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Abstract: Multimodal signal analysis based on sophisticated sensors, efficient communication
systems and fast parallel processing methods has a rapidly increasing range of multidisciplinary
applications. The present paper is devoted to pattern recognition, machine learning, and the analysis
of sleep stages in the detection of sleep disorders using polysomnography (PSG) data, including
electroencephalography (EEG), breathing (Flow), and electro-oculogram (EOG) signals. The proposed
method is based on the classification of selected features by a neural network system with sigmoidal
and softmax transfer functions using Bayesian methods for the evaluation of the probabilities of the
separate classes. The application is devoted to the analysis of the sleep stages of 184 individuals
with different diagnoses, using EEG and further PSG signals. Data analysis points to an average
increase of the length of the Wake stage by 2.7% per 10 years and a decrease of the length of the
Rapid Eye Movement (REM) stages by 0.8% per 10 years. The mean classification accuracy for given
sets of records and single EEG and multimodal features is 88.7% ( standard deviation, STD: 2.1) and
89.6% (STD:1.9), respectively. The proposed methods enable the use of adaptive learning processes
for the detection and classification of health disorders based on prior specialist experience and
man-machine interaction.

Keywords: multimodal signal analysis; pattern recognition; machine learning; computational intelligence;
polysomnographys; sleep stage classification

1. Introduction

Polysomnography (PSG) represents a diagnostical tool of sleep medicine based on biophysiological
changes that occur during the sleep. Multimodal data acquired in sleep laboratories form multichannel
records that require wire attachments to the patients in most cases. Selected physiological signals
are simultaneously monitored by specific sensors [1-3] and they form time series that are recorded
with different sampling frequencies and often combined with videosequences acquired by infra and
thermographic imaging cameras. Figure 1(al,a2) present an example of a multichannel PSG record 5 s
long used for diagnosis and classification of sleep disorders either by an experienced neurologist or by
an automatic classification model.

The segmentation and pattern recognition process is based either on the analysis of the whole
set of multimodal and multichannel PSG data or on the processing of data acquired by selected
sensors only. The recorded PSG signals include an electroencephalogram (EEG), electro-oculogram
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(EOQG), electrocardiogram (ECG), electromyogram (EMG), sound, movement, and breathing records
(Flow), among others. Features detected by specific computational methods [4-8] are then used to
help neurologists to make a diagnosis and propose the appropriate treatment. Sleep features are very
specific and there exist many studies proposing machine learning [9,10] for the automatic detection of
sleep stages [11-14]. A specific interest is devoted to the use of hidden Markov models for automatic
sleep staging [15-17], to the relation between the adjacent sleep segments, and to deep convolutional
neural network [18,19] as well.
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Figure 1. Principle of sleep feature classification using a two-layer neural network with sigmoidal and
softmax transfer functions presenting (al,a2) a sample record of multichannel data 5 s long recorded
with the sampling frequency of 200 and 10 Hz, respectively; (b) neural network structure for pattern
recognition estimating probabilities of individual classes and evaluating the most probable class for
each column vector of input features; and (c,d) evaluated and target probabilities (%) of output classes
for selected patterns (detail of Figure 3d and S2 =5).

Figure 2 presents the rapidly growing interest in the PSG data analysis as illustrated by the
number of papers registered in the Web of Science (WoS) database. This increase can be observed
both in the area of sleep stages classification (Figure 2a) and machine learning for detection of sleep
disorders (Figure 2b). The mostly cited papers (according to the WoS) published recently and devoted
to PSG include those of sleep stages classification [20] and machine learning for sleep disorders
detection [21,22] with detail comparative reviews of methods and results achieved.
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Figure 2. The time evolution of number of journal papers devoted to analysis of (a) sleep stages and
their classification and (b) sleep disorders and machine learning according to the Web of Science.
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The present paper is devoted to the statistical distribution of sleep stages related to age and
diagnosis [23] and to their classification, using neural networks [24-27] with sigmoidal and softmax
transfer functions. The mathematical features of each segment are summarized in the pattern matrix
and associated with target classes specified by an experienced neurologist. The classification system
is presented in Figure 1b. The proposed adaptive process incorporates the prior experience of
a neurologist into the decision process using man—-machine interaction.

The proposed algorithm was applied for the adaptive recognition and classification of sleep
stages [20,28-32] using both EEG data [13,33] and PSG signals, using their spectral components for
the estimation of sleep features. Sleep scoring assumes the knowledge of the Flow, EMG, and EOG
records in addition to EEG signals but they affect EEG records as well. This fact has motivated some
authors to use EEG channels only [21] to classify sleep stages.

The training process analysed in the present paper results in the evaluation of the coefficients
of a mathematical model for multiclass pattern recognition [34-37]. The classification accuracy and
cross-validation error were then used for comparing the results. The resulting mathematical model
can be further updated using expanded databases of individuals and visual sleep scoring as well as
the experience of a neurologist in the associated interactive process.

The proposed mathematical model forms a contribution to further automatic systems of sleep
stages classification and data analysis for the evaluation of proportion of Wake and REM segments
associated with the age of an individual. These information can provide an additional diagnostic tool
in the clinical environment.

The present paper is organized as follows. Section 2 presents PSG data acquisition, pattern matrix
construction and the methodology of machine learning for pattern recognition of sleep stages. Section 3
describes results of the age analysis of sleep stages and their classification using both multimodal and
EEG features of individuals with different diagnosis. The final Section 4 is dedicated to the discussion
and conclusion.

2. Methods

2.1. PSG Data Acquisition

The data studied include the own database of 184 polysomnography overnight observations [38—40]
of patients recorded, diagnosed and classified by the authors in the sleep neurological laboratory.
Table 1 presents a summary of the data for (i) 63 healthy individuals (36 males, 27 females);
(ii) 77 individuals with sleep apnea (M = 48, F = 29); (iii) 16 individuals with restless leg syndrome
(M =8, F =8); and (iv) 28 individuals with the restless leg syndrome combined with sleep apnea (M =19,
F =9). Each of these records is about 8 hours long, segmented and classified into 5 sleep stages:

o  Wake stage (Wake): normal body functions,
No Rapid Eye Movement 1 (NonREM1): the initial sleep stage with eyes closed,
e No Rapid Eye Movement 2 (NonREM?2): the light sleep stage with slower heart rate and body
temperature going down,
e No Rapid Eye Movement 3 (NonREM3): the deep sleep stage during which the body repairs and
regrows tissues,
e Rapid Eye Movement (REM): the specific sleep period with faster brain activities, faster breathing
and heart rate (period of dreams).
These stages were specified by a neurologist specializing in sleep analysis.
The matrix of recorded sleep PSG data of each individual include an information text file and
8 EDF files with subsequent one hour long multichannel records of 22 variables acquired during the
night. While EEG, EOG, ECG, sound and movement data were observed with a sampling frequency of
200 Hz, breathing records (Flow) were acquired with a sampling frequency of 10 Hz.
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Table 1. Specification of the set of 184 individuals under study (M: number of males, F: number of
females) with their age distribution, including (i) healthy individuals; (ii) individuals with sleep apnea
(SA); (iii) individuals with the restless leg (RL) syndrome; and (iv) individuals with RL syndrome and
sleep apnea syndrome

M-Male
Diagnosis
Number Mean Age (Year) STD
1 Healthy individuals 36 40.0 15.9
2 Sleep Apnea (SA) 48 50.3 14.2
3 Restless Leg (RL) Syndrome 8 59.9 9.1
4 SA and RL Syndrome 19 58.3 9.0
F: Females
Diagnosis
Number Mean Age (Year) STD
1 Healthy individuals 27 40.8 14.7
2 Sleep Apnea (SA) 29 54.7 14.4
3 RL Syndrome 8 489 12.6
4 RL Syndrome and SA 9 52.7 204

A selected EEG data segment 2 h long of a chosen individual together with its manual classification
into 5 classes is presented in Figure 3a. The time localization of these classes specified by an experienced
neurologist is shown in Figure 3c.
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Figure 3. Two-hour long analysis presenting (a) EEG signal segmented into 5 classes and (b) features
standing for the mean power in selected frequency ranges (14 Hz, 4-8 Hz) in subsequent 30 s long
windows forming neural network pattern values; (c) target sleep classes forming desired neural
network output; (d) probabilities of evaluated classes by the two layer neural network; and (e) resulting
classes with the highest classification probability.

2.2. Pattern Matrix Construction

The classification of sleep stages was based on time segments 30 s long with the corresponding
target classes specified by the neurologist during the learning process after the preceded signal
preprocessing stage. This initial process included digital filtering for noise rejection and artefact
removal [41,42].

Common preprocessing methods include the rejection of noise components present in each
individual channel. Denoting a channel signal by {x(n) 71:1;01, it is possible to use a selected digital
filter with specified cutoff frequencies to define a new sequence {y(n)} 7121;01. Finite impulse response

(FIR) band pass filters of the 30th order were used in this case. Their cutoff frequencies corresponded
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with the frequency ranges of specific PSG channels used for classification. The selection of these
frequencies was related to the physiological background of these signals and it included frequency ranges
(0.5,30) Hz for EEG channels, (0.05,0.8) Hz for the flow channel, and (4,40) Hz for the EOG channel.

A selected spectral feature FS of a signal segment was evaluated by the discrete Fourier transform
as a relative power in the specified frequency band (f.1, fc2) by relation

Yreo [Y(K))? Nt —ikn2x
Fs=ke@ Ty gy = n) =ik )
T2y Y= e

where @ is the set of indices for which frequency values f; = % fs € (fa, fe2)-

The construction of the pattern matrix Pg o presented in Figure 1b assumes the evaluation of
R features for each signal segment fork = 1,2, - -, Q, forming Q column vectors p(:, k) of R values.
As the length of each PSG segment is 30 s, the whole overnight record about 8 h (480 min) long
includes on average Q = 960 segments for each individual. Each segment is described by R features
that represent characteristics evaluated mostly in the time or frequency domains for one or more
observed variables.

Figure 3b presents an example of a distribution of EEG features evaluated from one EEG channel
only, specifying the average power in selected frequency bands (1-4 and 4-8 Hz). For each feature
vector, the associated sleep stage (class) is specified by the neurologist, thus forming the target class for
the following classification process as specified in Figure 3c.

2.3. Machine Learning for Pattern Recognition

The pattern matrix Pg o formed an input for the two-layer neural network presented in Figure 1b
having R inputs, S1 neurons in the first layer and S2 neurons in the second layer. The outputs of
individual layers included the values

Alg o= F1(N1), A25 0= F2(N2) 2)
where

N1=WI1gr PR,Q + b151/1 ones(l, Q), N2 = W252/51 AlSl,Q + b252,1 07’165(1, Sl) 3)

define the arguments of the transfer functions F1, F2.

An associated matrix of target values Tsy o with 52 = 5 rows was defined by the corresponding
sleep stages specified by a neurologist in the learning stage (as presented in Figure 1b). For each
column vector in the pattern matrix, the corresponding target vector has one unit element in the
row pointing to the correct target value. The network coefficients included elements of the matrices
W1 g, W2s; 1 and associated vectors blgj 1, b2s; 1. The proposed model used the sigmoidal transfer
function F1 in the first layer and the probabilistic softmax transfer function F2 in the second layer.
The values of the output layer, based on the Bayes theorem [43], using the function

Fa(N2) = — X P(IN2) @)
sum(exp(N2))
provided the probabilities of each class. Figure 1c,d present an example of estimated and target
probabilities for selected sleep pattern vectors. Each column of the output matrix presents class
membership to individual classes.

The training of the neural network was performed in the MATLAB (R2017b, The MathWorks,
Inc., Natick, MA, United States, 2017) environment using 70% of pattern vectors for training, 15% for
validation, 15% for testing, and random initial conditions. Model coefficients were updated for each
new sleep record that decreased (with the upper 3% limit) the performance value calculated as the
average squared error between the network outputs and target values. The optimization process was
done by a single PC with the i7-6500U CPU (2.5 GHz), 16 GB RAM and the 64-bit operating system
(Windows 10 Pro).
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The evaluation of the classification results was performed by the analysis of the multi-class
Receiver Operating Characteristic (ROC) [44,45] to illustrate the performance of the classifier system,
and by a confusion matrix presented in Table 2 for classification into S classes. The associated common
performance metrics are summarized in Table 3. The ROC analysis was performed on the basis of a
pairwise comparison of one class against all other classes [46].

Table 2. The confusion matrix for the evaluation of a model classifying pattern vectors belonging to true
(target) classes and estimating their (predicted) classes for the multi-class classification into S categories.

True (target) Class False Pos.
C@) C(k) C(S) (out-diag.
TOwW sum)
cy| xy |. . FP(1)
é’g True Pos. x(1,k) x(1,S)
= (TP(D)
S k) xl) . FP(k)
& x(k,1) True Pos. x(k,S)
§ (TP(K))
© @ . [ 89 | Fres)
x(5,1) x(5,k) True Pos.
False Neg. (IP(S)
(out-diag. FN(1) FN(k) EN(S)
col. sum)

Table 3. Common performance metrics of the confusion matrix for the multi-class classification.

Characteristics Definition Comment
PPV TP(K) .. e
Precisi ‘ol K _ IPk) Probability of correct classification of class k related to
recision of class TP(k) + FP(k) . . p
(pos. predict. value) the number of instants classified to class k
TPR e e
Sensitivity of class k TP(k) Probability of correct classification of class k related to
(True positive rate, recall) TP(k) + EN(k) the number of instants belonging to class k
TNR __TNK
Specificity of class k TNK + FPK Probability of incorrect classification of class k related
(,ﬁ ue negative rate) rNkey (), rekey e, o« tO the number of instants not classified to class k
FPR FPK Probability of positive classification for the negative set
False positive rate ITNK + FPK (1-specificity)
:cccigicy W%}?P(k)) Probability of global correct classification
3. Results

Figure 3a presents the results for a two hour long sleep record selected from the observation of an
entire night in the sleep laboratory. The target sleep stages (input classes) associated with 30 s long
EEG data windows diagnosed by the experienced neurologist are presented in Figure 3c. The adaptive
system was constructed as a two layer neural network with the sigmoidal and softmax transfer
functions. Figure 3d presents the evaluated probabilities of the individual classes. The estimated sleep
stages pointing to sleep stages with the highest probability are presented in Figure 3e.

The classification results obtained by the neural network system were compared with those
achieved with the k-nearest neighbour and decision tree methods (Table 4). The process of class
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selection and evaluation of class boundaries of the sleep stages is illustrated in Figure 4 for the two
features and their classification.
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Figure 4. Classification of sleep stages presenting (a) class selection for the 5-nearest neighbour method
and (b) class boundaries of the computational model and two features evaluated as the mean power in
selected frequency ranges (1-4 Hz, 4-8 Hz).

Table 4. Comparison of the accuracy and cross-validation for classification of sleep features evaluated
during the two-hour long observation and 30 s long time windows by the neural network, nearest
neighbour, and decision tree models.

Method Parameters Accuracy (%) Cross-Valid.

R—S81-S52 S1=3 79.58 0.13
Neural Net S1=6 87.08 0.10
(R=4,52=5) S1=10 88.33 0.12
k-Nearest k=3 82.9 0.35
Neigbour k=5 779 0.29
Decision Tree 85.7 0.14

The classification accuracies and cross-validation errors evaluated by the leave-one-out method
for a sample two-hour long EEG record are presented in Table 4. Input features include relative power
in 4 frequency bands (1-4, 4-8, 8-12, 12-20 Hz). For the given set of features, the neural network
model provide classification results with higher accuracy and lower cross-validation error than did the
k-nearest neighbour and decision tree methods.

The methodology of sleep stages processing verified for short records was then applied for
an extensive set of 184 individuals specified in Table 1. The results of its analysis with statistical
distribution of sleep stages related to age is presented in Figure 5. Linear approximation of these values
together with estimation of 95% confidence bounds were evaluated. Resulting regression coefficients
point to an average increase of the length of the Wake stage by 2.7% per 10 years and a decrease of the
length of the REM stage by 0.8% per 10 years.

Figure 6 presents more detail analysis of the resulting lengths of the sleep stages [47] related to
the age for the whole set of 184 individuals divided according to their diagnosis as determined by
experienced neurologists. A well documented increase of the Wake stages and decrease of REM stages
related to age is confirmed for healthy individuals and patients with sleep apnea. For patients with
restless leg syndrome, no such distribution was observed. The summary of associated regression
coefficients with their 95% confidence bounds are presented in Table 5.
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Figure 5. The distributions of the lengths of the Wake and REM sleep stages related to age for the

whole set of 184 individuals under study.
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Figure 6. Distributions of Wake and REM sleep stages related to age for (al,b1) healthy individuals

and patients with (a2,b2) sleep apnea; (a3,b3) restless leg syndrom; and (a4,b4) restless leg syndrom
and sleep apnea.



Appl. Sci. 2018, 8,697 90f 14

Table 5. The summary of regression coefficients (RC) of the age dependence of Wake and REM sleep
stages with their 95% confidence bounds.

. . Wake Segments REM Segments
Diagnosis
RC Confidence Bounds RC Confidence Bounds

All 0.272 (0.145, 0.399) —0.082  (—0.141, —0.023)
1 0.437 (0.227, 0.648) —0.094 (—0.198, 0.010)
2 0.248 (0.055, 0.442) -0.119  (-0.216, —0.022)
3 —0.064 (—0.687, 0.559) 0.009 (—0.334, 0.353)
4 0.178 (—0.377,0.734) 0.057 (—0.133, 0.246)

Table 6 presents the summary of the results for the individuals specified in Table 1 with 4 different
diagnoses and their classification into three classes (C1: Wake, C2: NonREM, C3: REM). The learning
performance was evaluated by the cross-entropy for given targets and network outputs. The last
column of Table 6 presents cross-validation errors evaluated by the K-fold cross-validation method
(for K = 10). A comparison of the classification results was performed using

1. the EEG channels only, with patterns evaluated as mean energies in 5 selected frequency bands
(1-4, 4-8, 8-12,12-16, 16-20 Hz),

2. additional features evaluated from the 4 frequency bands (0.05-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.8 Hz) of
the flow channel and 3 frequency bands (4-15, 15-30, 3040 Hz) of the electro-oculogram channel.

The values in Table 6 show nearly no difference between males and females and a slight
improvement of the performance and accuracy of the neural network model using multimodal features
consisting of 12 items instead of 5 EEG features associated with each segment.

The results presented in Table 6 are based on the manual classification of the PSG records
performed by an experienced neurologist incorporating his experience. The adaptive optimization of
the network coefficients can be further performed for newly acquired records.

Table 6. Evaluation of sleep stage classification (Classes: C1—Wake, C2—NonREM, C3—REM) of
sets of (i) healthy individuals; (ii) individuals with sleep apnea (SA); (iii) individuals with the restless
leg (RL) syndrome, and (iv) individuals with sleep apnea and RL syndrome using the single EEG
channel for 5 (F5) mean EEG power features (in bands 1-4, 4-8, 8-12, 12-16, and 16-20 Hz), and 12 (F12)
features with additional 4 features evaluated from the flow channel (for frequency bands 0.05-0.2, 0.2-0.3,
0.3-0.4, 0.4-0.8 Hz) and 3 features related to the electro-oculogram channels (4-15, 15-30, 3040 Hz).

Precission (%) Recall (%) Acc. Perf. 10-Fold
C1 (0] C3 C1 (0/] C3 (%) Cross-Valid.

1 HealthyInd. -F5 894 90.1 818 89.9 926 717 889 0.0977 0.15
-F12 898 90.7 79.5 916 922 703 891 0.0941 0.12

2 Sleep Apnea -F5 929 948 797 948 954 725 927 0.0632 0.11
-F12 938 954 814 953 956 765 935 0.0598 0.07

3 RLSyndrome -F5 845 947 817 88.8 927 825 90.1 0.0845 0.13
-F12 86.0 950 84.3 89.3 935 851 911 0.0758 0.10

4 SAandRLSyn.-F5 915 881 767 86.8 940 625 878 0.0996 0.19
-F12 909 893 832 883 942 676 891 0.0973 0.15

Precission (%) Recall (%) Acc. Perf. 10-Fold
C1 C2 C3 C1 Cc2 C3 (%) Cross-Valid.

1 HealthyInd. -F5 829 90.6 725 775 921 738 86.0 0.1186 0.16
-F12 830 919 769 81.8 925 762 87.6 0.1055 0.14

2 Sleep Apnea -F5 86.0 917 735 90.6 933 624 880 0.1061 0.17
-F12 875 922 747 924 934 641 887 0.1015 0.15

3 RLSyndrome -F5 859 920 813 86.3 931 759 893 0.1006 0.15
-F12 875 922 80.0 863 935 767 89.6 0.0953 0.12

4 SAandRLSyn.-F5 830 897 819 84.0 914 726 869 0.1063 0.21
-F12 840 909 839 86.1 919 753 881 0.1049 0.14

Diagnosis (Male)

Diagnosis (Female)
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An analysis of the features in each 30 s long PSG segment was then performed for spectral
components in selected regions for the EEG, Flow and OCG channels for all 184 individuals.
This resulted in the specification of the pattern matrix for the adaptive classification by the two
layer neural network after the learning process based on associated target values. Results for the
training, validation and test sets for healthy individuals (after about 15,000 training epochs) are
presented in associated confusion matrices presented in Table 7 for classification into three classes
using 12 (F12) multimodal (EEG, Flow and ECG) features. The highest true-positive rate was achieved
for the second (NonREM) class and all these sets.

Table 7. Confusion matrix of the classification neural network model for the training, validation, and
test sets of sleep stages (for healthy individuals) with true positive values on the matrix diagonal (in

the bold).
Training Set Target Class
k 1 2 3 FP (k) PPV (k)
4644 601 236 837  84.7%
Output
Class 2 368 10,971 534 902  92.4%
3 152 405 1958 557  77.9%
FN (k) 520 1006 770 ACC: 88.4%
TPR (k) 89.9% 91.6% 71.8%  Error: 11.6%
Validation Set Target Class
k 1 2 3 FP (k) PPV (k)
1 1007 144 38 182 84.7%
Output
Class 2 85 2304 114 199 92.0%
3 44 95 421 139 752%
FN (k) 129 239 152 ACC: 87.8%
TPR (k) 88.6% 90.6% 73.5%  Error: 12.2%
Test Set Target Class
k 1 2 3 FP (k) PPV (k)
1007 155 49 204  83.2%
Output
Class 2 76 2337 106 182 92.8%
3 34 79 416 113 78.6%

FN (k) 110 234 155 ACC: 88.3%
TPR (k) 902% 909% 72.9%  Error: 11.7%

Figure 7 presents the target and predicted classes of three selected patients with sleep apnea
classified into three classes, including (a) class 1 (Wake), (b) class 2 (NonREM), and (c) class 3 (REM).
The associated ROC characteristics in Figure 7d show the true positive rate of each class against the
false positive rate of all other classes.

The final results including the accuracy and the performance of neural network models for
different sleep disorders and male/female sets of individuals are presented in Figure 8. The results
show the similarity in the accuracy for features evaluated from the single EEG channel (F5) and
different multimodal (EEG, Flow and OCG) channels (F12). The slightly lower accuracy achieved for
females in this case can be explained by the higher deviations of the associated features. The mean
classification accuracy is 88.7% (STD: 2.1) and 89.6% (STD: 1.9), respectively, for the given sets of
records and classification using single (F5) and multimodal (F12) features. This result can be explained



Appl. Sci. 2018, 8, 697

by the presence of additional attributes in the EEG channel. The accuracy achieved corresponds with

11 0f 14

that published in [25] for a smaller group of individuals and different feature sets.

Table 8 presents the summary of both the achieved global classificati

disorders with associated detailed values summarized in Table 6.
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Figure 7. Target and predicted classes of three selected patients with sleep apnea classified by the
adaptive neural network model into three classes including (a) class 1 (Wake); (b) class 2 (NonREM);

and (c) class 3 (REM) together with (d) associated ROC characteristics.
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Figure 8. Results of the training process presenting (a) the accuracy and (b) the performance of the
resulting model for different sleep disorders for sets of male and female individuals using EEG (F5)

and multimodal EEG, Flow and OCG (F12) features.

Table 8. Classification accuracy and the 10-fold cross-validation errors of the sets

of males and females

and precision of individual classes over all sleep disorders for 5 (F5) mean EEG power features and

12 (F12) features with an additional 4 features evaluated from the flow and electro-oculogram channels.
Accuracy (%) 10-Fold Cross-Valid. Precission (%)
Sex Class _
F5 F12 F5 F12 F5 F12
Male 89.9 90.7 0.15 0.11 Class 1: Wake 87.0 87.8
Female 87.6 88.5 0.17 0.14 Class 2: NonREM  91.5 92.2
Mean 88.7 89.6 0.16 0.12 Class 3: REM 78.6 80.5

4. Conclusions

This paper presents a method involving multi-class classification applied to the recognition of
sleep stages using a two layer neural network with the sigmoidal and the softmax transfer functions to
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evaluate the probabilities of the output classes. The training set includes overnight PSG records of
184 individuals forming an own database acquired and classified by the authors.

The proposed method allows the construction of a neural network and its training to recognize
sleep stages with a mean classification accuracy of 88.7% (STD: 2.1) specified in Tables 6 and 8 for
selected spectral features of the single EEG channel. The accuracy increased to 89.6% (STD: 1.9) for
multimodal features obtained from EEG, flow and EOG channels was not too high, probably owing to
the presence of corresponding artifacts in the EEG channels. The mean 10-fold cross-validation error
decreased from 0.16 (for 5 EEG features) to 0.12 (for 12 multimodal features).

The novel approach of the proposed method is the possibility of constructing a mathematical
model incorporating the individual experience of a neurologist, allowing a data classification close
to his previous strategy and an adaptive modification of model coefficients. Results obtained are
compared with selected existing methods in Table 9. The accuracy of sleep stages classification is
generally between 70% and 92% [22] and the accuracy of the current model is close to the upper limit
of this range.

Table 9. A comparison of the proposed method with further published results.

Reference Sleep Stages Signals and Features Model Dataset Accuracy

Fraiwan etal. [8]2010 VVake, REM EEG wavelet entropy and 35 et 84.0 %
NonREM1-4 (21 time-freq. features) discriminant analysis

Pan et al. [15] 2012 Wake, REM, SWS  EEG, EOG, EMG discrete hidden 20 subjects 85.3 %
NonREM1-2 (13 energy features) Markov model

Hsuetal. [27]2013  VVake, REM EEG Elman recurrent 8 subjects 87.2%
NonREM1-2 (6 energy features) neural classifier

Peker [22] 2016 Wake, REM EEG complex-valued 8 subjects 916 %
NonREM1-4 (8 complex features) neural networks

Sors et al. [18] 2018 Wake, REM raw EEG (no deep convolutional 5728 segments 87.0%
NonREM1-4 features selected) neural network

Current Study Wake, REM EEG, Flow, EOG Bayesian neulta.l 184 subjects 89.6 %
NonREM (12 energy features) network classifier (own data)

Current Study Wake, REM EEG Bayesian neur'a} 184 subjects 88.7 %
NonREM (5 energy features) network classifier (own data)

It is projected that the neural network model will be further used for more extensive datasets and
adaptation of the results to the experience of the neurologist to reduce the time necessary for manual
classification. A special attention will be paid to deep convolutional neural networks [17,18] that allow
row data processing without specification of separate features.
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