Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CMR Protocol and Image Analysis
2.3. CCT Protocol and Image Analysis
2.4. Algorithm Protocol
2.5. Statistics
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talman, V.; Ruskoaho, H. Cardiac Fibrosis in Myocardial Infarction—From Repair and Remodeling to Regeneration. Cell Tissue Res. 2016, 365, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Bengel, F.M.; Diekmann, J.; Hess, A.; Jerosch-Herold, M. Myocardial Fibrosis: Emerging Target for Cardiac Molecular Imaging and Opportunity for Image-Guided Therapy. J. Nucl. Med. 2023, 64, 49S–58S. [Google Scholar] [CrossRef] [PubMed]
- López, B.; Ravassa, S.; Moreno, M.U.; José, G.S.; Beaumont, J.; González, A.; Díez, J. Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nat. Rev. Cardiol. 2021, 18, 479–498. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early Detection of Anthracycline Cardiotoxicity and Improvement With Heart Failure Therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef]
- Payne, D.L.; Nohria, A. Prevention of Chemotherapy Induced Cardiomyopathy. Curr. Heart Fail. Rep. 2017, 14, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Long, J.B.; Hurria, A.; Owusu, C.; Steingart, R.M.; Gross, C.P. Incidence of Heart Failure or Cardiomyopathy After Adjuvant Trastuzumab Therapy for Breast Cancer. J. Am. Coll. Cardiol. 2012, 60, 2504–2512. [Google Scholar] [CrossRef]
- Ferreira de Souza, T.; Silva, T.Q.A.C.; Neilan, T.G.; Coelho-Filho, O.R. Assessment of Cardiotoxicity of Cancer Chemotherapy: The Value of Cardiac MRI. Magn. Reson. Imaging Clin. N. Am. 2019, 27, 533–544. [Google Scholar] [CrossRef]
- Haaf, P.; Garg, P.; Messroghli, D.R.; Broadbent, D.A.; Greenwood, J.P.; Plein, S. Cardiac T1 Mapping and Extracellular Volume (ECV) in Clinical Practice: A Comprehensive Review. J. Cardiovasc. Magn. Reson. 2016, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Aquaro, G.D.; De Gori, C.; Faggioni, L.; Parisella, M.L.; Cioni, D.; Lencioni, R.; Neri, E. Diagnostic and Prognostic Role of Late Gadolinium Enhancement in Cardiomyopathies. Eur. Heart J. Suppl. J. Eur. Soc. Cardiol. 2023, 25, C130–C136. [Google Scholar] [CrossRef]
- Bull, S.; White, S.K.; Piechnik, S.K.; Flett, A.S.; Ferreira, V.M.; Loudon, M.; Francis, J.M.; Karamitsos, T.D.; Prendergast, B.D.; Robson, M.D.; et al. Human Non-Contrast T1 Values and Correlation with Histology in Diffuse Fibrosis. Heart 2013, 99, 932–937. [Google Scholar] [CrossRef]
- Kwong, R.Y.; Kramer, C.M.; Chandrashekhar, Y. CMR Global Longitudinal Strain: A Better Tool for Unraveling the Links to Heart Failure Mortality. JACC Cardiovasc. Imaging 2018, 11, 1554–1555. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, J.; Wang, Y.; Qi, L.; Li, F.; Liu, J.; Chen, J.; Fan, Y.; Xie, L. Longitudinal Assessment of Cardiac Parameters through MRI in Breast Cancer Patients Treated with Anti-HER2 Therapy. Eur. Radiol. Exp. 2023, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Houbois, C.P.; Nolan, M.; Somerset, E.; Shalmon, T.; Esmaeilzadeh, M.; Lamacie, M.M.; Amir, E.; Brezden-Masley, C.; Koch, C.A.; Thevakumaran, Y.; et al. Serial Cardiovascular Magnetic Resonance Strain Measurements to Identify Cardiotoxicity in Breast Cancer: Comparison With Echocardiography. JACC Cardiovasc. Imaging 2021, 14, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, Z.; Schoepf, U.J.; Varga-Szemes, A.; Strigenz, A.; Wang, H.; Liu, Y.; Xu, L. Monitoring of Anthracycline-Induced Myocardial Injury Using Serial Cardiac Magnetic Resonance: An Animal Study. Int. J. Cardiol. 2021, 328, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Judd, R.M.; Kim, R.J.; Kim, H.W.; Klem, I.; Heitner, J.F.; Shah, D.J.; Jue, J.; White, B.E.; Indorkar, R.; et al. Feature-Tracking Global Longitudinal Strain Predicts Death in a Multicenter Population of Patients With Ischemic and Nonischemic Dilated Cardiomyopathy Incremental to Ejection Fraction and Late Gadolinium Enhancement. JACC Cardiovasc. Imaging 2018, 11, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Conte, E.; Mushtaq, S.; Muscogiuri, G.; Formenti, A.; Annoni, A.; Mancini, E.; Ricci, F.; Melotti, E.; Gigante, C.; Lorenza, Z.; et al. The Potential Role of Cardiac CT in the Evaluation of Patients With Known or Suspected Cardiomyopathy: From Traditional Indications to Novel Clinical Applications. Front. Cardiovasc. Med. 2021, 8, 709124. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Im, D.J.; Youn, J.-C.; Hong, Y.J.; Choi, B.W.; Kang, S.-M.; Lee, H.-J. Synthetic Extracellular Volume Fraction Derived Using Virtual Unenhanced Attenuation of Blood on Contrast-Enhanced Cardiac Dual-Energy CT in Nonischemic Cardiomyopathy. AJR Am. J. Roentgenol. 2022, 218, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Nacif, M.S.; Kawel, N.; Lee, J.J.; Chen, X.; Yao, J.; Zavodni, A.; Sibley, C.T.; Lima, J.A.C.; Liu, S.; Bluemke, D.A. Interstitial Myocardial Fibrosis Assessed as Extracellular Volume Fraction with Low-Radiation-Dose Cardiac CT. Radiology 2012, 264, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Dulf, E.-H.; Bledea, M.; Mocan, T.; Mocan, L. Automatic Detection of Colorectal Polyps Using Transfer Learning. Sensors 2021, 21, 5704. [Google Scholar] [CrossRef]
- Stoleru, C.-A.; Dulf, E.H.; Ciobanu, L. Automated Detection of Celiac Disease Using Machine Learning Algorithms. Sci. Rep. 2022, 12, 4071. [Google Scholar] [CrossRef]
- Danku, A.E.; Dulf, E.H.; Banut, R.P.; Silaghi, H.; Silaghi, C.A. Cancer Diagnosis With the Aid of Artificial Intelligence Modeling Tools. IEEE Access 2022, 10, 20816–20831. [Google Scholar] [CrossRef]
- Kramer, C.M.; Barkhausen, J.; Flamm, S.D.; Kim, R.J.; Nagel, E. Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols Standardized Cardiovascular Magnetic Resonance (CMR) Protocols 2013 Update. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 2013, 15, 91. [Google Scholar] [CrossRef]
- Popa, A.; Cionca, C.; Agoston, R.; Rusu, F.; Tarcau, B.M.; Negru, A.; Orzan, R.I.; Agoston-Coldea, L. The Role of Magnetic Resonance Imaging in Risk Stratification of Patients with Acute Myocarditis. Diagnostics 2024, 14, 1426. [Google Scholar] [CrossRef]
- Rogers, T.; Dabir, D.; Mahmoud, I.; Voigt, T.; Schaeffter, T.; Nagel, E.; Puntmann, V.O. Standardization of T1 Measurements with MOLLI in Differentiation between Health and Disease—The ConSept Study. J. Cardiovasc. Magn. Reson. 2013, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Dabir, D.; Child, N.; Kalra, A.; Rogers, T.; Gebker, R.; Jabbour, A.; Plein, S.; Yu, C.-Y.; Otton, J.; Kidambi, A.; et al. Reference Values for Healthy Human Myocardium Using a T1 Mapping Methodology: Results from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. J. Cardiovasc. Magn. Reson. 2014, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Orzan, R.I.; Gligor, R.I.; Agoston, R.; Cionca, C.; Zlibut, A.; Pais, R.; Seicean, A.; Agoston-Coldea, L. JCDD|Free Full-Text|Metabolic Dysfunction Associated Liver Disease in Patients Undergoing Coronary Computed Tomography Angiography. J. Cardiovasc. Dev. Dis. 2024, 11, 77. [Google Scholar]
- Van Der Bijl, N.; Joemai, R.M.S.; Geleijns, J.; Bax, J.J.; Schuijf, J.D.; De Roos, A.; Kroft, L.J.M. Assessment of Agatston Coronary Artery Calcium Score Using Contrast-Enhanced CT Coronary Angiography. Am. J. Roentgenol. 2010, 195, 1299–1305. [Google Scholar] [CrossRef]
- Han, X. On Statistical Measures for Data Quality Evaluation. J. Geogr. Inf. Syst. 2020, 12, 178–187. Available online: https://www.scirp.org/journal/paperinformation?paperid=100819 (accessed on 1 August 2024). [CrossRef]
- Lopatin, Y. Heart Failure with Mid-Range Ejection Fraction and How to Treat It. Card. Fail. Rev. 2018, 4, 9–13. [Google Scholar] [CrossRef]
- Cove-Smith, L.; Woodhouse, N.; Hargreaves, A.; Kirk, J.; Smith, S.; Price, S.A.; Galvin, M.; Betts, C.J.; Brocklehurst, S.; Backen, A.; et al. An Integrated Characterization of Serological, Pathological, and Functional Events in Doxorubicin-Induced Cardiotoxicity. Toxicol. Sci. 2014, 140, 3–15. [Google Scholar] [CrossRef]
- Li, W.; Croce, K.; Steensma, D.P.; McDermott, D.F.; Ben-Yehuda, O.; Moslehi, J. Vascular and Metabolic Implications of Novel Targeted Cancer Therapies: Focus on Kinase Inhibitors. J. Am. Coll. Cardiol. 2015, 66, 1160–1178. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.H.; Todd, R.M.; Vasu, S.; Hundley, W.G. Cardiovascular Magnetic Resonance in the Oncology Patient. JACC Cardiovasc. Imaging 2018, 11, 1150–1172. [Google Scholar] [CrossRef] [PubMed]
- Scatteia, A.; Baritussio, A.; Bucciarelli-Ducci, C. Strain Imaging Using Cardiac Magnetic Resonance. Heart Fail. Rev. 2017, 22, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.M. Role of Cardiac MR Imaging in Cardiomyopathies. J. Nucl. Med. 2015, 56, 39S–45S. [Google Scholar] [CrossRef] [PubMed]
- Modi, K.; Joppa, S.; Chen, K.-H.A.; Athwal, P.S.S.; Okasha, O.; Velangi, P.S.; Hooks, M.; Nijjar, P.S.; Blaes, A.H.; Shenoy, C. Myocardial Damage Assessed by Late Gadolinium Enhancement on Cardiovascular Magnetic Resonance Imaging in Cancer Patients Treated with Anthracyclines and/or Trastuzumab. Eur. Heart J. Cardiovasc. Imaging 2020, 22, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Park, H.S.; Park, J.K.; Han, K.; Park, C.H.; Kim, T.K.; Yoo, S.J.; Lee, J.Y.; Kim, P.K.; Hur, J.; et al. Early Detection and Serial Monitoring of Anthracycline-Induced Cardiotoxicity Using T1-Mapping Cardiac Magnetic Resonance Imaging: An Animal Study. Sci. Rep. 2017, 7, 2663. [Google Scholar] [CrossRef] [PubMed]
- Tham, E.B.; Haykowsky, M.J.; Chow, K.; Spavor, M.; Kaneko, S.; Khoo, N.S.; Pagano, J.J.; Mackie, A.S.; Thompson, R.B. Diffuse Myocardial Fibrosis by T1-Mapping in Children with Subclinical Anthracycline Cardiotoxicity: Relationship to Exercise Capacity, Cumulative Dose and Remodeling. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 2013, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.H.; Vasu, S.; Morgan, T.M.; D’Agostino, R.B.; Meléndez, G.C.; Hamilton, C.A.; Arai, A.E.; Liu, S.; Liu, C.-Y.; Lima, J.A.C.; et al. Anthracycline-Associated T1 Mapping Characteristics Are Elevated Independent of the Presence of Cardiovascular Comorbidities in Cancer Survivors. Circ. Cardiovasc. Imaging 2016, 9, e004325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Wang, Y.; Hu, X.; Wang, B.; Yang, J.; Zhao, X.; Zhang, L. Relationship between Diffuse Fibrosis Assessed by CMR and Depressed Myocardial Strain in Different Stages of Heart Failure. Eur. J. Radiol. 2023, 164, 110848. [Google Scholar] [CrossRef]
- Cundari, G.; Galea, N.; Mergen, V.; Alkadhi, H.; Eberhard, M. Myocardial Extracellular Volume Quantification with Computed Tomography—Current Status and Future Outlook. Insights Imaging 2023, 14, 156. [Google Scholar] [CrossRef]
- Penso, M.; Babbaro, M.; Moccia, S.; Baggiano, A.; Carerj, M.L.; Guglielmo, M.; Fusini, L.; Mushtaq, S.; Andreini, D.; Pepi, M.; et al. A Deep-Learning Approach for Myocardial Fibrosis Detection in Early Contrast-Enhanced Cardiac CT Images. Front. Cardiovasc. Med. 2023, 10, 1151705. [Google Scholar] [CrossRef] [PubMed]
- Tatsugami, F.; Nakaura, T.; Yanagawa, M.; Fujita, S.; Kamagata, K.; Ito, R.; Kawamura, M.; Fushimi, Y.; Ueda, D.; Matsui, Y.; et al. Recent Advances in Artificial Intelligence for Cardiac CT: Enhancing Diagnosis and Prognosis Prediction. Diagn. Interv. Imaging 2023, 104, 521–528. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristics | Patients (n = 8) |
---|---|
Age | 54.88 ± 12.05 |
Weight (kg) | 87.38 ± 15.14 |
Height (cm) | 164.38 ± 7.98 |
BMI (kg/m2) | 32.21 ± 4.3 |
Pulse rate (bpm) | 72.88 ± 10.93 |
SBP (mmHg) | 133.75 ± 13.02 |
DBP (mmHg) | 78.75 ± 13.82 |
Total cholesterol (mg/dL) | 203 ± 46.91 |
HDL-C (mg/dL) | 45.13 ± 8.43 |
LDL-C (mg/dl) | 125.38 ± 37.97 |
Tg (mg/dL) | 161.75 ± 71.21 |
Blood glucose (mmol/L) | 113.38 ± 11.87 |
Creatinine (mg/dL) | 0.76 ± 0.18 |
GFR (ml/min/1.73 m2) | 87.88 ± 22.15 |
Hypertension (%) | 50 |
Diabetes (%) | 12.5 |
Smoker status | |
Active (%) | 12.5 |
Non-smoker (%) | 75 |
Ex-smoker (%) | 12.5 |
Symptoms | |
Dyspnea (%) | 75 |
Chest pain (%) | 25 |
Palpitations (%) | 37.5 |
ECG findings | |
Non-specific ST-T changes (%) | 62.5 |
Medication | |
Beta blocker (%) | 87.5 |
ACE inhibitors (%) | 75 |
Diuretics (%) | 62.5 |
Calcium blocker (%) | 0 |
Statins (%) | 50 |
Antiplatelets drug (%) | 25 |
NT-proBNP, (IQR) pg/mL | 785 (290–960) |
CMR (n = 8) | CT (n = 8) | p | |
---|---|---|---|
LVEDVI, mean (SD), mL/m2 | 65.0 (11.6) | 60.4 (13.1) | 0.07 |
LVESVI, mean (SD), mL/m2 | 35.0 (6.4) | 30.9 (8.4) | 0.076 |
LVEF, mean (SD), % | 46.3 (3.7) | 48.8 (1.1) | 0.579 |
LV mass, g/m2 (SD) | 71.8 (11.2) | 64 (15.3) | 0.027 |
GLS, mean (SD), % | −12.25 (3.87) | - | NA |
LGE+, n (%) | 7 (87.2) | - | NA |
Myocardial localization—septal/lateral/anterior/inferior/circumferential | 3/1/2/2/0 | - | NA |
Myocardial pattern—subepicardial/nodal/midwall | 2/5/1 | - | NA |
LV-LGE, mean (SD), g | 24.8 (12.3) | - | NA |
LV-LGE/LV mass, % | 17.9 (8.9) | - | NA |
Native T1 mapping, mean (SD), ms | 1114 +/−51 | - | NA |
ECV, mean (SD), % | 31.2 (3.1) | - | NA |
Pericardial effusion+, n (%) | 3 (37.5) | - | NA |
Fibrosis Percentage as Returned by the Algorithm (%) with 3 Different Images of the Same Patient | ||||||
---|---|---|---|---|---|---|
Patient | #1 | #2 | #3 | Mean | SD | CV (%) |
1 | 8.9 | 9.2 | 8.79 | 8.96 | 0.21 | 1.93 |
2 | 5.77 | 7.57 | 6.51 | 6.62 | 0.90 | 11.16 |
3 | 7.51 | 9.75 | 9.59 | 8.95 | 1.25 | 11.40 |
4 | 13.87 | 11.08 | 10.52 | 11.82 | 1.79 | 12.39 |
5 | 6.53 | 9.17 | 9.4 | 8.37 | 1.59 | 15.56 |
6 | 11.53 | 10.4 | 11.04 | 10.99 | 0.57 | 4.21 |
7 | 5.68 | 4.86 | 5.73 | 5.42 | 0.49 | 7.35 |
8 | 9.71 | 9.94 | 8.97 | 9.54 | 0.51 | 4.34 |
Fibrosis Percentage as Returned by the Algorithm (%) | |||||
---|---|---|---|---|---|
Patient | #1 | #2 | #3 | Mean | CV (%) |
1 | 8.9 | 9.09 | 8.82 | 8.94 | 1.27 |
2 | 5.77 | 5.81 | 5.81 | 5.80 | 0.33 |
3 | 7.51 | 7.79 | 7.4 | 7.57 | 2.17 |
4 | 13.87 | 13.85 | 13.64 | 13.79 | 0.75 |
5 | 6.53 | 6.78 | 6.53 | 6.61 | 1.78 |
6 | 11.53 | 11.55 | 11.53 | 11.54 | 0.08 |
7 | 5.68 | 5.11 | 5.75 | 5.51 | 5.20 |
8 | 9.71 | 9.83 | 9.71 | 9.75 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonciar, D.; Berciu, A.-G.; Dulf, E.-H.; Orzan, R.I.; Mocan, T.; Danku, A.E.; Lorenzovici, N.; Agoston-Coldea, L. Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study. J. Clin. Med. 2024, 13, 4807. https://doi.org/10.3390/jcm13164807
Gonciar D, Berciu A-G, Dulf E-H, Orzan RI, Mocan T, Danku AE, Lorenzovici N, Agoston-Coldea L. Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study. Journal of Clinical Medicine. 2024; 13(16):4807. https://doi.org/10.3390/jcm13164807
Chicago/Turabian StyleGonciar, Diana, Alexandru-George Berciu, Eva-Henrietta Dulf, Rares Ilie Orzan, Teodora Mocan, Alex Ede Danku, Noemi Lorenzovici, and Lucia Agoston-Coldea. 2024. "Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study" Journal of Clinical Medicine 13, no. 16: 4807. https://doi.org/10.3390/jcm13164807
APA StyleGonciar, D., Berciu, A. -G., Dulf, E. -H., Orzan, R. I., Mocan, T., Danku, A. E., Lorenzovici, N., & Agoston-Coldea, L. (2024). Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study. Journal of Clinical Medicine, 13(16), 4807. https://doi.org/10.3390/jcm13164807