Multi-Criteria Decision Making Model for Application Maintenance Offshoring Using Analytic Hierarchy Process
Abstract
:1. Introduction
Research Gap and Motivation
- Due to the involvement of multiple factors and sub factors the multi-criteria decision making is a big challenge in application maintenance offshore outsourcing;
- Application maintenance offshoring has been a hot research topic for the academicians and scholars since the last two decades, which motivated us to develop a multi-criteria decision support system;
- Another reason for the present research is that there is a gap between the literature and the proposed work. Using systematic literature reviews, we first identified a list of influencing factors. The factors have already been established and reported in the previous studies [2,3]. Second, we performed an empirical study [1] in the outsourcing industry that evaluated the identified influencing factors. Third, a multi-criteria decision making model, based on the identified critical success factors is proposed for the sourcing decision of application maintenance in the current paper. To the best of our knowledge, no such approach has ever been used to identify the critical success factors of application maintenance offshoring and to tackle the challenges in making the sourcing decisions.
2. Study Background
3. Proposed Method
3.1. Performing Systematic Literature Review
3.2. Performing Empirical Study
3.3. AHP Technique for MCDM Problem
4. Results and Discussion
4.1. Influencing Factors, Critical Success Factors and the Proposed Sourcing Framework
4.2. Multi-Criteria Decision Making Model Based on AHP
4.2.1. Criteria, Alternatives and Hierarchical Structure
4.2.2. Assigning Weights to Criteria
- Legal requirements: This application contains high legal requirements.
- Employee skills: For the current project, the employee skills are crucial.
- Cost: This project is not very cost sensitive, i.e., the project has a reasonable budget for maintenance.
- Poor communication: Communication has a medium level of influence on the current project.
- Infrastructure: Quality of infrastructure has a medium level of influence on the current project.
- Frequent requirement changes: Frequent requirement changes also has a medium level influence on the current project.
- Domain knowledge: For offshore outsourcing decision of the current project, domain knowledge has low influence.
- Maturity level: For offshore outsourcing decision of the current project, maturity level has low influence.
- Project management: For offshore outsourcing decision of the current project, project management has low influence.
- Language barrier: The current project does not have language constraints.
4.2.3. Pairwise Comparison Matrix of Criteria
4.2.4. Calculating the Index Ratio and Consistency Ratio
4.2.5. Calculating the Alternatives Weights with Respect to the Criteria
4.2.6. Decision Matrix
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
A1 | A2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ES | PC | Cos | LR | Inf | ML | FRC | LB | DK | PM | Weights | |
ES | 1.000 | 6.000 | 0.500 | 8.000 | 3.000 | 2.000 | 4.000 | 8.000 | 7.000 | 5.000 | 0.223 |
PC | 0.167 | 1.000 | 0.143 | 2.000 | 0.500 | 0.200 | 0.500 | 2.000 | 1.000 | 1.000 | 0.039 |
Cos | 2.000 | 7.000 | 1.000 | 9.000 | 4.000 | 3.000 | 5.000 | 9.000 | 8.000 | 6.000 | 0.302 |
LR | 0.125 | 0.500 | 0.111 | 1.000 | 0.200 | 0.167 | 0.200 | 1.000 | 0.500 | 0.200 | 0.02 |
Inf | 0.333 | 2.000 | 0.250 | 5.000 | 1.000 | 0.500 | 1.000 | 5.000 | 4.000 | 2.000 | 0.089 |
ML | 0.500 | 5.000 | 0.333 | 6.000 | 2.000 | 1.000 | 2.000 | 6.000 | 5.000 | 2.000 | 0.137 |
FRC | 0.250 | 2.000 | 0.200 | 5.000 | 1.000 | 0.500 | 1.000 | 5.000 | 4.000 | 1.000 | 0.079 |
LB | 0.125 | 0.500 | 0.111 | 1.000 | 0.200 | 0.167 | 0.200 | 1.000 | 0.500 | 0.200 | 0.02 |
DK | 0.143 | 1.000 | 0.125 | 2.000 | 0.250 | 0.200 | 0.250 | 2.000 | 1.000 | 1.000 | 0.033 |
PM | 0.200 | 1.000 | 0.167 | 5.000 | 0.500 | 0.500 | 1.000 | 5.000 | 1.000 | 1.000 | 0.058 |
max = 10.371, C.I = 0.041, C.R = 0.028 |
Employee Skills | OM | NM | OfM | Wt | Poor Communication | OM | NM | OfM | Wt |
---|---|---|---|---|---|---|---|---|---|
OM | 1.000 | 0.333 | 0.167 | 0.095 | OM | 1.000 | 1.000 | 3.000 | 0.443 |
NM | 3.000 | 1.000 | 0.333 | 0.250 | NM | 1.000 | 1.000 | 2.000 | 0.387 |
OfM | 6.000 | 3.000 | 1.000 | 0.655 | OfM | 0.333 | 0.500 | 1.000 | 0.169 |
max = 3.021, C.I = 0.011, C.R = 0.021 < 0.1 | max = 3.022, C.I = 0.011, C.R = 0.021 < 0.1 |
Cost | OM | NM | OfM | Wt | Legal Requirements | OM | NM | OfM | Wt |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 0.250 | 0.125 | 0.070 | Onshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
Nearshore Model | 4.000 | 1.000 | 0.250 | 0.223 | Nearshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
Offshore Model | 8.000 | 4.000 | 1.000 | 0.707 | Offshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
max = 3.052, C.I = 0.026, C.R = 0.050 < 0.1 | max = 3.003, C.I = 0.002, C.R = 0.003 < 0.1 |
Infrastructure | OM | NM | OfM | Wt | Maturity Level | OM | NM | OfM | Wt |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 0.500 | 0.250 | 0.136 | Onshore Model | 1.000 | 1.000 | 0.200 | 0.156 |
Nearshore Model | 2.000 | 1.000 | 0.333 | 0.238 | Nearshore Model | 1.000 | 1.000 | 0.333 | 0.185 |
Offshore Model | 4.000 | 3.000 | 1.000 | 0.625 | Offshore Model | 5.000 | 3.000 | 1.000 | 0.659 |
max = 3.024, C.I = 0.012, C.R = 0.023 | max = 3.031, C.I = 0.015, C.R = 0.029 < 0.1 |
Frequent Requirements Changes | OM | NM | OfM | Wt | Language Barrier | OM | NM | OfM | Wt |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 2.000 | 3.000 | 0.550 | Onshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
Nearshore Model | 0.500 | 1.000 | 1.000 | 0.240 | Nearshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
Offshore Model | 0.333 | 1.000 | 1.000 | 0.210 | Offshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
max = 3.018, C.I = 0.009, C.R = 0.017 < 0.1 | max = 3.003, C.I = 0.002, C.R = 0.003 < 0.1 |
Domain Knowledge | OM | NM | OfM | Wt | Project Management | OM | NM | OfM | Wt |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 1.000 | 0.500 | 0.260 | Onshore Model | 1.000 | 1.000 | 0.500 | 0.260 |
Nearshore Model | 1.000 | 1.000 | 1.000 | 0.327 | Nearshore Model | 1.000 | 1.000 | 1.000 | 0.327 |
Offshore Model | 2.000 | 1.000 | 1.000 | 0.413 | Offshore Model | 2.000 | 1.000 | 1.000 | 0.413 |
max = 3.054, C.I = 0.027, C.R = 0.052 < 0.1 | max = 3.054, C.I = 0.027, C.R = 0.052 < 0.1 |
Critical Success Factors | Wt Wc | Onshore Model | Nearshore Model | Offshore Model | |||
---|---|---|---|---|---|---|---|
Weight (Wa) | Total (Wc*Wa) | Weight (Wa) | Total (Wc*Wa) | Weight (Wa) | Total (Wc*Wa) | ||
Employee skills | 0.223 | 0.095 | 0.223*0.095 | 0.250 | 0.223*0.250 | 0.655 | 0.223*0.655 |
Poor communication | 0.039 | 0.443 | 0.039*0.443 | 0.387 | 0.039*0.387 | 0.169 | 0.039*0.169 |
Cost | 0.302 | 0.070 | 0.302*0.070 | 0.223 | 0.302*0.223 | 0.707 | 0.302*0.707 |
Legal requirements | 0.020 | 0.333 | 0.020*0.333 | 0.333 | 0.020*0.333 | 0.333 | 0.020*0.333 |
Infrastructure | 0.089 | 0.136 | 0.089*0.136 | 0.238 | 0.089*0.238 | 0.625 | 0.089*0.625 |
Maturity level | 0.137 | 0.156 | 0.137*0.156 | 0.185 | 0.137*0.185 | 0.659 | 0.137*0.659 |
Frequent requirements changes | 0.079 | 0.550 | 0.079*0.550 | 0.240 | 0.079*0.240 | 0.210 | 0.079*0.210 |
Language barrier | 0.020 | 0.333 | 0.020*0.333 | 0.333 | 0.020*0.333 | 0.333 | 0.020*0.333 |
Domain knowledge | 0.033 | 0.260 | 0.033*0.260 | 0.327 | 0.333*0.327 | 0.413 | 0.333*0.413 |
Project management | 0.058 | 0.260 | 0.058*0.260 | 0.327 | 0.058*0.327 | 0.413 | 0.058*0.413 |
Raking of Alternatives | 0.174 | 0.247 | 0.579 |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Random Index | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |
References
- Rahman, H.U.; Raza, M.; Afsar, P.; Khan, H.U. Empirical Investigation of Influencing Factors Regarding Offshore Outsourcing Decision of Application Maintenance. IEEE Access 2021, 9, 58589–58608. [Google Scholar] [CrossRef]
- Rahman, H.U.; Raza, M.; Afsar, P.; Khan, M.; Iqbal, N.; Khan, H.U. Making the Sourcing Decision of Software Maintenance and Information Technology. IEEE Access 2021, 9, 11492–11510. [Google Scholar] [CrossRef]
- Rahman, H.U.; Raza, M.; Afsar, P.; Khan, H.U.; Nazir, S. Analyzing Factors That Influence Offshore Outsourcing Decision of Application Maintenance. IEEE Access 2020, 8, 183913–183926. [Google Scholar] [CrossRef]
- Khan, J.A.; Khan, S.U.R.; Iqbal, J.; Rehman, I.U. Empirical Investigation About the Factors Affecting the Cost Estimation in Global Software Development Context. IEEE Access 2021, 9, 22274–22294. [Google Scholar] [CrossRef]
- Khan, R.A.; Idris, M.Y.; Khan, S.U.; Ilyas, M.; Ali, S.; Din, A.D.; Murtaza, G.; Khan, A.W.; Jan, S.U. An Evaluation Framework for Communication and Coordination Processes in Offshore Software Development Outsourcing Relationship: Using Fuzzy Methods. IEEE Access 2019, 7, 112879–112906. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, N.; Abrar, M.F.; Majeed, M.F.; Umar, M.A.; Huang, J. Barriers to Software Outsourcing Partnership Formation: An Exploratory Analysis. IEEE Access 2019, 7, 164556–164594. [Google Scholar] [CrossRef]
- Babar, M.A.; Verner, J.M.; Nguyen, P.T. Establishing and maintaining trust in software outsourcing relationships: An empirical investigation. J. Syst. Softw. 2007, 80, 1438–1449. [Google Scholar] [CrossRef]
- Lacity, M.C.; Khan, S.A.; Yan, A. Review of the empirical business services sourcing literature: An update and future directions. J. Inf. Technol. 2016, 31, 269–328. [Google Scholar] [CrossRef]
- Juga, J.; Juntunen, J.; Grant, D.B. Service quality and its relation to satisfaction and loyalty in logistics outsourcing relationships. Manag. Serv. Qual. Int. J. 2010, 20, 496–510. [Google Scholar] [CrossRef]
- Ogheneovo; Erhieyovwe, E. Software Maintenance and Evolution: The Implication for Software Development. West Afr. J. Ind. Acad. Res. 2013, 7, 81–92. [Google Scholar]
- Ikram, A.; Riaz, H.; Khan, A.S. Eliciting theory of software maintenance outsourcing process: A systematic literature review. Int. J. Comput. Sci. Netw. Secur. 2018, 18, 132–143. [Google Scholar]
- Rehman, H.U.; Bamma, H.K.; Nazir, S.; Shahzad, S.; Hodosi, T. A Sourcing Decision Model for Application Maintenance Services. In Proceedings of the 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 25–26 October 2017; pp. 401–407. [Google Scholar]
- Holmstrom, H.; Conchúir, E.Ó.; Ågerfalk, P.J.; Fitzgerald, B. Global Software Development Challenges: A Case Study on Temporal, Geographical and Socio-Cultural Distance. In Proceedings of the IEEE International Conference on Global Software Engineering (ICGSE’06), Florianopolis, Brazil, 16–19 October 2006; pp. 3–11. [Google Scholar]
- Karami, A.; Guo, Z. A Fuzzy Logic Multi-Criteria Decision Framework for Selecting IT Service Providers. In Proceedings of the 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 1118–1127. [Google Scholar]
- Huang, Y.L.; Sun, W.L. An AHP-based Risk Assessment for an Industrial IoT Cloud. In Proceedings of the International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 637–638. [Google Scholar]
- Chandani, P.; Gupta, C. Requirement Risk Prioritization Using Analytic Hierarchy Process: A Gateway To Identify Risky Requirements. In Proceedings of the 11th International Conference on Contemporary Computing (IC3), Noida, India, 2–4 August 2018; pp. 1–6. [Google Scholar]
- Moaven, S.; Habibi, J.; Ahmadi, H.; Kamandi, A. A Decision Support System for Software Architecture-Style Selection. In Proceedings of the 6th International Conference on Software Engineering Research, Management and Applications, Prague, Czech Republic, 20–22 August 2008; pp. 213–220. [Google Scholar]
- Büyüközkan, G.; Kahraman, C.; Ruan, D. A Fuzzy Multi-Criteria Decision Approach For Software Development Strategy Selection. Int. J. Gen. Syst. 2004, 33, 259–280. [Google Scholar] [CrossRef]
- Silva, V.B.S.; Schramm, F.; Damasceno, A.C. A Multi-Criteria Approach for Selection of Agile Methodologies in Software Development Projects. In Proceedings of the International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 002056–002060. [Google Scholar]
- Agrawal, A.; Alenezi, M.; Kumar, R.; Khan, R.A. Measuring The Sustainable-Security Of Web Applications Through A Fuzzy-Based Integrated Approach Of AHP and TOPSIS. IEEE Access 2019, 7, 153936–153951. [Google Scholar] [CrossRef]
- Tanoumand, N.; Ozdemir, D.Y.; Kilic, K.; Ahmed, F. Selecting Cloud Computing Service Provider With Fuzzy AHP. In Proceedings of the International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017; pp. 1–5. [Google Scholar]
- Moaven, S.; Habibi, J. A fuzzy AHP based approach to select software architecture based on quality attributes (FASSA). Knowl. Inf. Syst. 2020, 62, 4569–4597. [Google Scholar] [CrossRef]
- Sayed, B.; Shamsi, Z.; Sadiq, M. A Method for the selection of agile methods using AHP. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, Singapore, 3 March 2017; pp. 297–303. [Google Scholar]
- Ali, S.; Ullah, N.; Abrar, M.F.; Yang, Z.; Huang, J. Fuzzy Multicriteria Decision-Making Approach for Measuring the Possibility of Cloud Adoption for Software Testing. Sci. Program. 2020, 2020, 6597316. [Google Scholar] [CrossRef]
- Wang, L.; Ali, Y.; Nazir, S.; Niazi, M. ISA Evaluation Framework for Security of Internet of Health Things System Using AHP-TOPSIS Methods. IEEE Access 2020, 8, 152316–152332. [Google Scholar] [CrossRef]
- Li, J.; Ullah, A.; Li, J.; Nazir, S.; Khan, H.U.; Rehman, H.U.; Haq, A.U. Attributes-Based Decision Making for Selection of Requirement Elicitation Techniques Using the Analytic Network Process. Math. Probl. Eng. 2020, 2020, 2156023. [Google Scholar] [CrossRef]
- Alzahrani, F.A. Evaluating the Usable-Security of Healthcare Software Through Unified Technique of Fuzzy Logic, ANP and TOPSIS. IEEE Access 2020, 8, 109905–109916. [Google Scholar] [CrossRef]
- Akbar, M.A.; Mahmood, S.; Alsalman, H.; Razzaq, A.; Gumaei, A.; Riaz, M.T. Identification and Prioritization of Cloud Based Global Software Development Best Practices. IEEE Access 2020, 8, 191242–191262. [Google Scholar] [CrossRef]
- Ikram, A.; Jalil, M.A.; Ngah1, A.B.; Khan, A.S.; Iqbal, T. Offshore Software Maintenance Outsourcing: Predicting Client’s Proposal using Supervised Learning. Int. J. Adv. Trends Comput. Sci. Eng. 2021, 10, 106–113. [Google Scholar]
- Akbar, M.A.; Naveed, W.; Mahmood, S.; Alsanad, A.A.; Alsanad, A.; Gumaei, A.; Mateen, A. Prioritization Based Taxonomy of DevOps Challenges Using Fuzzy AHP Analysis. IEEE Access 2020, 8, 202487–202507. [Google Scholar] [CrossRef]
- Riskiana, R.R.; Purwandari, B.; Satria, R.; Solichah, I. The Use of Analytic Hierarchy Process to Rank Factors of Software Failures: A Case Study of a Telecommunication Company in Indonesia. In Proceedings of the International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 23–24 October 2017; pp. 336–341. [Google Scholar]
- Nazir, S.; Shahzad, S.; Mahfooz, S.; Nazir, M. Fuzzy logic based decision support system for component security evaluation. Int. Arab J. Inf. Technol. 2018, 15, 224–231. [Google Scholar]
- Wang, J.J.; Lin, Z.K.; Huang, H. A decision model for information systems outsourcing: Using a multicriteria method. J. Serv. Sci. Manag. 2008, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Faizi, S.; Sałabun, W.; Nawaz, S.; Rehman, A.U.; Wątrobski, J. Best-Worst method and Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. Expert Syst. Appl. 2021, 181, 115088. [Google Scholar] [CrossRef]
- Baczkiewicz, A.; Watróbski, J. Towards MCDA Based Decision Support System Addressing Sustainable Assessment. In Proceedings of the 29th International Conference on Information Systems Development, Valencia, Spain; Universitat Politècnica de València. 2021. Available online: https://aisel.aisnet.org/isd2014/proceedings2021/sustainable/6/ (accessed on 1 September 2021).
- Shekhovtsov, A.; Więckowski, J.; Kizielewicz, B.; Sałabun, W. Towards Reliable Decision-Making in the green urban transport domain. Facta Univ. Ser. Mech. Eng. 2021. Available online: http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/7407 (accessed on 1 September 2021).
- Rehman, A.U.; Shekhovtsov, A.; Rehman, N.; Faizi, S.; Sałabun, W. On the Analytic Hierarchy Process Structure in Group Decision-Making Using Incomplete Fuzzy Information with Applications. Symmetry 2021, 13, 609. [Google Scholar] [CrossRef]
- Khan, A.W.; Hussain, I.; Zamir, M. Analytic hierarchy process-based prioritization framework for vendor’s reliability challenges in global software development. J. Softw. Evol. Process. 2021, 33, e2310. [Google Scholar] [CrossRef]
- Hanafizadeh, P.; Ravasan, A.Z. A model for selecting IT outsourcing strategy: The case of e-banking channels. J. Global Inf. Technol. Manag. 2018, 21, 111–138. [Google Scholar] [CrossRef]
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Keele University: Keele, UK, 2007; EBSE 2007-001. [Google Scholar]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; Volume 33, pp. 1–26. [Google Scholar]
- Khan, A.A.; Keung, J. Systematic review of success factors and barriers for software process improvement in global software development. IET Softw. 2016, 10, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Anwar, R.; Rehman, M.; Wang, K.S.; Hashmani, M.A. Systematic literature review of knowledge sharing barriers and facilitators in global software development organizations using concept maps. IEEE Access 2019, 7, 24231–24247. [Google Scholar] [CrossRef]
- Niazi, M.; Ikram, N.; Bano, M.; Imtiaz, S.; Khan, S.U. Establishing trust in offshore software outsourcing relationships: An exploratory study using a systematic literature review. IET Softw. 2013, 7, 283–293. [Google Scholar] [CrossRef]
- Salam, M.; Khan, S.U. Challenges in the development of green and sustainable software for software multisourcing vendors: Findings from a systematic literature review and industrial survey. J. Softw. Evol. Process 2018, 30, e1939. [Google Scholar] [CrossRef]
- Rashid, N.; Khan, S.U. Agile practices for global software development vendors in the development of green and sustainable software. J. Softw. Evol. Process 2018, 30, e1964. [Google Scholar] [CrossRef]
- Ilyas, M.; Khan, S.U. Software integration in global software development: Challenges for GSD vendors. J. Softw. Evol. Process 2017, 29, e1875. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H. Fuzzy best-worst multi-criteria decision-making method and its applications. Knowl.-Based Syst. 2017, 121, 23–31. [Google Scholar] [CrossRef]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Aires, R.F.; Ferreira, L. The rank reversal problem in multi-criteria decision making: A literature review. Pesqui. Oper. 2018, 38, 331–362. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Shekhovtsov, A.; Sałabun, W. A New Approach to Eliminate Rank Reversal in the MCDA Problems. Presented at International Conference on Computational Science, Krakow, Poland, 16–18 June 2021; pp. 338–351. [Google Scholar]
- Alazab, F.G.M.; Ayu, M.A. Web Based Multi Criteria Decision Making Using AHP Method. In Proceedings of the 3rd International Conference on Information and Communication Technology for the Moslem World (ICT4M), Jakarta, Indonesia, 13–14 December 2010; pp. A6–A12. [Google Scholar]
- Octavianus, R.; Mursanto, P. The analysis of critical success factor ranking for software development and implementation project using AHP. In Proceedings of the International Conference on Advanced Computer Science and Information Systems (ICACSIS), Yogyakarta, Indonesia, 27–28 October 2018; pp. 313–318. [Google Scholar]
- Saaty, T.L. Decision making: The analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Akbar, M.A.; Khan, A.A.; Khan, A.W.; Mahmood, S. Requirement change management challenges in GSD: An analytical hierarchy process approach. J. Softw. Evol. Process. 2020, 32, e2246. [Google Scholar] [CrossRef]
- Shameem, M.; Kumar, R.R.; Kumar, C.; Chandra, B.; Khan, A.A. Prioritizing challenges of agile process in distributed software development environment using analytic hierarchy process. J. Softw. Evol. Process. 2018, 30, e1979. [Google Scholar]
- Albayrak, E.; Erensal, Y.C. Using analytic hierarchy process (AHP) to improve human performance: An application of multiple criteria decision making problem. J. Intell. Manuf. 2004, 15, 491–503. [Google Scholar] [CrossRef]
- Oza, N.V.; Hall, T.; Rainer, A.; Grey, S. Trust in software outsourcing relationships: An empirical investigation of Indian software companies. Inf. Softw. Technol. 2006, 48, 345–354. [Google Scholar] [CrossRef]
- Pei, Z.; Xiang, Z.Z.; Ping, H.C. Study on Critical Success Factors for IT Outsourcing Life Cycle. In Proceedings of the International Conference on Wireless and Communications, Networking Mobile Computing, Shanghai, China, 21–25 September 2007; pp. 4379–4382. [Google Scholar]
- Christiansen, H.M. Meeting the Challenge of Communication in Offshore Software Development. In Proceedings of the International Conference on Software Engineering Approaches for Offshore and Outsourced Development, Berlin, Germany, 5 February 2007; pp. 19–26. [Google Scholar]
- Riaz, M.R. PMCMG: Project Management Challenges Model for Global Software Development. Ph.D. Thesis, King Fahd University Of Petroleum & Minerals, Dhahran, Saudi Arabia, 2013. [Google Scholar]
- Jain, R.; Suman, U. A project management framework for global software development. ACM SIGSOFT Softw. Eng. Notes 2018, 43, 1–10. [Google Scholar] [CrossRef]
- Ali, S.; Hongqi, L.; Khan, S.U.; Zhongguo, Y.; Liping, Z. Success factors for software outsourcing partnership management: An exploratory study using systematic literature review. IEEE Access 2017, 5, 23589–23612. [Google Scholar] [CrossRef]
- Britto, R.; Freitas, V.; Mendes, E.; Usman, M. Effort Estimation in Global Software Development: A Systematic Literature Review. In Proceedings of the 9th International Conference on Global Software Engineering, Shanghai, China, 18–21 August 2014; pp. 135–144. [Google Scholar]
- Krancher, O.; Dibbern, J. Learning Software Maintenance Tasks in Offshoring Projects: A Cognitive Load Perspective. In Proceedings of the 9th 2012 International Conference of Information Systems, Orlando, FL, USA, 16–19 December 2012; pp. 1–7. [Google Scholar]
- Bhatt, P.; Shroff, W.K.G.; Misra, A.K. Influencing factors in outsourced software maintenance. ACM SIGSOFT Softw. Eng. Notes 2006, 31, 1–6. [Google Scholar] [CrossRef]
- Kumar, N.; Palvia, P. Global IT outsourcing management: Key influence factors and strategies. J. Inf. Technol. Cases Appl. 2002, 4, 56–75. [Google Scholar] [CrossRef]
- Verner, J.M.; Brereton, O.P.; Kitchenham, B.A.; Turner, M.; Niazi, M. Risks and risk mitigation in global software development: A tertiary study. Inf. Softw. Technol. 2014, 56, 54–78. [Google Scholar] [CrossRef]
- Davison, R. Offshoring information technology: Sourcing and outsourcing to a global workforce. Inf. Technol. Develop. 2007, 13, 101–102. [Google Scholar] [CrossRef]
- Lamersdorf, A.; Munch, J.; Torre, A.F.V.; Sanchez, C.R.; Heinz, M.; Rombach, D. A Rule-Based Model for Customized Risk Identification in Distributed Software Development Projects. In Proceedings of the 5th IEEE International Conference on Global Software Engineering, Princeton, NJ, USA, 23–26 August 2010; pp. 209–218. [Google Scholar]
- Vedder, R.; Guynes, C.S.; Reilly, R. Offshoring limitations. Rev. Bus. Inf. Syst. 2010, 14. Available online: https://clutejournals.com/index.php/RBIS/article/view/501 (accessed on 1 September 2021). [CrossRef]
- Islam, S.; Joarder, M.M.A.; Houmb, S.H. Goal and Risk Factors in Offshore Outsourced Software Development from Vendor’s Viewpoint. In Proceedings of the 2009 Fourth IEEE International Conference on Global Software Engineering, Limerick, Ireland, 13–16 July 2009; pp. 347–352. [Google Scholar]
- Beulen, E.; Fenema, P.V.; Currie, W. From application outsourcing to infrastructure management: Extending the offshore outsourcing service portfolio. Eur. Manag. J. 2005, 23, 133–144. [Google Scholar] [CrossRef]
- Abdullah, L.M.; Verner, J.M. Analysis and application of an outsourcing risk framework. J. Syst. Softw. 2012, 85, 1930–1952. [Google Scholar] [CrossRef]
- Sneed, H.M. Offering Software Maintenance as an Offshore Service. In Proceedings of the 2008 IEEE International Conference on Software Maintenance, Beijing, China, 28 September–4 October 2008; pp. 1–5. [Google Scholar]
- Britto, R. Knowledge Classification for Supporting Effort Estimation in Global Software Engineering Projects. Ph.D. Dissertation, Department of Software Engineering, Blekinge Institute of Technology, Karlshamn, Sweden, 2015. [Google Scholar]
- Winkler, J.K.; Dibbern, J.; Heinzl, A. The impact of cultural differences in offshore outsourcing—Case study results from German–Indian application development projects. Inf. Syst. Front. 2008, 10, 243–258. [Google Scholar] [CrossRef]
- Bajta, M.E.; Idri, A.; Ros, J.N.; Alemán, J.L.F.; Gea, J.M.C.D.; García, F.; Toval, A. Software project management approaches for global software development: A systematic mapping study. Tsinghua Sci. Technol. 2018, 23, 690–714. [Google Scholar] [CrossRef] [Green Version]
- Nazir, S.; Shahzad, S.; Abid, S.B.S. Selecting software design based on birthmark. Life Sci. J. 2014, 11, 89–93. [Google Scholar]
- Palcic, I.; Lalic, B. Analytical Hierarchy Process as a tool for selecting and evaluating projects. Int. J. Simul. Model. 2009, 8, 16–26. [Google Scholar] [CrossRef]
- Sehra, S.K.; Brar, Y.S.; Kaur, N. Multi criteria decision making approach for selecting effort estimation model. Int. J. Comput. Appl. 2013, 39, 0975–8887. [Google Scholar]
Techniques | Source | Description |
---|---|---|
Fuzzy logic [14] | Empirical study | Breach of contract, lack of expertise and experience, cultural difference, no project management experience, costly amendments in contract, disputes and litigation, financial stability of providers, security breach, contract is not flexible and lack of innovation. |
AHP [15] | Literature | Confidentiality, availability, integrity and six sub factors. |
AHP [16] | Literature review | Impact, perspective, frequency, dependency, type and sub factors. |
Fuzzy Int [17] | Literature | Performance, functionality, maintenance. |
AHP [18] | Literature, interviews | Software economic, software quality and sub factors. |
SMARTER [19] | Literature review | Project setup, project management, project complexity and sub factors. |
AHP, TOPSIS [20] | Empirical study | Confidentiality, perdurability, integrity, availability and other sub factors. |
Fuzzy AHP [21] | Literature, experts | Availability, CPU, transaction cost, security, storage and performance. |
Fuzzy AHP [22] | Literature | Portability, efficiency, reliability, maintainability, functionality, usability and sub factors. |
AHP [23] | Literature | Dynamic requirements, requirement changes, development team and communication. |
Fuzzy Set Theory [24] | SLR, empirical study | Economic benefits, efforts expectancy, competency, external stimuli, planning of feasibility and analysis of risk, performance expectancy, utilization of resources, trust, organization dynamics, business concerns and sub factors. |
AHP and TOPSIS [25] | Literature | Confidentiality, availability, security, trustworthiness, authentication, authorization, key management, integrity, access control, non-repudiation, network monitoring, auditing and continuity. |
ANP [26] | Literature | Key stakeholders, computer literacy, schedule constraints, stakeholders’ diversity, organization culture, prospective system’s nature, number of people/session, expressiveness of users, reusable requirements, financial constraints, stakeholders’ relationships, domain knowledge, existing system maintenance, relationship of clients and analysts. |
Fuzzy set, AHP and TOPSIS [27] | Literature | Confidentiality, integrity, availability, identification and other sub factors. |
Fuzzy AHP [28] | SLR, empirical study | Resource management, integration, communication, stakeholders, procurement, time, scope, quality and other sub factors. |
Machine learning [29] | Empirical study | Supplier size, team size, domain, project size, following international standards and documentation, code complexity, quality of document, maintenance type required, code’s structure, time zone, client’s experience, language barrier, SLA, method adopted and age of system. |
Fuzzy AHP [30] | SLR, empirical study | Measurement, culture, automation, sharing and 20 sub factors. |
AHP [31] | Literature | Software error, operator error, hardware as well as environmental error, error of fault recovery, issues in change management, issues in communication management, institutional pressure and violation of security. |
FST [32] | Literature | Access control, authentication, non-repudiation, confidentiality of data, communication flow, integrity of data, availability and privacy. |
AHP and ELT [33] | Literature | Strategy, economics, risk, quality and environment. |
Proposed work | AHP, SLR, empirical study | Employee skills, cost, legal requirements, poor communication, infrastructure, language barrier, maturity level, frequent changes in requirements, domain knowledge and project management. |
Score | Meaning | Explanation |
---|---|---|
1 | Equal | Two factors are equally important |
2 | Weak important | Weakly important from the other |
3 | Moderate important | One factor is slightly preferred over other |
4 | Moderate plus | Moderate important from the other |
5 | Strong important | One factors is strongly preferred over the other |
6 | Strong plus | One factor is more stronger than the other |
7 | Very strong | One factor is very strongly preferred over the other |
8 | Very, very strong | Very very stronger than the other |
9 | Absolute important | One factor is absolutely more important than the other |
S.No | Influencing Factors | Frequency | Percentage |
---|---|---|---|
01 | Cost | 27 | 69 |
02 | Legal requirements | 27 | 69 |
03 | Language barrier | 23 | 59 |
04 | Maturity level | 24 | 61 |
05 | Frequent requirement changes | 24 | 61 |
06 | Service scope | 5 | 13 |
07 | Cultural diversity | 19 | 49 |
08 | Time zone difference | 16 | 41 |
09 | Knowledge transfer | 22 | 56 |
10 | Project management | 22 | 56 |
11 | Domain knowledge | 12 | 31 |
12 | Employee skills | 30 | 77 |
13 | Infrastructure | 24 | 61 |
14 | Poor communication | 27 | 69 |
15 | Size of engagement | 5 | 13 |
ES | PC | Cos | LR | Inf | ML | FRC | LB | DK | PM | |
---|---|---|---|---|---|---|---|---|---|---|
Employee skills | 1 | 2 | 1 | 1/3 | 5 | 3 | 2 | 7 | 3 | 3 |
Poor communication | 1/2 | 1 | 1/2 | 1/4 | 3 | 2 | 1 | 5 | 2 | 2 |
Cost | 1 | 2 | 1 | 1/3 | 5 | 3 | 2 | 7 | 3 | 3 |
Legal requirements | 3 | 4 | 3 | 1 | 7 | 5 | 4 | 9 | 5 | 5 |
Infrastructure | 1/5 | 1/3 | 1/5 | 1/7 | 1 | 1/2 | 1/2 | 4 | 1/2 | 1/2 |
Maturity level | 1/3 | 1/2 | 1/3 | 1/5 | 2 | 1 | 1 | 4 | 1 | 1 |
Frequent R C | 1/2 | 1 | 1/2 | 1/4 | 2 | 1 | 1 | 4 | 2 | 1/5 |
Language barrier | 1/7 | 1/5 | 1/7 | 1/9 | 1/4 | 1/4 | 1/4 | 1 | 1/4 | 1/4 |
Domain knowledge | 1/3 | 1/2 | 1/3 | 1/5 | 2 | 1 | 1/2 | 4 | 1 | 1 |
Project management | 1/3 | 1/2 | 1/3 | 1/5 | 2 | 1 | 1/2 | 4 | 1 | 1 |
A1 | A2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ES | PC | Cos | LR | Inf | ML | FRC | LB | DK | PM | Weights | |
ES | 1.000 | 2.000 | 1.000 | 0.333 | 5.000 | 3.000 | 2.000 | 7.000 | 3.000 | 3.000 | 0.153 |
PC | 0.500 | 1.000 | 0.500 | 0.250 | 3.000 | 2.000 | 1.000 | 5.000 | 2.000 | 2.000 | 0.092 |
Cos | 1.000 | 2.000 | 1.000 | 0.333 | 5.000 | 3.000 | 2.000 | 7.000 | 3.000 | 3.000 | 0.153 |
LR | 3.000 | 4.000 | 3.000 | 1.000 | 7.000 | 5.000 | 4.000 | 9.000 | 5.000 | 5.000 | 0.302 |
Inf | 0.200 | 0.333 | 0.200 | 0.143 | 1.000 | 0.500 | 0.500 | 4.000 | 0.500 | 0.500 | 0.035 |
ML | 0.333 | 0.500 | 0.333 | 0.200 | 2.000 | 1.000 | 1.000 | 4.000 | 1.000 | 1.000 | 0.059 |
FRC | 0.500 | 1.000 | 0.500 | 0.250 | 2.000 | 1.000 | 1.000 | 4.000 | 2.000 | 2.000 | 0.080 |
LB | 0.143 | 0.200 | 0.143 | 0.111 | 0.250 | 0.250 | 0.250 | 1.000 | 0.250 | 0.250 | 0.017 |
DK | 0.333 | 0.500 | 0.333 | 0.200 | 2.000 | 1.000 | 0.500 | 4.000 | 1.000 | 1.000 | 0.055 |
PM | 0.333 | 0.500 | 0.333 | 0.200 | 2.000 | 1.000 | 0.500 | 4.000 | 1.000 | 1.000 | 0.055 |
ES | [1.000*2.000*1.000*0.333*5.000*3.000*2.000*7.000*3.000*3.000]1/10 = 2.042 | 2.042/13.3571 | 0.153 |
---|---|---|---|
PC | [0.500*1.000*0.500*0.250*3.000*2.000*1.000*5.000*2.000*2.000]1/10 = 1.223 | 1.223/13.3571 | 0.092 |
Cos | [1.000*2.000*1.000*0.333*5.000*3.000*2.000*7.000*3.000*3.000]1/10 = 2.042 | 2.042/13.3571 | 0.153 |
LR | [3.000*4.000*3.000*1.000*7.000*5.000*4.000*9.000*5.000*5.000]1/10 = 4.031 | 4.031/13.3571 | 0.302 |
Inf | [0.200*0.333*0.200*0.143*1.000*0.500*0.500*4.000*0.500*0.500]1/10 = 0.465 | 0.465/13.3571 | 0.035 |
ML | [0.333*0.500*0.333*0.200*2.000*1.000*1.000*4.000*1.000*1.000]1/10 = 0.785 | 0.785/13.3571 | 0.059 |
FRC | [0.500*1.000*0.500*0.250*2.000*1.000*1.000*4.000*2.000*2.000]1/10 = 1.072 | 1.072/13.3571 | 0.080 |
LB | [0.143*0.200*0.143*0.111*0.250*0.250*0.250*1.000*0.250*0.250]1/10 = 0.232 | 0.232/13.3571 | 0.017 |
DK | [0.333*0.500*0.333*0.200*2.000*1.000*0.500*4.000*1.000*1.000]1/10 = 0.732 | 0.732/13.3571 | 0.055 |
PM | [0.333*0.500*0.333*0.200*2.000*1.000*0.500*4.000*1.000*1.000]1/10 = 0.732 | 0.732/13.3571 | 0.055 |
Sum = 13.3571 |
A1 | A2 | A3 | A4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ES | PC | Cos | LR | Inf | ML | FRC | LB | DK | PM | ||||
ES | 1.000 | 2.000 | 1.000 | 0.333 | 5.000 | 3.000 | 2.000 | 7.000 | 3.000 | 3.000 | 0.153 | 1.551 | 10.145 |
PC | 0.500 | 1.000 | 0.500 | 0.250 | 3.000 | 2.000 | 1.000 | 5.000 | 2.000 | 2.000 | 0.092 | 0.928 | 10.136 |
Cos | 1.000 | 2.000 | 1.000 | 0.333 | 5.000 | 3.000 | 2.000 | 7.000 | 3.000 | 3.000 | 0.153 | 1.551 | 10.145 |
LR | 3.000 | 4.000 | 3.000 | 1.000 | 7.000 | 5.000 | 4.000 | 9.000 | 5.000 | 5.000 | 0.302 | 3.148 | 10.431 |
Inf | 0.200 | 0.333 | 0.200 | 0.143 | 1.000 | 0.500 | 0.500 | 4.000 | 0.500 | 0.500 | 0.035 | 0.363 | 10.428 |
ML | 0.333 | 0.500 | 0.333 | 0.200 | 2.000 | 1.000 | 1.000 | 4.000 | 1.000 | 1.000 | 0.059 | 0.596 | 10.137 |
FRC | 0.500 | 1.000 | 0.500 | 0.250 | 2.000 | 1.000 | 1.000 | 4.000 | 2.000 | 2.000 | 0.080 | 0.817 | 10.185 |
LB | 0.143 | 0.200 | 0.143 | 0.111 | 0.250 | 0.250 | 0.250 | 1.000 | 0.250 | 0.250 | 0.017 | 0.184 | 10.600 |
DK | 0.333 | 0.500 | 0.333 | 0.200 | 2.000 | 1.000 | 0.500 | 4.000 | 1.000 | 1.000 | 0.055 | 0.556 | 10.133 |
PM | 0.333 | 0.500 | 0.333 | 0.200 | 2.000 | 1.000 | 0.500 | 4.000 | 1.000 | 1.000 | 0.055 | 0.556 | 10.133 |
Lambda max is obtained by calculating the average of A4 = 10.247 |
ES | OM | NM | OfM | Weights | PC | OM | NM | OfM | Weights |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 0.333 | 0.200 | 0.114 | Onshore Model | 1.000 | 1.000 | 3.000 | 0.443 |
Nearshore Model | 3.000 | 1.000 | 1.000 | 0.405 | Nearshore Model | 1.000 | 1.000 | 2.000 | 0.387 |
Offshore Model | 5.000 | 1.000 | 1.000 | 0.481 | Offshore Model | 0.333 | 0.500 | 1.000 | 0.169 |
max = 3.028, C.I = 0.014, C.R = 0.027 < 0.1 | max = 3.022, C.I = 0.011, C.R = 0.021 < 0.1 |
Cost | OM | NM | OfM | Weights | LR | OM | NM | OfM | Weights |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 0.500 | 0.200 | 0.128 | Onshore Model | 1.000 | 3.000 | 7.000 | 0.669 |
Nearshore Model | 2.000 | 1.000 | 0.500 | 0.276 | Nearshore Model | 0.333 | 1.000 | 3.000 | 0.243 |
Offshore Model | 5.000 | 2.000 | 1.000 | 0.595 | Offshore Model | 0.143 | 0.333 | 1.000 | 0.088 |
max = 3.011, C.I = 0.006, C.R = 0.011 < 0.1 | max = 3.004, C.I = 0.002, C.R = 0.004 < 0.1 |
Inf | OM | NM | OfM | Weights | ML | OM | NM | OfM | Weights |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 1.000 | 2.000 | 0.400 | Onshore Model | 1.000 | 1.000 | 2.000 | 0.413 |
Nearshore Model | 1.000 | 1.000 | 2.000 | 0.400 | Nearshore Model | 1.000 | 1.000 | 1.000 | 0.327 |
Offshore Model | 0.500 | 0.500 | 1.000 | 0.200 | Offshore Model | 0.500 | 1.000 | 1.000 | 0.260 |
max = 3.000, C.I = 0.000, C.R = 0.000 < 0.1 | max = 3.054, C.I = 0.027, C.R = 0.052 < 0.1 |
FRC | OM | NM | OfM | Weights | LB | OM | NM | OfM | Weights |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 1.000 | 3.000 | 0.443 | Onshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
Nearshore Model | 1.000 | 1.000 | 2.000 | 0.387 | Nearshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
Offshore Model | 0.333 | 0.500 | 1.000 | 0.169 | Offshore Model | 1.000 | 1.000 | 1.000 | 0.333 |
max = 3.022, C.I = 0.011, C.R = 0.021 < 0.1 | max = 3.003, C.I = 0.002C.R = 0.003 < 0.1 |
DK | OM | NM | OfM | Weights | PM | OM | NM | OfM | Weights |
---|---|---|---|---|---|---|---|---|---|
Onshore Model | 1.000 | 1.000 | 1.000 | 0.333 | Onshore Model | 1.000 | 2.000 | 2.000 | 0.500 |
Nearshore Model | 1.000 | 1.000 | 1.000 | 0.333 | Nearshore Model | 0.500 | 1.000 | 1.000 | 0.250 |
Offshore Model | 1.000 | 1.000 | 1.000 | 0.333 | Offshore Model | 0.500 | 1.000 | 1.000 | 0.250 |
max = 3.003, C.I = 0.002, C.R = 0.003 < 0.1 | max = 3.000, C.I = 0.000, C.R = 0.000 < 0.1 |
Critical Success Factors | Weights (Wc) | Onshore Model | Nearshore Model | Offshore Model | |||
---|---|---|---|---|---|---|---|
Wa | Wc*Wa | Wa | Wc*Wa | Wa | Wc*Wa | ||
Employee skills | 0.153 | 0.114 | 0.153* 0.114 = | 0.405 | 0.405*0.153 = | 0.481 | 0.481*0.153 |
Poor communication | 0.092 | 0.443 | 0.092*0.443 = | 0.387 | 0.387*0.092 = | 0.169 | 0.169*0.092 |
Cost | 0.153 | 0.128 | 0.153*0.128 = | 0.276 | 0.276*0.153 = | 0.595 | 0.595*0.153 |
Legal requirements | 0.302 | 0.669 | 0.302*0.669 = | 0.243 | 0.243*0.302 = | 0.088 | 0.088*0.302 |
Infrastructure | 0.035 | 0.400 | 0.035*0.400 = | 0.400 | 0.400*0.035 = | 0.200 | 0.200*0.035 |
Maturity level | 0.059 | 0.413 | 0.059*0.413 = | 0.327 | 0.327*0.059 = | 0.260 | 0.260*0.059 |
Frequent requirements changes | 0.080 | 0.443 | 0.080*0.443 = | 0.387 | 0.387*0.080 = | 0.169 | 0.169*0.080 |
Language barrier | 0.017 | 0.333 | 0.017*0.333 = | 0.333 | 0.333*0.017 = | 0.333 | 0.333*0.017 |
Domain knowledge | 0.055 | 0.333 | 0.055*0.333 = | 0.333 | 0.333*0.055 = | 0.333 | 0.333*0.055 |
Project management | 0.055 | 0.500 | 0.055*0.413 = | 0.250 | 0.327*0.055 = | 0.250 | 0.260*0.055 |
Alternatives’ ranking | 0.405 | 0.315 | 0.280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, H.U.; Raza, M.; Afsar, P.; Alharbi, A.; Ahmad, S.; Alyami, H. Multi-Criteria Decision Making Model for Application Maintenance Offshoring Using Analytic Hierarchy Process. Appl. Sci. 2021, 11, 8550. https://doi.org/10.3390/app11188550
Rahman HU, Raza M, Afsar P, Alharbi A, Ahmad S, Alyami H. Multi-Criteria Decision Making Model for Application Maintenance Offshoring Using Analytic Hierarchy Process. Applied Sciences. 2021; 11(18):8550. https://doi.org/10.3390/app11188550
Chicago/Turabian StyleRahman, Hanif Ur, Mushtaq Raza, Palwasha Afsar, Abdullah Alharbi, Sultan Ahmad, and Hashym Alyami. 2021. "Multi-Criteria Decision Making Model for Application Maintenance Offshoring Using Analytic Hierarchy Process" Applied Sciences 11, no. 18: 8550. https://doi.org/10.3390/app11188550