The Effect of Saccharomyces cerevisiae Fermentation Product Supplementation on Pro-Inflammatory Cytokines in Holstein Friesian Cattle Experimentally Inoculated with Digital Dermatitis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Treatments
2.3. Data Collection
2.4. Blood Sample Collection
2.5. Proinflammatory Cytokine Testing
2.6. Statistical Analysis
- (1)
- A Wilcoxon rank sum test was performed for the pairs of log-transformed cytokine difference values stratified by group.
- (2)
- Linear regression models for the outcome variables with fixed effects only including lsmeans and contrasts.
- (3)
- Linear mixed regression models for the outcome variables with random effects for steer ID fitted on the intercept including lsmeans and contrasts.
3. Results
3.1. Clinical Evaluation
3.2. Cytokine Evaluation
3.3. Bivariate Analysis
3.4. Linear Regression Analysis
3.5. Lsmeans and Contrasting Analysis
4. Discussion
4.1. Sample Size and Significance Level
4.2. Wilcoxon Rank Sum Testing
4.3. Comparing Fixed and Random Effects Models
4.4. Effect of SCFP Supplementation by Stimulant
4.5. Effect of SCFP Supplementation over Time
4.6. SCFP Supplementation and Prevention of Digital Dermatitis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Read, D.H.; Walker, R.L. Papillomatous Digital Dermatitis (Footwarts) in California Diary Cattle: Clinical and Gross Pathologic Findings. J. Vet. Diagn. Investig. 1998, 10, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Plummer, P.J.; Adam, K. Clinical Perspectives of Digital Dermatitis in Dairy and Beef Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2017, 33, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, R.C.; Vokey, F.; Erb, H.N.; Guard, C.L. Visual Locomotion Scoring in the First Seventy Days in Milk: Impact on Pregnancy and Survival. J. Dairy Sci. 2007, 90, 4586–4591. [Google Scholar] [CrossRef]
- Garbarino, E.J.; Hernandez, J.A.; Shearer, J.K.; Risco, C.A.; Thatcher, W.W. Effect of Lameness on Ovarian Activity in Postpartum Holstein Cows. J. Dairy Sci. 2004, 87, 4123–4131. [Google Scholar] [CrossRef] [PubMed]
- Tsousis, G.; Boscos, C.; Praxitelous, A. The negative impact of lameness on dairy cow reproduction. Reprod. Domest. Anim. 2002, 57, 33–39. [Google Scholar] [CrossRef]
- Evans, N.J.; Brown, J.M.; Demirkan, I.; Murray, R.D.; Vink, W.D.; Blowey, R.W.; Hart, C.A.; Carter, S.D. Three unique groups of spirochetes isolated from digital dermatitis lesions in UK cattle. Vet. Microbiol. 2008, 130, 141–150. [Google Scholar] [CrossRef]
- Klitgaard, K.; Boye, M.; Capion, N.; Jensen, T.K. Evidence of Multiple Treponema Phylotypes Involved in Bovine Digital Dermatitis as Shown by 16S rRNA Gene Analysis and Fluorescence In Situ Hybridization. J. Clin. Microbiol. 2008, 46, 3012–3020. [Google Scholar] [CrossRef]
- Krull, A.C.; Shearer, J.K.; Gorden, P.J.; Cooper, V.L.; Phillips, G.J.; Plummer, P.J. Deep Sequencing Analysis Reveals Temporal Microbiota Changes Associated with Development of Bovine Digital Dermatitis. Infect. Immun. 2014, 82, 3359–3373. [Google Scholar] [CrossRef]
- Marcatili, P.; Nielsen, M.W.; Sicheritz-Pontén, T.; Jensen, T.K.; Schafer-Nielsen, C.; Boye, M.; Nielsen, M.; Klitgaard, K. A novel approach to probe host-pathogen interactions of bovine digital dermatitis, a model of a complex polymicrobial infection. BMC Genom. 2016, 17, 987. [Google Scholar] [CrossRef]
- Zinicola, M.; Lima, F.; Lima, S.; Machado, V.; Gomez, M.; Döpfer, D.; Guard, C.; Bicalho, R. Altered Microbiomes in Bovine Digital Dermatitis Lesions, and the Gut as a Pathogen Reservoir. PLoS ONE 2015, 10, e0120504. [Google Scholar] [CrossRef]
- Demirkan, I.; Walker, R.L.; Murray, R.D.; Blowey, R.W.; Carter, S.D. Serological Evidence of Spirochaetal Infections Associated with Digital Dermatitis in Dairy Cattle. Vet. J. 1999, 157, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.K.; Alt, D.P. Bovine immune response to papillomatous digital dermatitis (PDD)-associated spirochetes is skewed in isolate reactivity and subclass elicitation. Vet. Immunol. Immunopathol. 2009, 130, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Trott, D.J.; Moeller, M.R.; Zuerner, R.L.; Goff, J.P.; Waters, W.R.; Alt, D.P.; Walker, R.L.; Wannemuehler, M.J. Characterization of Treponema phagedenis-Like Spirochetes Isolated from Papillomatous Digital Dermatitis Lesions in Dairy Cattle. J. Clin. Microbiol. 2003, 41, 2522–2529. [Google Scholar] [CrossRef]
- Walker, R.L.; Read, D.H.; Loretz, K.J.; Hird, D.W.; Berry, S.L. Humoral response of dairy cattle to spirochetes isolated from papillomatous digital dermatitis lesions. Am. J. Vet. Res. 1997, 58, 744–748. [Google Scholar] [CrossRef]
- Galozzi, P.; Bindoli, S.; Doria, A.; Sfriso, P. The revisted role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun. Rev. 2021, 20, 102785. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef]
- Coleman, D.N.; Jiang, Q.; Lopes, M.G.; Ritt, L.; Liang, Y.; Aboragah, A.; Trevisi, E.; Yoon, I.; Loor, J.J. Feeding a Saccharomyces cerevisiae Fermentation Product Before and During a Feed Restriction Challenge on Milk Production, Plasma Biomarkers, and Immune Function in Holstein Cows. J. Anim. Sci. 2023, 101, skad019. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Varga, G.; Cassidy, T.; Long, M.; Heyler, K.; Karnati, S.K.R.; Corl, B.; Hovde, C.J.; Yoon, I. Effect of Saccharomyces cerevisiae Fermentation Product on Ruminal Fermentation and Nutrient Utilization in Dairy Cows. J. Dairy. Sci. 2010, 93, 682–692. [Google Scholar] [CrossRef]
- Tun, H.M.; Li, S.; Yoon, I.; Meale, S.J.; Azevedo, P.A.; Khafipour, E.; Plaizier, J.C. Saccharomyces cerevisiae Fermentation Products (SCFP) Stabilize the Ruminal Microbiota of Lactating Dairy Cows During Periods of a Depressed Rumen pH. BMC Vet. Res. 2020, 16, 237. [Google Scholar] [CrossRef]
- Klopp, R.N.; Centeno-Martinez, R.E.; Yoon, I.; Johnson, T.A.; Boerman, J.P. Effect of feeding Saccharomyces cerevisiae fermentation products on the health and growth performance of Holstein dairy calves. JDS Commun. 2022, 3, 174–179. [Google Scholar] [CrossRef]
- Thomas, M.; Serrenho, R.C.; Puga, S.O.; Torres, J.M.; Puga, S.O.; Stangaferro, M. Effect of feeding a Saccharomyces cerevisiae fermentation product to Holstein cows exposed to high temperature and humidity conditions on milk production performance and efficiency—A pen-level trial. J. Dairy. Sci. 2023, 106, 4650–4665. [Google Scholar] [CrossRef]
- Brewer, M.T.; Anderson, K.L.; Yoon, I.; Scott, M.F.; Carlson, S.A. Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer. Vet. Microbiol. 2014, 172, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.L.; Liang, Y.; Sharon, K.P.; Sellers, M.D.; Yoon, I.; Scott, M.F.; Carroll, J.A.; Ballou, M.A. Influence of Saccharomyces cerevisiae fermentation products, SmartCare in milk replacer and Original XPC in calf starter, on the performance and health of preweaned Holstein calves challenged with Salmonella enterica serotype Typhimurium. J. Dairy Sci. 2017, 100, 7154–7164. [Google Scholar] [CrossRef]
- Vailati-Riboni, M.; Coleman, D.N.; Lopreiato, V.; Alharthi, A.; Bucktrout, R.E.; Abdel-Hamied, E.; Martinez-Cortes, I.; Liang, Y.; Trevisi, E.; Yoon, I.; et al. Feeding a Saccharomyces cerevisiae fermentation product improves udder health and immune response to a Streptococcus uberis mastitis challenge in mid-lactation dairy cows. J. Anim. Sci. Biotechnol. 2021, 12, 62. [Google Scholar] [CrossRef]
- Jensen, G.S.; Patterson, K.M.; Yoon, I. Yeast culture has anti-inflammatory effects and specifically activates NK cells. Comp. Immunol. Microbiol. Infect. Dis. 2008, 31, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.H.A.; Slate, J.R.; Hong, S.; Yoon, I.; McGill, J.L. Supplementing a Saccharomyces cerevisiae fermentation product modulates innate immune function and ameliorates bovine respiratory syncytial virus infection in neonatal calves. J. Anim. Sci. 2020, 98, skaa252. [Google Scholar] [CrossRef] [PubMed]
- Volman, J.J.; Ramakers, J.D.; Plat, J. Dietary modulation of immune function by beta-glucans. Physiol. Behav. 2008, 94, 276–284. [Google Scholar] [CrossRef]
- Anklam, K.; Cernek, P.; Yoon, I.; Wheeler, J.; Birkle, T.; Döpfer, D. Effects of supplementing a Saccharomyces cerevisiae fermentation product on the prevention and control of digital dermatitis in lactating dairy cows. Appl. Anim. Sci. 2022, 38, 98–109. [Google Scholar] [CrossRef]
- Anklam, K.; Aviles, M.; Buettner, J.; Henschel, S.; Sanchez, R.; Ordaz, S.; Yoon, I.; Wheeler, J.; Dawson, G.; Döpfer, D. Evaluation of Saccharomyces cerevisiae fermentation product on the prevention of digital dermatitis utilizing an experimental infection model in cattle. Appl. Anim. Sci. 2024; in review. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements of Dairy Cattle. Nutrient Requirements of Dairy Cattle, 8th ed.; National Academies Press (US): Washington, DC, USA, 2021. [Google Scholar] [PubMed]
- Berry, S.L.; Read, D.H.; Famula, T.R.; Mongini, A.; Döpfer, D. Long-term observations on the dynamics of bovine digital dermatitis lesions on a California dairy after topical treatment with lincomycin HCl. Vet. J. Spec. Issue Bov. Lameness 2012, 193, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Döpfer, D.; ter Huurne, A.; Cornelisse, J.L.; van Asten, A.J.; Koopmans, A.; Meijer, F.A.; Schukken, Y.H.; Szakáll, I.; Klee, W.; Bosma, R.B. Histological and bacteriological evaluation of digital dermatitis in cattle, with special reference to spirochaetes and Campylobacter faecalis. Vet. Rec. 1997, 140, 620–623. [Google Scholar] [CrossRef] [PubMed]
- McGill, J.L.; Rusk, R.A.; Guerra-Maupome, M.; Briggs, R.E.; Sacco, R.E. Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS ONE 2016, 11, e0151083. [Google Scholar] [CrossRef] [PubMed]
- Farhana, A.; Khan, Y.S. Biochemistry, Lipopolysaccharide; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Fortier, M.-E.; Kent, S.; Ashdown, H.; Poole, S.; Boksa, P.; Luheshi, G.N. The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2004, 287, R759–R766. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; de Witte, L.; Ludlow, M.; Yüksel, S.; Wiesmüller, K.-H.; Geijtenbeek, T.B.H.; Osterhaus, A.D.M.E.; de Swart, R.L. The Synthetic Bacterial Lipopeptide Pam3CSK4 Modulates Respiratory Syncytial Virus Infection Independent of TLR Activation. PLoS Pathog. 2010, 6, e1001049. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 12 September 2023).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lenth, R. Eemeans: Estimated Marginal Means, Aka Least-Squares Means. 2023. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 12 September 2023).
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Faraway, J.J. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bekkering, S.; Domínguez-Andrés, J.; Joosten, L.A.B.; Riksen, N.P.; Netea, M.G. Trained Immunity: Reprogramming Innate Immunity in Health and Disease. Annu. Rev. Immunol. 2021, 39, 667–693. [Google Scholar] [CrossRef]
- Ochando, J.; Mulder, W.J.M.; Madsen, J.C.; Netea, M.G.; Duivenvoorden, R. Trained immunity—Basic concepts and contributions to immunopathology. Nat. Rev. Nephrol. 2023, 19, 23–37. [Google Scholar] [CrossRef]
- Yao, J.; Sterling, K.; Wang, Z.; Zhang, Y.; Song, W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 10. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Peetsalu, K.; Niine, T.; Loch, M.; Dorbek-Kolin, E.; Tummeleht, L.; Orro, T. Effect of colostrum on the acute-phase response in neonatal dairy calves. J. Dairy Sci. 2022, 105, 6207–6219. [Google Scholar] [CrossRef] [PubMed]
- Burdick Sanchez, N.C.; Carroll, J.A.; Broadway, P.R.; Edrington, T.S.; Yoon, I.; Belknap, C.R. Some aspects of the acute phase immune response to a lipopolysaccharide (LPS) challenge are mitigated by supplementation with a Saccharomyces cerevisiae fermentation product in weaned beef calves. Transl. Anim. Sci. 2020, 4, txaa156. [Google Scholar] [CrossRef] [PubMed]
- Klopp, R.N.; Yoon, I.; Eicher, S.; Boerman, J.P. Effects of feeding Saccharomyces cerevisiae fermentation products on the health of Holstein diary calves following a lipopolysaccharide challenge. J. Dairy Sci. 2022, 105, 1469–1479. [Google Scholar] [CrossRef]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8, S3. [Google Scholar] [CrossRef]
- Maggio, M.; Guralnik, J.M.; Longo, D.L.; Ferrucci, L. Interleukin-6 in Aging and Chronic Disease: A Magnificent Pathway. J. Gerontol. A. Biol. Sci. Med. Sci. 2006, 61, 575–584. [Google Scholar] [CrossRef]
Ingredient, As Fed Amount/Animal/day | DM % | Field Phase and Transmission Phase Analyzed Result kg | Challenge Phase Analyzed Result kg |
Corn Silage 1 | 36.65 | 9.09 | - |
Corn Silage 2 | 35.70 | - | 9.53 |
Corn-Cracked | 95.50 | 2.14 | 2.14 |
Soybean Meal | 87.90 | 1.21 | 1.21 |
Control Pellet 2 or SCFP Pellet 3 | 92.12 | 0.34 | 0.34 |
Amount/Animal (As Fed) | 12.79 | 13.22 | |
Amount/Animal (DM) | 6.75 | 6.82 | |
Nutrient, Dry Matter (DM) Concentration | Unit | Field Phase and Transmission Phase Analyzed Result | Challenge Phase Analyzed Result |
Crude Protein (CP) | % | 15.71 | 15.96 |
Rumen Degradable Protein (RDP) | % | 10.32 | 10.51 |
Acid Detergent Fiber (ADF) | % | 12.03 | 12.07 |
Neutral Detergent Fiber (NDF) | % | 21.64 | 22.71 |
Non-fiber Carbohydrate (NFC) | % | 53.64 | 52.55 |
Forage NDF | % | 17.29 | 18.41 |
Adjusted Total Starch | % | 39.80 | 40.61 |
Fat | % | 2.92 | 2.88 |
Calcium (Ca) | % | 0.62 | 0.66 |
Phosphorus (P) | % | 0.39 | 0.40 |
Magnesium | % | 0.22 | 0.22 |
Potassium | % | 1.16 | 1.10 |
Sulfur | % | 0.18 | 0.18 |
Sodium | % | 0.07 | 0.07 |
Chloride | % | 0.25 | 0.25 |
Added Manganese | mg/kg | 36.51 | 36.14 |
Added Zinc | mg/kg | 35.76 | 35.40 |
Added Copper | mg/kg | 5.08 | 5.03 |
Added Selenium | mg/kg | 0.22 | 0.22 |
Added Cobalt | mg/kg | 0.46 | 0.46 |
Added Iodine | mg/kg | 0.37 | 0.37 |
Vitamin A Add | IU/g | 2.97 | 2.94 |
Vitamin D Add | IU/g | 1.24 | 1.24 |
Vitamin E Add | IU/kg | 23.57 | 23.34 |
Monensin | g/ton | 20.69 | 20.49 |
Group | Timepoint 3 | Sample Number | M0 | M1 | M2 | M4/ M4.1 | M4P/ M4.1P |
---|---|---|---|---|---|---|---|
Control | Overall | 82 | 41 | 8 | 19 | 7 | 7 |
Baseline | 20 | 20 | 0 | 0 | 0 | 0 | |
Pre-inoculation | 20 | 20 | 0 | 0 | 0 | 0 | |
Post-inoculation | 42 | 1 | 8 | 19 | 7 | 7 | |
SCFP | Overall | 85 | 43 | 13 | 16 | 7 | 6 |
Baseline | 23 | 23 | 0 | 0 | 0 | 0 | |
Pre-inoculation | 20 | 20 | 0 | 0 | 0 | 0 | |
Post-inoculation | 42 | 0 | 13 | 16 | 7 | 6 | |
Overall | 167 | 84 | 21 | 35 | 14 | 13 |
Timepoint 3 | Sample Number | Control | SCFP | Overall | ||||
---|---|---|---|---|---|---|---|---|
Average | (SD) | Average | (SD) | Average | (SD) | |||
BW 2 (kg) | Overall | 167 (Con 82, SCFP 85) | 217.3 | 43.3 | 221.0 | 43.5 | 219.2 | 43.3 |
Baseline | 43 (Con 20, SCFP 23) | 163.8 | 11.9 | 169.2 | 12.9 | 166.7 | 12.6 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 213.6 | 30.3 | 213.5 | 28.4 | 213.6 | 29.0 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 244.5 | 32.5 | 252.9 | 28.8 | 248.7 | 30.8 |
Pro-Inflammatory Cytokine and Stimulant 2 | Timepoint 3 | Sample Number | Control | SCFP | Overall | |||
---|---|---|---|---|---|---|---|---|
Average | (SD) | Average | (SD) | Average | (SD) | |||
IL-1β with Mock | Overall | 167 (Con 82, SCFP 85) | 0.003 | 0.021 | 0.003 | 0.020 | 0.003 | 0.020 |
Baseline | 43 (Con 20, SCFP 23) | 0.007 | 0.031 | 0.011 | 0.038 | 0.009 | 0.034 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 0.003 | 0.020 | 0.000 | 0.000 | 0.002 | 0.014 | |
IL-6 with Mock | Overall | 167 (Con 82, SCFP 85) | 0.073 | 0.242 | 0.056 | 0.198 | 0.065 | 0.220 |
Baseline | 43 (Con 20, SCFP 23) | 0.053 | 0.166 | 0.019 | 0.093 | 0.035 | 0.132 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 0.044 | 0.094 | 0.009 | 0.039 | 0.026 | 0.073 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 0.097 | 0.312 | 0.099 | 0.266 | 0.098 | 0.288 | |
IL-1β with LPS | Overall | 167 (Con 82, SCFP 85) | 0.413 | 0.363 | 0.329 | 0.321 | 0.370 | 0.344 |
Baseline | 43 (Con 20, SCFP 23) | 0.527 | 0.435 | 0.385 | 0.374 | 0.451 | 0.405 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 0.482 | 0.392 | 0.320 | 0.387 | 0.401 | 0.393 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 0.326 | 0.291 | 0.302 | 0.255 | 0.314 | 0.272 | |
IL-6 with LPS | Overall | 167 (Con 82, SCFP 85) | 1.776 | 1.832 | 1.747 | 2.405 | 1.762 | 2.136 |
Baseline | 43 (Con 20, SCFP 23) | 1.331 | 0.959 | 1.265 | 1.193 | 1.296 | 1.078 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 2.367 | 2.473 | 2.640 | 3.601 | 2.504 | 3.052 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 1.707 | 1.760 | 1.587 | 2.129 | 1.647 | 1.942 | |
IL-1β with PAM | Overall | 167 (Con 82, SCFP 85) | 0.058 | 0.099 | 0.050 | 0.020 | 0.054 | 0.127 |
Baseline | 43 (Con 20, SCFP 23) | 0.072 | 0.101 | 0.055 | 0.149 | 0.063 | 0.127 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 0.064 | 0.132 | 0.094 | 0.240 | 0.079 | 0.192 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 0.048 | 0.081 | 0.026 | 0.075 | 0.037 | 0.078 | |
IL-6 with PAM | Overall | 167 (Con 82, SCFP 85) | 0.646 | 0.956 | 0.927 | 0.198 | 0.789 | 1.581 |
Baseline | 43 (Con 20, SCFP 23) | 0.426 | 0.567 | 0.323 | 0.534 | 0.371 | 0.545 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 1.134 | 1.028 | 1.324 | 2.103 | 1.229 | 1.636 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 0.518 | 1.006 | 1.068 | 2.393 | 0.793 | 1.845 | |
IL-1β with Poly | Overall | 167 (Con 82, SCFP 85) | 5.020 | 7.511 | 4.302 | 3.551 | 4.654 | 5.834 |
Baseline | 43 (Con 20, SCFP 23) | 3.234 | 1.790 | 3.022 | 1.263 | 3.121 | 1.516 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 2.810 | 1.836 | 1.940 | 1.370 | 2.375 | 1.658 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 6.922 | 10.037 | 6.128 | 4.129 | 6.525 | 7.639 | |
IL-6 with Poly | Overall | 167 (Con 82, SCFP 85) | 1.151 | 2.532 | 0.824 | 1.047 | 0.984 | 1.926 |
Baseline | 43 (Con 20, SCFP 23) | 0.202 | 0.298 | 0.137 | 0.321 | 0.168 | 0.308 | |
Pre-inoculation | 40 (Con 20, SCFP 20) | 0.399 | 0.417 | 0.428 | 0.566 | 0.413 | 0.491 | |
Post-inoculation | 84 (Con 42, SCFP 42) | 1.960 | 3.341 | 1.388 | 2.393 | 1.674 | 2.505 |
Stimulant 2 | Timepoint 3 | W-Statistic | p-Value | |
---|---|---|---|---|
IL-1β | LPS | Baseline | 279 | 0.237 |
Pre-inoculation | 274 | 0.047 | ||
Post-inoculation | 944 | 0.582 | ||
PAM | Baseline | 279 | 0.135 | |
Pre-inoculation | 194 | 0.839 | ||
Post-inoculation | 1016 | 0.089 | ||
Poly | Baseline | 235 | 0.914 | |
Pre-inoculation | 268 | 0.068 | ||
Post-inoculation | 862 | 0.862 | ||
IL-6 | LPS | Baseline | 237 | 0.874 |
Pre-inoculation | 196.5 | 0.935 | ||
Post-inoculation | 957 | 0.504 | ||
PAM | Baseline | 248 | 0.643 | |
Pre-inoculation | 213 | 0.735 | ||
Post-inoculation | 823 | 0.574 | ||
Poly | Baseline | 246 | 0.657 | |
Pre-inoculation | 181 | 0.614 | ||
Post-inoculation | 865 | 0.882 |
Estimate | Standard Error | t-Value | p-Value | |
---|---|---|---|---|
Intercept | −4.008 | 1.782 | −2.249 | 0.026 |
Control = ref. level | ||||
SCFP supplementation | −0.038 | 0.108 | −0.356 | 0.722 |
Baseline timepoint = ref. level | ||||
Pre-inoculation timepoint | 0.189 | 0.136 | 1.388 | 0.167 |
Post-inoculation timepoint | −0.348 | 0.505 | −0.689 | 0.492 |
Bodyweight (kg) | 0.832 | 0.348 | 2.390 | 0.018 |
M-stage M0 = ref. level | ||||
M-stage M1 | 0.149 | 0.519 | 0.287 | 0.775 |
M-stage M2 | −0.023 | 0.503 | −0.045 | 0.964 |
M-stage M4/M4.1 | −0.172 | 0.527 | −0.327 | 0.744 |
M-stage M4P/M4.1P | 0.185 | 0.528 | 0.351 | 0.726 |
SCFP supplementation*M-stage M1 | −0.064 | 0.245 | −0.263 | 0.793 |
SCFP supplementation*M-stage M2 | 0.048 | 0.198 | 0.241 | 0.810 |
SCFP supplementation*M-stage M4/M4.1 | 0.604 | 0.283 | 2.138 | 0.034 |
SCFP supplementation*M-stage M4P/M4.1P | 0.200 | 0.293 | 0.684 | 0.495 |
Estimate | Standard Error | t-Value | p-Value | |
---|---|---|---|---|
Intercept | 0.408 | 0.859 | 0.476 | 0.635 |
Control = ref. level | ||||
SCFP supplementation | −0.135 | 0.048 | −2.840 | 0.005 |
Baseline timepoint = ref. level | ||||
Pre-inoculation timepoint | −0.024 | 0.054 | −0.437 | 0.663 |
Post-inoculation timepoint | −0.250 | 0.200 | −1.248 | 0.214 |
Bodyweight (kg) | −0.001 | 0.167 | −0.003 | 0.998 |
M-stage M0 = ref. level | ||||
M-stage M1 | 0.165 | 0.203 | 0.815 | 0.417 |
M-stage M2 | 0.088 | 0.191 | 0.463 | 0.644 |
M-stage M4/M4.1 | 0.015 | 0.202 | 0.076 | 0.939 |
M-stage M4P/M4.1P | 0.162 | 0.203 | 0.801 | 0.425 |
SCFP supplementation*M-stage M1 | 0.001 | 0.096 | 0.008 | 0.993 |
SCFP supplementation*M-stage M2 | 0.155 | 0.072 | 2.145 | 0.034 |
SCFP supplementation*M-stage M4/M4.1 | 0.217 | 0.103 | 2.098 | 0.038 |
SCFP supplementation*M-stage M4P/M4.1P | 0.150 | 0.109 | 1.375 | 0.172 |
Estimate | Standard Error | t-Value | p-Value | |
---|---|---|---|---|
Intercept | 0.598 | 1.801 | 0.332 | 0.740 |
Control = ref. level | ||||
SCFP supplementation | −0.081 | 0.086 | −0.942 | 0.349 |
Baseline timepoint = ref. level | ||||
Pre-inoculation timepoint | −0.292 | 0.130 | −2.243 | 0.026 |
Post-inoculation timepoint | 0.375 | 0.160 | 2.334 | 0.021 |
Bodyweight (kg) | 0.158 | 0.352 | 0.450 | 0.654 |
Estimate | Standard Error | t-Value | p-Value | |
---|---|---|---|---|
Intercept | −3.582 | 1.958 | −1.830 | 0.070 |
Control = ref. level | ||||
SCFP supplementation | −0.084 | 0.111 | −0.763 | 0.447 |
Baseline timepoint = ref. level | ||||
Pre-inoculation timepoint | 0.236 | 0.131 | 1.803 | 0.073 |
Post-inoculation timepoint | −0.329 | 0.486 | −0.676 | 0.500 |
Bodyweight (kg) | 0.749 | 0.382 | 1.962 | 0.052 |
M-stage M0 = ref. level | ||||
M-stage M1 | 0.154 | 0.496 | 0.310 | 0.757 |
M-stage M2 | −0.054 | 0.470 | −0.114 | 0.909 |
M-stage M4/M4.1 | −0.145 | 0.498 | −0.292 | 0.770 |
M-stage M4P/M4.1P | 0.200 | 0.499 | 0.401 | 0.689 |
SCFP supplementation*M-stage M1 | −0.018 | 0.234 | −0.079 | 0.937 |
SCFP supplementation*M-stage M2 | 0.192 | 0.179 | 1.070 | 0.287 |
SCFP supplementation*M-stage M4/M4.1 | 0.723 | 0.258 | 2.804 | 0.006 |
SCFP supplementation*M-stage M4P/M4.1P | 0.256 | 0.270 | 0.948 | 0.345 |
Estimate | Standard Error | t-Value | p-Value | |
---|---|---|---|---|
Intercept | −4.221 | 1.950 | −2.165 | 0.033 |
Control = ref. level | ||||
SCFP supplementation | −0.022 | 0.092 | −0.239 | 0.812 |
Baseline timepoint = ref. level | ||||
Pre-inoculation timepoint | −0.010 | 0.146 | −0.071 | 0.944 |
Post-inoculation timepoint | 0.290 | 0.177 | 1.635 | 0.104 |
Bodyweight (kg) | 0.844 | 0.381 | 2.215 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henige, M.; Anklam, K.; Aviles, M.; Buettner, J.; Henschel, S.; Yoon, I.; Wheeler, J.; Dawson, G.; McGill, J.; Döpfer, D. The Effect of Saccharomyces cerevisiae Fermentation Product Supplementation on Pro-Inflammatory Cytokines in Holstein Friesian Cattle Experimentally Inoculated with Digital Dermatitis. Animals 2024, 14, 3260. https://doi.org/10.3390/ani14223260
Henige M, Anklam K, Aviles M, Buettner J, Henschel S, Yoon I, Wheeler J, Dawson G, McGill J, Döpfer D. The Effect of Saccharomyces cerevisiae Fermentation Product Supplementation on Pro-Inflammatory Cytokines in Holstein Friesian Cattle Experimentally Inoculated with Digital Dermatitis. Animals. 2024; 14(22):3260. https://doi.org/10.3390/ani14223260
Chicago/Turabian StyleHenige, Marlee, Kelly Anklam, Matthew Aviles, Julia Buettner, Summer Henschel, Ilkyu Yoon, Jeffrey Wheeler, George Dawson, Jodi McGill, and Dörte Döpfer. 2024. "The Effect of Saccharomyces cerevisiae Fermentation Product Supplementation on Pro-Inflammatory Cytokines in Holstein Friesian Cattle Experimentally Inoculated with Digital Dermatitis" Animals 14, no. 22: 3260. https://doi.org/10.3390/ani14223260