]
- Guo, S.; Awasthi, M.K.; Wang, Y.; Xu, P. Current understanding in conversion and application of tea waste biomass: A review. Bioresour. Technol. 2021, 338, 125530. [Google Scholar] [CrossRef] [PubMed]
- Sonthalia, M.; Sikdar, D. Production of starch from mango (Mangifera Indica L.) seed kernel and its characterization. Int. J. Tech. Res. Appl. 2015, 3, 346–349. [Google Scholar]
- Karandeep, K.; Navnidhi, C.; Poorva, S.; Garg, M.; Anil, P. Coconut meal: Nutraceutical importance and food industry application. Foods Raw Mater. 2019, 7, 419–427. [Google Scholar]
- Rokhayati, U.A. Coconut Meal Use as a Source of Protein Vegetable for Livestock Goat. ARTIKEL 2020, 1, 1–3. [Google Scholar]
- Jayant, M.; Sahu, N.P.; Deo, A.D.; Subodh, G.; Garg, C.K.; Valappil, R.K. Nutritional evaluation of fermented sweet potato leaf meal as a replacer of deoiled rice bran in the diet of Labeo rohita fingerlings. J. Exp. Zool. India 2020, 23, 61–70. [Google Scholar]
- Azrinnahar, M.; Islam, N.; Shuvo, A.A.S.; Kabir, A.A.; Islam, K.M.S. Effect of feeding fermented (Saccharomyces cerevisiae) de-oiled rice bran in broiler growth and bone mineralization. J. Saudi Soc. Agric. Sci. 2021, 20, 476–481. [Google Scholar] [CrossRef]
- Aengwanich, W.; Suttajit, M.; Chaleerin, P.; Thangklang, P.; Kapan, S.; Srikhun, T.; Boonsorn, T. Antibiotic Effect of Polyphenolic Compound Extracted from Tamarind (Tamarindus indica L.) Seed Coat on Productive Performance of Broilers. Int. J. Poult. Sci. 2009, 8, 749–751. [Google Scholar] [CrossRef]
- Makinde, O.; Sonaiya, B.; Adeyeye, S. Conversion of abattoir wastes into livestock feed: Chemical composition of sun-dried rumen content blood meal and its effect on performance of broiler chickens. In Proceedings of the Conference on international research on food security, natural meal. Int. J. Poult. Sci. 2008, 6, 875–882. [Google Scholar]
- Bampidis, V.; Robinson, P. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Katileviciute, A.; Plakys, G.; Budreviciute, A.; Onder, K.; Damiati, S.; Kodzius, R. A sight to wheat bran: High value-added products. Biomolecules 2019, 9, 887. [Google Scholar] [CrossRef] [PubMed]
- Ubalua, A. Cassava wastes: Treatment options and value addition alternatives. Afr. J. Biotechnol. 2007, 6, 2065–2073. [Google Scholar]
- Mazzafera, P. Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Sci. Agric. 2002, 59, 815–821. [Google Scholar] [CrossRef]
- Wilkinson, J.; Young, R. Strategies to reduce reliance on soya bean meal and palm kernel meal in livestock nutrition. J. Appl. Anim. Nutr. 2020, 8, 75–82. [Google Scholar] [CrossRef]
- Habeeb, A.; Gad, A.; El-Tarabany, A.; Mustafa, M.; Atta, M. Using of sugar beet pulp by-product in farm animals feeding. Int. J. Sci. Res. Sci. Technol 2017, 3, 107–120. [Google Scholar]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Hagare, D.; Jayasena, V.; Swick, R.; Rahman, M.M.; Boyle, N.; Ghodrat, M. Recycling of food waste to produce chicken feed and liquid fertiliser. Waste Manag. 2021, 131, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Buyse, K.; Delezie, E.; Goethals, L.; Van Noten, N.; Ducatelle, R.; Janssens, G.P.; Lourenço, M. Chestnut tannins in broiler diets: Performance, nutrient digestibility, and meat quality. Poult. Sci. 2021, 100, 101479. [Google Scholar] [CrossRef] [PubMed]
- Caipang, C.M.A.; Mabuhay-Omar, J.; Gonzales-Plasus, M.M. Plant and fruit waste products as phytogenic feed additives in aquaculture. Aquac. Aquar. Conserv. Legis. 2019, 12, 261–268. [Google Scholar]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Evaluation of nutritional values of food waste-based feed pellets and common feeding materials for culturing freshwater fish. In Environmental Sustainability and Education for Waste Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 305–321. [Google Scholar]
- Aluta, U.P.; Aderolu, A.Z.; Lawal, M.O.; Olutola, A.A. Inclusion effect of onion peel powder in the diet of African catfish, Clarias gariepinus: Growth, blood chemistry, hepatic antioxidant enzymes activities and SOD mRNA responses. Sci. Afr. 2021, 12, e00780. [Google Scholar] [CrossRef]
- Irabor, A.; Ekelemu, J.; Ekokotu, P.; Nwachi, O. The effect of garlic concentrates on the performance of hybrid catfish fingerlings (Heterobranchus longifilis x Clarias gariepinus). Int. J. Agric. Technol. 2021, 17, 503–516. [Google Scholar]
- Mpandeli, S.; Naidoo, D.; Mabhaudhi, T.; Nhemachena, C.; Nhamo, L.; Liphadzi, S.; Hlahla, S.; Modi, A.T. Climate change adaptation through the water-energy-food nexus in southern. Africa. Int. J. Environ. Res. Public Health 2018, 15, 2306. [Google Scholar] [CrossRef]
- Van Huis, A.; Oonincx, D.G. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- van Hal, O. Upcycling Biomass in a Circular Food System: The Role of Livestock and Fish. Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 2020. [Google Scholar]
- Iqbal, N.; Luqman, Z.; Jawad, H.; Aslam, S.; Farhab, M. Socio-economic impact of COVID-19 on livestock. In Veterinary Pathobiology Public Health; Unique Scientific Publishers: Faisalabad, Pakistan, 2021; p. 396. [Google Scholar]
- Anthony, O.C. Implementation of vision 20: 2020 agricultural policy and food production in nigeria, 2007–2015. Int. J. Res. Innov. Soc. Sci. 2019, 3, 42–64. [Google Scholar]
- Dou, Z.; Toth, J.D.; Pitta, D.W.; Bender, J.S.; Hennessy, M.L.; Vecchiarelli, B.; Indugu, N.; Chen, T.; Li, Y.; Sherman, R. Proof of concept for developing novel feeds for cattle from wasted food and crop biomass to enhance agri-food system efficiency. Sci. Rep. 2022, 12, 13630. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Bernardes, T.F.; Jobim, C.; Schmidt, P.; Nussio, L.G. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 2019, 74, 188–200. [Google Scholar] [CrossRef]
- Suplicy, F.M. A review of the multiple benefits of mussel farming. Rev. Aquac. 2020, 12, 204–223. [Google Scholar] [CrossRef]
- Ryen, E.G.; Babbitt, C.W.J. The role of US policy in advancing circular economy solutions for wasted food. J. Clean. Prod. 2022, 369, 133200. [Google Scholar] [CrossRef]
- Munesue, Y.; Masui, T. The impacts of Japanese food losses and food waste on global natural resources and greenhouse gas emissions. J. Ind. Ecol. 2019, 23, 1196–1210. [Google Scholar] [CrossRef]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed]
- Westendorf, M.L.; Myer, R.O. Feeding Food Wastes to Swine; Citeseer: Princeton, NJ, USA, 2004. [Google Scholar]
- Salemdeeb, R.; Zu Ermgassen, E.K.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Nyachoti, C.; Zijlstra, R.; De Lange, C.; Patience, J. Voluntary feed intake in growing-finishing pigs: A review of the main determining factors and potential approaches for accurate predictions. Can. J. Anim. Sci. 2004, 84, 549–566. [Google Scholar] [CrossRef]
- Mallinson, L.J.; Russell, J.M.; Barker, M.E. Attitudes and behaviour towards convenience food and food waste in the United Kingdom. Appetite 2016, 103, 17–28. [Google Scholar] [CrossRef]
- Bräutigam, K.-R.; Jörissen, J.; Priefer, C. The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results. Waste Manag. Res. 2014, 32, 683–694. [Google Scholar] [CrossRef] [PubMed]
Country | Study Area | Food Waste (kg/Capita) | Reference |
---|---|---|---|
India | Andhra Pradesh, Rajam | 58 | [34] |
Pakistan | Gujranwala | 88 | [35] |
Australia | Nationwide | 102 | [36] |
China | Urban China | 150 | [37] |
Japan | Nationwide | 64 | [38] |
Viet Nam | Da Nang | 67 | [39] |
Israel | Nationwide | 105 | [35] |
Bahrain | Nationwide | 132 | [40] |
Lebanon | Beirut | 105 | [41] |
United States of America | NS | 59 | [42] |
Saudi Arabia | Nationwide | 105 | [43] |
Denmark | NS | 79 | [35] |
Mexico | Nationwide | 94 | [44] |
Germany | NS | 75 | [45] |
Hungary | NS | 94 | [46] |
Italy | NS | 67 | [47] |
Netherlands | NS | 50 | [48] |
Brazil | Nationwide | 60 | [49] |
Nigeria | Sapele | 189 | [50] |
Kenya | Nairobi | 99 | [35] |
South Africa | Nationwide | 134 | [51] |
Spain | NS | 78 | [52] |
Food Waste | Processing Techniques | Waste Amount | Animal Feed | Reference |
---|---|---|---|---|
Grape stems | Single-cell production (SCP) | 7.5% | Ruminants | [84,85] |
Mango peeling | Dehydration and consolidation using either paddy or corn stalks | 7–24% | Broilers | [86] |
Restaurant FWs | Composition contains corn, soybean meal, and other dietary supplements | 45% | Pigs | [87,88] |
Pulp from a citrus fruit | The process involves drying and then composing the paddy or corn stalks. | 10 million MT of waste each year | Milk-producing cows | [89,90,91,92] |
Banana peel | Drying and composition with a standard diet | 3.5 MT per year | 20 percent for growing pigs and 30 percent for rabbits. | [93,94] |
Banana leaves | Ensiling with wheat straw (75/25) | 31% | Cows and other animals that give milk | [95,96] |
Kitchen wastes | Drying/high temperature composting | 37% | Pigs | [97,98] |
Mango seeds Bread waste Seasonal fruits Pomace of fruits and olives Lemon peel and non-sterilized fish waste | Ethanolic extract Solid-state fermentation Ruminal fermentation Fermentation Fermentation | 42% | Broiler chickens Pigs Cows and other animals that give milk Milk-producing cows Broilers | [99,100,101,102,103,104] |
Food Wastes | Constituent | Animals That Consume It | Reference |
---|---|---|---|
Potato waste | Similar to that of corn and barley in terms of energy Crude protein (CP): 7.6%, Ether extract (EE): 7.0%, Crude fibre (CF): 4.0% | Excellent source of energy for cattle feed, 10% to 20% as feed pellets; also used for pigs and goats | [138,139] |
Banana root bulbs | Excellent supply of carbohydrates CP: 12.0%, Total digestible nutrients (TDN): 50.0% | Adult cattle can be fed 20–25 kg per day after cleaning and for pig feeding | [139,140] |
Apple waste | CP: 12.0%, TDN: 60.0% | 30% of this trash can completely replace corn in the feed of poultry and cattle after being chopped, ground, and dried | [139,141] |
Rice husk | CF: 39.0–42.0%, EE: 0.8–1.2%, CP: 2.9–3.6% | Cows, horses, and buffaloes | [139,142] |
Oil cakes | Vitamin-B- and protein-rich food | Cows, goats, and horses | [139,143] |
Barley by-products | Protein 27.0–30.0%, TDN: 65.0% | Dairy cows | [139,144] |
Citrus by-products: citrus peel, pulp, rag, seeds | Total sugar (TS): 10.2–16.5%, Crude fat: 1.2–2.2%, CP: 2.2–4.2%, CF: 5.7–8.6%, Nitrogen-free extract 65.0–75.0% | Adult cows 10 kg/day, up to 45% of the main source of energy for beef and other cattle | [139,145,146] |
Tea waste | TDN: 58%, CP: 17.94%, Tannic acid: 1.9% | 10–15% mixed with a tasty component are fed to cattle | [139,147] |
Mango seed kernel | TDN: 55.0%, Protein 6% | 20 to 40% for growing calves and buffaloes, 10% for milch cattle, 50% for ruminants, and also as fish feed | [139,148] |
Coconut meal | TDN: 70.0–75.0%, CF: 10.0%, CP: 25.0–30.0% | Dairy cows can benefit from a highly helpful protein supplement that boosts milk fat content; also used for goat. | [139,149,150] |
Carrot waste | TDN: 75.0–80.0%, Protein 10.0–15.0%, Rich in vitamin A | For cattle, 20 kg/day | [138,139] |
Rice bran de-oiled | TDN: 55.0–65.0%, CP: 13.0–16.0%, excellent source of protein, minerals, carbohydrate, vitamins, and high phosphorus content (1.3%) | Cattle, pigs, broiler, fish, and ruminants | [139,151,152] |
Jackfruit waste | CP: 7.9%, CF: 14.1%, Calcium (Ca): 0.8%, Phosphorus (P): 0.1% | Cattle, goats, etc. | [138,139] |
Tomato waste | TDN: 55.0%, CP: 15.0% | For adult cows up to 50%, and for milch cows and poultry up to 16% | [138,139] |
Tamarind seedpowder | TDN: 64.0%, CP: 12.0% | Cattle, broilers, and bullocks | [139,153] |
Groundnut meal | TDN: 75.0–85.0%, Protein 40.0–50.0%, High fibre content | Cattle, goats, buffaloes, sheep, and pigs | [139,154] |
Citrus molasses | TDN: 65.0–75.0%, CP: 10.0–14.0%, Sugar content 41.0–43.0% | 5–10% in the diets of broiler chickens and ruminant feed | [139,155] |
Wheat bran | TDN: 65.0–70.0%, CP: 13.0–16.0%, High phosphorus content | Cows, pigs, and goats | [139,156] |
Tapioca waste | TDN: 60.0–65.0%, CP: 8.0–12.0% | In order to maintain cattle body weight, 30% of tapioca waste can be fed to adult cattle. | [139,157] |
Coffee husk | CP: 7.0–8.0%, Ca: 0.51%, P: 0.25% | Cattle | [139,158] |
Soybean meal | TDN: 75.0–84.0%, CP: 45.0–55.0%, Rich in Ca and P | Livestock animal and cattle | [139,159] |
Beet molasses | TDN: 65.0–75.0%, CP: 6.0–10.0% | Cows and buffaloes | [139,160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals 2023, 13, 1366. https://doi.org/10.3390/ani13081366
Nath PC, Ojha A, Debnath S, Sharma M, Nayak PK, Sridhar K, Inbaraj BS. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals. 2023; 13(8):1366. https://doi.org/10.3390/ani13081366
Chicago/Turabian StyleNath, Pinku Chandra, Amiya Ojha, Shubhankar Debnath, Minaxi Sharma, Prakash Kumar Nayak, Kandi Sridhar, and Baskaran Stephen Inbaraj. 2023. "Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy" Animals 13, no. 8: 1366. https://doi.org/10.3390/ani13081366
APA StyleNath, P. C., Ojha, A., Debnath, S., Sharma, M., Nayak, P. K., Sridhar, K., & Inbaraj, B. S. (2023). Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals, 13(8), 1366. https://doi.org/10.3390/ani13081366