The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Participants
2.2. Go/Nogo Task, Apparatus and fMRI Design
2.3. Data Acquisition
2.4. Data Analysis
2.4.1. Behavioral Analysis
2.4.2. fMRI Preprocessing
2.4.3. Regions of Interest (ROI)
2.4.4. Event-Related Analyses of BOLD Signal Changes
- -
- Reactive, selective, inhibitory mechanisms: the difference in stimulus evoked activity between the nogo and go conditions (contrast ([nogo]-[go])).
- -
- Reactive, non-selective, inhibitory mechanisms: the difference in stimulus evoked activity between the two conditions of uncertainty (contrast ([nogo + go]-[go_control])). The contrast was balanced by weighting the go_control condition (x2) to compensate for the unequal number of trials.
- -
- Proactive, non-selective, inhibitory mechanisms: the difference in activity implemented in the pre-stimulus period between the two conditions of uncertainty (contrast [(red cue)-(green cue)]).
2.4.5. Psychophysiological Interactions (PPI)
3. Results
3.1. Behaviour
3.2. Event-Related Analyses of BOLD Signal Changes
3.2.1. Reactive, Selective Brain Activity
3.2.2. Reactive, Non-Selective (Context Dependent) Brain Activity
3.2.3. Proactive, Non-Selective (Context Dependent) Brain Activity
4. Discussion
4.1. Advantages and Limitations of the Experimental Task
4.2. The Role of the Dorsal Striatum, STN and GPi in Reactive Non-Selective Inhibition
4.3. The Role of the Ventral Striatum in Proactive Inhibition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BG | Basal ganglia |
DBS | deep brain stimulation |
GLM | general linear model |
GPe | globus pallidus external segment |
GPi | globus pallidus internal segment |
NAc | nucleus accumbens |
PD | Parkinson’s disease |
PPI | psychophysiological interactions |
ROI | region of interest |
RT | reaction time |
STN | subthalamic nucleus |
SN | substantia nigra |
References
- Logan, G.D.; Cowan, W.B. On the Ability to Inhibit Thought and Action: A Theory of an Act of Control. Psychol. Rev. 1984, 91, 295–327. [Google Scholar] [CrossRef]
- Aron, A.R. The Neural Basis of Inhibition in Cognitive Control. Neuroscientist 2007, 13, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.D.; Garavan, H.; Bellgrove, M.A. Insights into the Neural Basis of Response Inhibition from Cognitive and Clinical Neuroscience. Neurosci. Biobehav. Rev. 2009, 33, 631–646. [Google Scholar] [CrossRef]
- De Jong, R.; Coles, M.G.; Logan, G.D. Strategies and Mechanisms in Nonselective and Selective Inhibitory Motor Control. J. Exp. Psychol. Hum. Percept. Perform. 1995, 21, 498–511. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, F.; Logan, G.D. Response Inhibition in the Stop-Signal Paradigm. Trends Cogn. Sci. 2008, 12, 418–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbruggen, F.; Logan, G.D. Models of Response Inhibition in the Stop-Signal and Stop-Change Paradigms. Neurosci. Biobehav. Rev. 2009, 33, 647–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swick, D.; Ashley, V.; Turken, U. Are the Neural Correlates of Stopping and Not Going Identical? Quantitative Meta-Analysis of Two Response Inhibition Tasks. NeuroImage 2011, 56, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- van den Wildenberg, W.P.M.; Wylie, S.A.; Forstmann, B.U.; Burle, B.; Hasbroucq, T.; Ridderinkhof, K.R. To Head or to Heed? Beyond the Surface of Selective Action Inhibition: A Review. Front. Hum. Neurosci. 2010, 4, 222. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.J. Hold Your Horses: A Dynamic Computational Role for the Subthalamic Nucleus in Decision Making. Neural Netw. Off. J. Int. Neural Netw. Soc. 2006, 19, 1120–1136. [Google Scholar] [CrossRef] [Green Version]
- Albares, M.; Lio, G.; Criaud, M.; Anton, J.-L.; Desmurget, M.; Boulinguez, P. The Dorsal Medial Frontal Cortex Mediates Automatic Motor Inhibition in Uncertain Contexts: Evidence from Combined FMRI and EEG Studies. Hum. Brain Mapp. 2014, 35, 5517–5531. [Google Scholar] [CrossRef]
- Aron, A.R. From Reactive to Proactive and Selective Control: Developing a Richer Model for Stopping Inappropriate Responses. Biol. Psychiatry 2011, 69, e55–e68. [Google Scholar] [CrossRef] [Green Version]
- Jaffard, M.; Benraiss, A.; Longcamp, M.; Velay, J.-L.; Boulinguez, P. Cueing Method Biases in Visual Detection Studies. Brain Res. 2007, 1179, 106–118. [Google Scholar] [CrossRef]
- Jaffard, M.; Longcamp, M.; Velay, J.-L.; Anton, J.-L.; Roth, M.; Nazarian, B.; Boulinguez, P. Proactive Inhibitory Control of Movement Assessed by Event-Related FMRI. NeuroImage 2008, 42, 1196–1206. [Google Scholar] [CrossRef]
- Boulinguez, P.; Jaffard, M.; Granjon, L.; Benraiss, A. Warning Signals Induce Automatic EMG Activations and Proactive Volitional Inhibition: Evidence from Analysis of Error Distribution in Simple RT. J. Neurophysiol. 2008, 99, 1572–1578. [Google Scholar] [CrossRef] [Green Version]
- Boulinguez, P.; Ballanger, B.; Granjon, L.; Benraiss, A. The Paradoxical Effect of Warning on Reaction Time: Demonstrating Proactive Response Inhibition with Event-Related Potentials. Clin. Neurophysiol. 2009, 120, 730–737. [Google Scholar] [CrossRef]
- Boy, F.; Husain, M.; Sumner, P. Unconscious Inhibition Separates Two Forms of Cognitive Control. Proc. Natl. Acad. Sci. USA 2010, 107, 11134. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Scangos, K.W.; Stuphorn, V. Supplementary Motor Area Exerts Proactive and Reactive Control of Arm Movements. J. Neurosci. 2010, 30, 14657–14675. [Google Scholar] [CrossRef]
- Chikazoe, J.; Jimura, K.; Hirose, S.; Yamashita, K.; Miyashita, Y.; Konishi, S. Preparation to Inhibit a Response Complements Response Inhibition during Performance of a Stop-Signal Task. J. Neurosci. 2009, 29, 15870–15877. [Google Scholar] [CrossRef]
- Claffey, M.P.; Sheldon, S.; Stinear, C.M.; Verbruggen, F.; Aron, A.R. Having a Goal to Stop Action Is Associated with Advance Control of Specific Motor Representations. Neuropsychologia 2010, 48, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Criaud, M.; Wardak, C.; Ben Hamed, S.; Ballanger, B.; Boulinguez, P. Proactive Inhibitory Control of Response as the Default State of Executive Control. Front. Psychol. 2012, 3, 59. [Google Scholar] [CrossRef] [Green Version]
- Criaud, M.; Longcamp, M.; Anton, J.-L.; Nazarian, B.; Roth, M.; Sescousse, G.; Strafella, A.P.; Ballanger, B.; Boulinguez, P. Testing the Physiological Plausibility of Conflicting Psychological Models of Response Inhibition: A Forward Inference FMRI Study. Behav. Brain Res. 2017, 333, 192–202. [Google Scholar] [CrossRef]
- Forstmann, B.U.; Dutilh, G.; Brown, S.; Neumann, J.; von Cramon, D.Y.; Ridderinkhof, K.R.; Wagenmakers, E.-J. Striatum and Pre-SMA Facilitate Decision-Making under Time Pressure. Proc. Natl. Acad. Sci. USA 2008, 105, 17538–17542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forstmann, B.U.; Brown, S.; Dutilh, G.; Neumann, J.; Wagenmakers, E.-J. The Neural Substrate of Prior Information in Perceptual Decision Making: A Model-Based Analysis. Front. Hum. Neurosci. 2010, 4, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Li, C.-S.R. Neural Processes of Preparatory Control for Stop Signal Inhibition. Hum. Brain Mapp. 2012, 33, 2785–2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, C.-C.; Boucher, L.; Paré, M.; Schall, J.D.; Wang, X.-J. Proactive Inhibitory Control and Attractor Dynamics in Countermanding Action: A Spiking Neural Circuit Model. J. Neurosci. 2009, 29, 9059–9071. [Google Scholar] [CrossRef]
- Stuphorn, V.; Brown, J.W.; Schall, J.D. Role of Supplementary Eye Field in Saccade Initiation: Executive, Not Direct, Control. J. Neurophysiol. 2010, 103, 801–816. [Google Scholar] [CrossRef]
- Zandbelt, B.B.; Bloemendaal, M.; Neggers, S.F.W.; Kahn, R.S.; Vink, M. Expectations and Violations: Delineating the Neural Network of Proactive Inhibitory Control. Hum. Brain Mapp. 2013, 34, 2015–2024. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Wiecki, T.V.; Cohen, M.X.; Figueroa, C.M.; Samanta, J.; Sherman, S.J.; Frank, M.J. Subthalamic Nucleus Stimulation Reverses Mediofrontal Influence over Decision Threshold. Nat. Neurosci. 2011, 14, 1462–1467. [Google Scholar] [CrossRef]
- Frank, M.J. Computational Models of Motivated Action Selection in Corticostriatal Circuits. Curr. Opin. Neurobiol. 2011, 21, 381–386. [Google Scholar] [CrossRef]
- Dunovan, K.; Lynch, B.; Molesworth, T.; Verstynen, T. Competing Basal Ganglia Pathways Determine the Difference between Stopping and Deciding Not to Go. eLife 2015, 4, e08723. [Google Scholar] [CrossRef]
- Leunissen, I.; Coxon, J.P.; Swinnen, S.P. A Proactive Task Set Influences How Response Inhibition Is Implemented in the Basal Ganglia. Hum. Brain Mapp. 2016, 37, 4706–4717. [Google Scholar] [CrossRef]
- Jahfari, S.; Verbruggen, F.; Frank, M.J.; Waldorp, L.J.; Colzato, L.; Ridderinkhof, K.R.; Forstmann, B.U. How Preparation Changes the Need for Top–Down Control of the Basal Ganglia When Inhibiting Premature Actions. J. Neurosci. 2012, 32, 10870–10878. [Google Scholar] [CrossRef] [Green Version]
- Jahfari, S.; Stinear, C.M.; Claffey, M.; Verbruggen, F.; Aron, A.R. Responding with Restraint: What Are the Neurocognitive Mechanisms? J. Cogn. Neurosci. 2010, 22, 1479–1492. [Google Scholar] [CrossRef] [Green Version]
- Vink, M.; Kaldewaij, R.; Zandbelt, B.B.; Pas, P.; du Plessis, S. The Role of Stop-Signal Probability and Expectation in Proactive Inhibition. Eur. J. Neurosci. 2015, 41, 1086–1094. [Google Scholar] [CrossRef]
- Majid, D.S.A.; Cai, W.; Corey-Bloom, J.; Aron, A.R. Proactive Selective Response Suppression Is Implemented via the Basal Ganglia. J. Neurosci. 2013, 33, 13259–13269. [Google Scholar] [CrossRef]
- Criaud, M.; Boulinguez, P. Have We Been Asking the Right Questions When Assessing Response Inhibition in Go/No-Go Tasks with FMRI? A Meta-Analysis and Critical Review. Neurosci. Biobehav. Rev. 2013, 37, 11–23. [Google Scholar] [CrossRef]
- Mirabella, G. Should I Stay or Should I Go? Conceptual Underpinnings of Goal-Directed Actions. Front. Syst. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Klaus, A.; da Silva, J.A.; Costa, R.M. What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annu. Rev. Neurosci. 2019, 42, 459–483. [Google Scholar] [CrossRef] [Green Version]
- Nambu, A. Seven Problems on the Basal Ganglia. Curr. Opin. Neurobiol. 2008, 18, 595–604. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Rothwell, J.C. Inhibitory Dysfunction Contributes to Some of the Motor and Non-Motor Symptoms of Movement Disorders and Psychiatric Disorders. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160198. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.-C.; Aron, A.R. Unconsciously Triggered Response Inhibition Requires an Executive Setting. J. Exp. Psychol. Gen. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terra, H.; Bruinsma, B.; de Kloet, S.F.; van der Roest, M.; Pattij, T.; Mansvelder, H.D. Prefrontal Cortical Projection Neurons Targeting Dorsomedial Striatum Control Behavioral Inhibition. Curr. Biol. 2020, 30, 4188–4200.e5. [Google Scholar] [CrossRef] [PubMed]
- Perri, R.L. Is There a Proactive and a Reactive Mechanism of Inhibition? Towards an Executive Account of the Attentional Inhibitory Control Model. Behav. Brain Res. 2020, 377, 112243. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, D.J.; Pekar, J.J.; Mostofsky, S.H. Meta-Analysis of Go/No-Go Tasks Demonstrating That FMRI Activation Associated with Response Inhibition Is Task-Dependent. Neuropsychologia 2008, 46, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Hampshire, A.; Chamberlain, S.R.; Monti, M.M.; Duncan, J.; Owen, A.M. The Role of the Right Inferior Frontal Gyrus: Inhibition and Attentional Control. NeuroImage 2010, 50, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Hampshire, A.; Sharp, D.J. Contrasting Network and Modular Perspectives on Inhibitory Control. Trends Cogn. Sci. 2015, 19, 445–452. [Google Scholar] [CrossRef]
- Zhang, R.; Geng, X.; Lee, T.M.C. Large-Scale Functional Neural Network Correlates of Response Inhibition: An FMRI Meta-Analysis. Brain Struct. Funct. 2017, 222, 3973–3990. [Google Scholar] [CrossRef] [Green Version]
- Swick, D.; Chatham, C.H. Ten Years of Inhibition Revisited. Front. Hum. Neurosci. 2014, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Alexander, G.E.; Crutcher, M.D. Functional Architecture of Basal Ganglia Circuits: Neural Substrates of Parallel Processing. Trends Neurosci. 1990, 13, 266–271. [Google Scholar] [CrossRef]
- Mink, J.W. The Basal Ganglia: Focused Selection and Inhibition of Competing Motor Programs. Prog. Neurobiol. 1996, 50, 381–425. [Google Scholar] [CrossRef]
- Nambu, A.; Tokuno, H.; Takada, M. Functional Significance of the Cortico-Subthalamo-Pallidal “hyperdirect” Pathway. Neurosci. Res. 2002, 43, 111–117. [Google Scholar] [CrossRef]
- Nambu, A. A New Dynamic Model of the Cortico-Basal Ganglia Loop. Prog. Brain Res. 2004, 143, 461–466. [Google Scholar] [CrossRef]
- Albin, R.L.; Young, A.B.; Penney, J.B. The Functional Anatomy of Basal Ganglia Disorders. Trends Neurosci. 1989, 12, 366–375. [Google Scholar] [CrossRef]
- Aron, A.R.; Poldrack, R.A. Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 2424–2433. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.J.; Samanta, J.; Moustafa, A.A.; Sherman, S.J. Hold Your Horses: Impulsivity, Deep Brain Stimulation, and Medication in Parkinsonism. Science 2007, 318, 1309–1312. [Google Scholar] [CrossRef] [Green Version]
- Isoda, M.; Hikosaka, O. Switching from Automatic to Controlled Action by Monkey Medial Frontal Cortex. Nat. Neurosci. 2007, 10, 240–248. [Google Scholar] [CrossRef]
- Benis, D.; David, O.; Lachaux, J.-P.; Seigneuret, E.; Krack, P.; Fraix, V.; Chabardès, S.; Bastin, J. Subthalamic Nucleus Activity Dissociates Proactive and Reactive Inhibition in Patients with Parkinson’s Disease. NeuroImage 2014, 91, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Alegre, M.; Lopez-Azcarate, J.; Obeso, I.; Wilkinson, L.; Rodriguez-Oroz, M.C.; Valencia, M.; Garcia-Garcia, D.; Guridi, J.; Artieda, J.; Jahanshahi, M.; et al. The Subthalamic Nucleus Is Involved in Successful Inhibition in the Stop-Signal Task: A Local Field Potential Study in Parkinson’s Disease. Exp. Neurol. 2013, 239, 1–12. [Google Scholar] [CrossRef]
- Mirabella, G.; Iaconelli, S.; Romanelli, P.; Modugno, N.; Lena, F.; Manfredi, M.; Cantore, G. Deep Brain Stimulation of Subthalamic Nuclei Affects Arm Response Inhibition in Parkinson’s Patients. Cereb. Cortex N. Y. N 1991 2012, 22, 1124–1132. [Google Scholar] [CrossRef] [Green Version]
- van den Wildenberg, W.P.M.; van Boxtel, G.J.M.; van der Molen, M.W.; Bosch, D.A.; Speelman, J.D.; Brunia, C.H.M. Stimulation of the Subthalamic Region Facilitates the Selection and Inhibition of Motor Responses in Parkinson’s Disease. J. Cogn. Neurosci. 2006, 18, 626–636. [Google Scholar] [CrossRef] [Green Version]
- Swann, N.; Poizner, H.; Houser, M.; Gould, S.; Greenhouse, I.; Cai, W.; Strunk, J.; George, J.; Aron, A.R. Deep Brain Stimulation of the Subthalamic Nucleus Alters the Cortical Profile of Response Inhibition in the Beta Frequency Band: A Scalp EEG Study in Parkinson’s Disease. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 5721–5729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Wouwe, N.C.; Pallavaram, S.; Phibbs, F.T.; Martinez-Ramirez, D.; Neimat, J.S.; Dawant, B.M.; D’Haese, P.F.; Kanoff, K.E.; van den Wildenberg, W.P.M.; Okun, M.S.; et al. Focused Stimulation of Dorsal Subthalamic Nucleus Improves Reactive Inhibitory Control of Action Impulses. Neuropsychologia 2017, 99, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabella, G.; Iaconelli, S.; Modugno, N.; Giannini, G.; Lena, F.; Cantore, G. Stimulation of Subthalamic Nuclei Restores a Near Normal Planning Strategy in Parkinson’s Patients. PLoS ONE 2013, 8, e62793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spay, C.; Albares, M.; Lio, G.; Thobois, S.; Broussolle, E.; Lau, B.; Ballanger, B.; Boulinguez, P. Clonidine Modulates the Activity of the Subthalamic-Supplementary Motor Loop: Evidence from a Pharmacological Study Combining Deep Brain Stimulation and Electroencephalography Recordings in Parkinsonian Patients. J. Neurochem. 2018, 146, 333–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albares, M.; Thobois, S.; Favre, E.; Broussolle, E.; Polo, G.; Domenech, P.; Boulinguez, P.; Ballanger, B. Interaction of Noradrenergic Pharmacological Manipulation and Subthalamic Stimulation on Movement Initiation Control in Parkinson’s Disease. Brain Stimulat. 2015, 8, 27–35. [Google Scholar] [CrossRef]
- Favre, E.; Ballanger, B.; Thobois, S.; Broussolle, E.; Boulinguez, P. Deep Brain Stimulation of the Subthalamic Nucleus, but Not Dopaminergic Medication, Improves Proactive Inhibitory Control of Movement Initiation in Parkinson’s Disease. Neurother. J. Am. Soc. Exp. Neurother. 2013, 10, 154–167. [Google Scholar] [CrossRef] [Green Version]
- Ballanger, B.; van Eimeren, T.; Moro, E.; Lozano, A.M.; Hamani, C.; Boulinguez, P.; Pellecchia, G.; Houle, S.; Poon, Y.Y.; Lang, A.E.; et al. Stimulation of the Subthalamic Nucleus and Impulsivity. Ann. Neurol. 2009, 66, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Bari, A.; Robbins, T.W. Inhibition and Impulsivity: Behavioral and Neural Basis of Response Control. Prog. Neurobiol. 2013, 108, 44–79. [Google Scholar] [CrossRef]
- Mathai, A.; Smith, Y. The Corticostriatal and Corticosubthalamic Pathways: Two Entries, One Target. So What? Front. Syst. Neurosci. 2011, 5. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Jun, S.B.; Jin, X.; Pham, M.D.; Vogel, S.S.; Lovinger, D.M.; Costa, R.M. Concurrent Activation of Striatal Direct and Indirect Pathways during Action Initiation. Nature 2013, 494, 238–242. [Google Scholar] [CrossRef]
- Benis, D.; David, O.; Piallat, B.; Kibleur, A.; Goetz, L.; Bhattacharjee, M.; Fraix, V.; Seigneuret, E.; Krack, P.; Chabardès, S.; et al. Response Inhibition Rapidly Increases Single-Neuron Responses in the Subthalamic Nucleus of Patients with Parkinson’s Disease. Cortex 2016, 84, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Jahanshahi, M.; Obeso, I.; Rothwell, J.C.; Obeso, J.A. A Fronto-Striato-Subthalamic-Pallidal Network for Goal-Directed and Habitual Inhibition. Nat. Rev. Neurosci. 2015, 16, 719–732. [Google Scholar] [CrossRef]
- Miller, E.K. The Prefrontal Cortex and Cognitive Control. Nat. Rev. Neurosci. 2000, 1, 59–65. [Google Scholar] [CrossRef]
- Floresco, S.B. The Nucleus Accumbens: An Interface between Cognition, Emotion, and Action. Annu. Rev. Psychol. 2015, 66, 25–52. [Google Scholar] [CrossRef]
- Rodriguez-Oroz, M.C.; Jahanshahi, M.; Krack, P.; Litvan, I.; Macias, R.; Bezard, E.; Obeso, J.A. Initial Clinical Manifestations of Parkinson’s Disease: Features and Pathophysiological Mechanisms. Lancet Neurol. 2009, 8, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- McBride, J.; Boy, F.; Husain, M.; Sumner, P. Automatic Motor Activation in the Executive Control of Action. Front. Hum. Neurosci. 2012, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Sumner, P.; Husain, M. At the Edge of Consciousness: Automatic Motor Activation and Voluntary Control. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2008, 14, 474–486. [Google Scholar] [CrossRef]
- Mirabella, G.; Pani, P.; Ferraina, S. Context Influences on the Preparation and Execution of Reaching Movements. Cogn. Neuropsychol. 2008, 25, 996–1010. [Google Scholar] [CrossRef]
- Friston, K.J.; Holmes, A.P.; Poline, J.B.; Grasby, P.J.; Williams, S.C.; Frackowiak, R.S.; Turner, R. Analysis of FMRI Time-Series Revisited. NeuroImage 1995, 2, 45–53. [Google Scholar] [CrossRef]
- Keuken, M.C.; Bazin, P.-L.; Schäfer, A.; Neumann, J.; Turner, R.; Forstmann, B.U. Ultra-High 7T MRI of Structural Age-Related Changes of the Subthalamic Nucleus. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 4896–4900. [Google Scholar] [CrossRef] [Green Version]
- Tziortzi, A.C.; Haber, S.N.; Searle, G.E.; Tsoumpas, C.; Long, C.J.; Shotbolt, P.; Douaud, G.; Jbabdi, S.; Behrens, T.E.J.; Rabiner, E.A.; et al. Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography. Cereb. Cortex 2013, bhs397. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Buechel, C.; Fink, G.R.; Morris, J.; Rolls, E.; Dolan, R.J. Psychophysiological and Modulatory Interactions in Neuroimaging. NeuroImage 1997, 6, 218–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reilly, J.X.; Woolrich, M.W.; Behrens, T.E.J.; Smith, S.M.; Johansen-Berg, H. Tools of the Trade: Psychophysiological Interactions and Functional Connectivity. Soc. Cogn. Affect. Neurosci. 2012, 7, 604–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandbelt, B.B.; Vink, M. On the Role of the Striatum in Response Inhibition. PLoS ONE 2010, 5, e13848. [Google Scholar] [CrossRef] [PubMed]
- Duann, J.-R.; Ide, J.S.; Luo, X.; Li, C.R. Functional Connectivity Delineates Distinct Roles of the Inferior Frontal Cortex and Presupplementary Motor Area in Stop Signal Inhibition. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 10171–10179. [Google Scholar] [CrossRef] [Green Version]
- Vink, M.; Kahn, R.S.; Raemaekers, M.; van den Heuvel, M.; Boersma, M.; Ramsey, N.F. Function of Striatum beyond Inhibition and Execution of Motor Responses. Hum. Brain Mapp. 2005, 25, 336–344. [Google Scholar] [CrossRef]
- Forstmann, B.U.; de Hollander, G.; van Maanen, L.; Alkemade, A.; Keuken, M.C. Towards a Mechanistic Understanding of the Human Subcortex. Nat. Rev. Neurosci. 2016, 18, 57–65. [Google Scholar] [CrossRef]
- Wessel, J.R.; Waller, D.A.; Greenlee, J.D. Non-Selective Inhibition of Inappropriate Motor-Tendencies during Response-Conflict by a Fronto-Subthalamic Mechanism. eLife 2019, 8, 42959. [Google Scholar] [CrossRef]
- Kohl, S.; Aggeli, K.; Obeso, I.; Speekenbrink, M.; Limousin, P.; Kuhn, J.; Jahanshahi, M. In Parkinson’s Disease Pallidal Deep Brain Stimulation Speeds up Response Initiation but Has No Effect on Reactive Inhibition. J. Neurol. 2015, 262, 1741–1750. [Google Scholar] [CrossRef]
- Zhang, F.; Iwaki, S. Common Neural Network for Different Functions: An Investigation of Proactive and Reactive Inhibition. Front. Behav. Neurosci. 2019, 13, 124. [Google Scholar] [CrossRef] [Green Version]
- Hell, F.; Taylor, P.C.J.; Mehrkens, J.H.; Bötzel, K. Subthalamic Stimulation, Oscillatory Activity and Connectivity Reveal Functional Role of STN and Network Mechanisms during Decision Making under Conflict. NeuroImage 2018, 171, 222–233. [Google Scholar] [CrossRef]
- Mancini, C.; Modugno, N.; Santilli, M.; Pavone, L.; Grillea, G.; Morace, R.; Mirabella, G. Unilateral Stimulation of Subthalamic Nucleus Does Not Affect Inhibitory Control. Front. Neurol. 2018, 9, 1149. [Google Scholar] [CrossRef]
- Li, C.-S.R.; Yan, P.; Sinha, R.; Lee, T.-W. Subcortical Processes of Motor Response Inhibition during a Stop Signal Task. NeuroImage 2008, 41, 1352–1363. [Google Scholar] [CrossRef] [Green Version]
- Maizey, L.; Evans, C.J.; Muhlert, N.; Verbruggen, F.; Chambers, C.D.; Allen, C.P.G. Cortical and Subcortical Functional Specificity Associated with Response Inhibition. NeuroImage 2020, 220, 117110. [Google Scholar] [CrossRef]
- Swick, D.; Ashley, V.; Turken, U. Left Inferior Frontal Gyrus Is Critical for Response Inhibition. BMC Neurosci. 2008, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, G.; Fragola, M.; Giannini, G.; Modugno, N.; Lakens, D. Inhibitory Control Is Not Lateralized in Parkinson’s Patients. Neuropsychologia 2017, 102, 177–189. [Google Scholar] [CrossRef]
- Di Caprio, V.; Modugno, N.; Mancini, C.; Olivola, E.; Mirabella, G. Early-Stage Parkinson’s Patients Show Selective Impairment in Reactive but Not Proactive Inhibition. Mov. Disord. 2020, 35, 409–418. [Google Scholar] [CrossRef]
- Cai, W.; Oldenkamp, C.L.; Aron, A.R. A Proactive Mechanism for Selective Suppression of Response Tendencies. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 5965–5969. [Google Scholar] [CrossRef] [Green Version]
- van Belle, J.; Vink, M.; Durston, S.; Zandbelt, B.B. Common and Unique Neural Networks for Proactive and Reactive Response Inhibition Revealed by Independent Component Analysis of Functional MRI Data. NeuroImage 2014, 103, 65–74. [Google Scholar] [CrossRef]
- Li, C.R.; Huang, C.; Yan, P.; Paliwal, P.; Constable, R.T.; Sinha, R. Neural Correlates of Post-Error Slowing during a Stop Signal Task: A Functional Magnetic Resonance Imaging Study. J. Cogn. Neurosci. 2008, 20, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Ghahremani, D.G.; Lee, B.; Robertson, C.L.; Tabibnia, G.; Morgan, A.T.; De Shetler, N.; Brown, A.K.; Monterosso, J.R.; Aron, A.R.; Mandelkern, M.A.; et al. Striatal Dopamine D2/D3 Receptors Mediate Response Inhibition and Related Activity in Frontostriatal Neural Circuitry in Humans. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 7316–7324. [Google Scholar] [CrossRef]
- Middleton, F.A.; Strick, P.L. Cerebellar Projections to the Prefrontal Cortex of the Primate. J. Neurosci. 2001, 21, 700–712. [Google Scholar] [CrossRef]
- Buzsáki, G.; Kaila, K.; Raichle, M. Inhibition and Brain Work. Neuron 2007, 56, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, N.K. What We Can Do and What We Cannot Do with FMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef]
- Eagle, D.M.; Robbins, T.W. Lesions of the Medial Prefrontal Cortex or Nucleus Accumbens Core Do Not Impair Inhibitory Control in Rats Performing a Stop-Signal Reaction Time Task. Behav. Brain Res. 2003, 146, 131–144. [Google Scholar] [CrossRef]
- Eagle, D.M.; Wong, J.C.K.; Allan, M.E.; Mar, A.C.; Theobald, D.E.; Robbins, T.W. Contrasting Roles for Dopamine D1 and D2 Receptor Subtypes in the Dorsomedial Striatum but Not the Nucleus Accumbens Core during Behavioral Inhibition in the Stop-Signal Task in Rats. J. Neurosci. 2011, 31, 7349–7356. [Google Scholar] [CrossRef]
- Cools, R.; Barker, R.A.; Sahakian, B.J.; Robbins, T.W. Enhanced or Impaired Cognitive Function in Parkinson’s Disease as a Function of Dopaminergic Medication and Task Demands. Cereb. Cortex 2001, 11, 1136–1143. [Google Scholar] [CrossRef]
- van Eimeren, T.; Monchi, O.; Ballanger, B.; Strafella, A.P. Dysfunction of the Default Mode Network in Parkinson Disease: A Functional Magnetic Resonance Imaging Study. Arch. Neurol. 2009, 66, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilia, R.; Ko, J.H.; Cho, S.S.; van Eimeren, T.; Marotta, G.; Pellecchia, G.; Pezzoli, G.; Antonini, A.; Strafella, A.P. Reduced Dopamine Transporter Density in the Ventral Striatum of Patients with Parkinson’s Disease and Pathological Gambling. Neurobiol. Dis. 2010, 39, 98–104. [Google Scholar] [CrossRef] [PubMed]
- van Eimeren, T.; Pellecchia, G.; Cilia, R.; Ballanger, B.; Steeves, T.D.L.; Houle, S.; Miyasaki, J.M.; Zurowski, M.; Lang, A.E.; Strafella, A.P. Drug-Induced Deactivation of Inhibitory Networks Predicts Pathological Gambling in PD. Neurology 2010, 75, 1711–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalley, J.W.; Everitt, B.J.; Robbins, T.W. Impulsivity, Compulsivity, and Top-down Cognitive Control. Neuron 2011, 69, 680–694. [Google Scholar] [CrossRef] [Green Version]
- Robinson, E.S.J.; Eagle, D.M.; Economidou, D.; Theobald, D.E.H.; Mar, A.C.; Murphy, E.R.; Robbins, T.W.; Dalley, J.W. Behavioural Characterisation of High Impulsivity on the 5-Choice Serial Reaction Time Task: Specific Deficits in “waiting” versus “Stopping”. Behav. Brain Res. 2009, 196, 310–316. [Google Scholar] [CrossRef]
- Basar, K.; Sesia, T.; Groenewegen, H.; Steinbusch, H.W.M.; Visser-Vandewalle, V.; Temel, Y. Nucleus Accumbens and Impulsivity. Prog. Neurobiol. 2010, 92, 533–557. [Google Scholar] [CrossRef] [PubMed]
- Albares, M.; Criaud, M.; Wardak, C.; Nguyen, S.C.T.; Ben Hamed, S.; Boulinguez, P. Attention to Baseline: Does Orienting Visuospatial Attention Really Facilitate Target Detection? J. Neurophysiol. 2011, 106, 809–816. [Google Scholar] [CrossRef]
- Xia, X.; Fan, L.; Cheng, C.; Eickhoff, S.B.; Chen, J.; Li, H.; Jiang, T. Multimodal Connectivity-Based Parcellation Reveals a Shell-Core Dichotomy of the Human Nucleus Accumbens. Hum. Brain Mapp. 2017, 38, 3878–3898. [Google Scholar] [CrossRef] [Green Version]
- Cservenka, A.; Casimo, K.; Fair, D.A.; Nagel, B.J. Resting State Functional Connectivity of the Nucleus Accumbens in Youth with a Family History of Alcoholism. Psychiatry Res. 2014, 221, 210–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiland, B.J.; Welsh, R.C.; Yau, W.-Y.W.; Zucker, R.A.; Zubieta, J.-K.; Heitzeg, M.M. Accumbens Functional Connectivity during Reward Mediates Sensation-Seeking and Alcohol Use in High-Risk Youth. Drug Alcohol Depend. 2013, 128, 130–139. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, P.A.; MacDonald, A.A.; Seergobin, K.N.; Tamjeedi, R.; Ganjavi, H.; Provost, J.-S.; Monchi, O. The Effect of Dopamine Therapy on Ventral and Dorsal Striatum-Mediated Cognition in Parkinson’s Disease: Support from Functional MRI. Brain 2011, 134, 1447–1463. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.; Marsden, C. What Do the Basal Ganglia Do? Lancet 1998, 351, 1801–1804. [Google Scholar] [CrossRef]
- Cools, R. Dopaminergic Modulation of Cognitive Function-Implications for l-DOPA Treatment in Parkinson’s Disease. Neurosci. Biobehav. Rev. 2006, 30, 1–23. [Google Scholar] [CrossRef]
- Cools, R.; D’Esposito, M. Inverted-U–Shaped Dopamine Actions on Human Working Memory and Cognitive Control. Biol. Psychiatry 2011, 69, e113–e125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Schouwenburg, M.R.; den Ouden, H.E.M.; Cools, R. The Human Basal Ganglia Modulate Frontal-Posterior Connectivity during Attention Shifting. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 9910–9918. [Google Scholar] [CrossRef] [PubMed]
- Liljeholm, M.; O’Doherty, J.P. Contributions of the Striatum to Learning, Motivation, and Performance: An Associative Account. Trends Cogn. Sci. 2012, 16, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, P.A.; Monchi, O. Differential Effects of Dopaminergic Therapies on Dorsal and Ventral Striatum in Parkinson’s Disease: Implications for Cognitive Function. Park. Dis. 2011, 2011, 572743. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, S.R.; Sahakian, B.J. The Neuropsychiatry of Impulsivity. Curr. Opin. Psychiatry 2007, 20, 255–261. [Google Scholar] [CrossRef]
- Meyer, G.M.; Spay, C.; Laurencin, C.; Ballanger, B.; Sescousse, G.; Boulinguez, P. Functional Imaging Studies of Impulse Control Disorders in Parkinson’s Disease Need a Stronger Neurocognitive Footing. Neurosci. Biobehav. Rev. 2019, 98, 164–176. [Google Scholar] [CrossRef]
- Meyer, G.M.; Spay, C.; Beliakova, A.; Gaugain, G.; Pezzoli, G.; Ballanger, B.; Boulinguez, P.; Cilia, R. Inhibitory Control Dysfunction in Parkinsonian Impulse Control Disorders. Brain 2020, 143, 3734–3747. [Google Scholar] [CrossRef]
- Mirabella, G. Inhibitory Control and Impulsive Responses in Neurodevelopmental Disorders. Dev. Med. Child Neurol. 2021, 63, 520–526. [Google Scholar] [CrossRef]
- Spay, C.; Meyer, G.; Welter, M.-L.; Lau, B.; Boulinguez, P.; Ballanger, B. Functional Imaging Correlates of Akinesia in Parkinson’s Disease: Still Open Issues. NeuroImage Clin. 2019, 21, 101644. [Google Scholar] [CrossRef]
- Criaud, M.; Poisson, A.; Thobois, S.; Metereau, E.; Jérôme, R.; Danièle, I.; Baraduc, P.; Broussolle, E.; Strafella, A.P.; Ballanger, B.; et al. Slowness in Movement Initiation Is Associated with Proactive Inhibitory Network Dysfunction in Parkinson’s Disease. J. Park. Dis. 2016. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Robbins, T.W. Noradrenergic Modulation of Cognition: Therapeutic Implications. J. Psychopharmacol. 2013. [Google Scholar] [CrossRef]
- Del Campo, N.; Chamberlain, S.R.; Sahakian, B.J.; Robbins, T.W. The Roles of Dopamine and Noradrenaline in the Pathophysiology and Treatment of Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2011, 69, e145–e157. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criaud, M.; Anton, J.-L.; Nazarian, B.; Longcamp, M.; Metereau, E.; Boulinguez, P.; Ballanger, B. The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation. Brain Sci. 2021, 11, 560. https://doi.org/10.3390/brainsci11050560
Criaud M, Anton J-L, Nazarian B, Longcamp M, Metereau E, Boulinguez P, Ballanger B. The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation. Brain Sciences. 2021; 11(5):560. https://doi.org/10.3390/brainsci11050560
Chicago/Turabian StyleCriaud, Marion, Jean-Luc Anton, Bruno Nazarian, Marieke Longcamp, Elise Metereau, Philippe Boulinguez, and Bénédicte Ballanger. 2021. "The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation" Brain Sciences 11, no. 5: 560. https://doi.org/10.3390/brainsci11050560
APA StyleCriaud, M., Anton, J.-L., Nazarian, B., Longcamp, M., Metereau, E., Boulinguez, P., & Ballanger, B. (2021). The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation. Brain Sciences, 11(5), 560. https://doi.org/10.3390/brainsci11050560