Phrenic Nerve Sonography Alterations in Patients with ALS: Insight with Clinical and Neurophysiological Findings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. The Phrenic Nerve Examination
2.3. Electrophysiological Examination
2.4. Examination of Respiratory Function and Analysis of Arterial Blood Gas
2.5. Statistical Analysis
3. Results:
3.1. Demographic and Clinic Data
3.2. Phrenic Nerve Sonography Findings in Patients with ALS and Control Group
3.3. Phrenic Nerve Changes Findings Associations with Electroneuromyography Examination
3.4. Correlations of Phrenic Nerve Changes with Respiratory Function in Patients with ALS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laucius, O.; Drūteika, J.; Balnytė, R.; Petrikonis, K.; Ališauskienė, M.; Vaitkus, A. Sonographic Phrenic Nerve Changes in Amyotrophic Lateral Sclerosis. Medicina 2023, 59, 1745. [Google Scholar] [CrossRef] [PubMed]
- Al-Chalabi, A.; Hardiman, O. The epidemiology of ALS: A conspiracy of genes, environment and time. Nat. Rev. Neurol. 2013, 9, 617–628. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Correction: Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17085. [Google Scholar] [CrossRef] [PubMed]
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef]
- Byrne, S.; Walsh, C.; Lynch, C.; Bede, P.; Elamin, M.; Kenna, K.; McLaughlin, R.; Hardiman, O. Rate of familial amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2010, 82, 623–627. [Google Scholar] [CrossRef]
- Camacho-Soto, A.; Nielsen, S.S.; Faust, I.M.; Bucelli, R.C.; Miller, T.M.; Racette, B.A. Incidence of amyotrophic lateral sclerosis in older adults. Muscle Nerve 2022, 66, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Raymond, J.; Raymond, J.; Zhang, Y.; Zhang, Y.; Punjani, R.; Punjani, R.; Han, M.; Han, M.; Larson, T.; et al. Prevalence of amyotrophic lateral sclerosis in the United States, 2018. Amyotroph. Lateral Scler. Front. Degener. 2023, 24, 702–708. [Google Scholar] [CrossRef]
- Jordan, H.; Rechtman, L.; Wagner, L.; Kaye, W.E. Amyotrophic lateral sclerosis surveillance in Baltimore and Philadelphia. Muscle Nerve 2014, 51, 815–821. [Google Scholar] [CrossRef]
- Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chiò, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E.; Eurals, F. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 2009, 81, 385–390. [Google Scholar] [CrossRef]
- Marin, B.; Boumédiene, F.; Logroscino, G.; Couratier, P.; Babron, M.-C.; Leutenegger, A.-L.; Copetti, M.; Preux, P.-M.; Beghi, E. Variation in worldwide incidence of amyotrophic lateral sclerosis: A meta-analysis. Int. J. Epidemiol. 2017, 46, 57–74. [Google Scholar] [CrossRef]
- Doi, Y.; Atsuta, N.; Sobue, G.; Morita, M.; Nakano, I. Prevalence and Incidence of Amyotrophic Lateral Sclerosis in Japan. J. Epidemiol. 2014, 24, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Barceló, M.A.; Povedano, M.; Vázquez-Costa, J.F.; Franquet, Á.; Solans, M.; Saez, M. Estimation of the prevalence and incidence of motor neuron diseases in two Spanish regions: Catalonia and Valencia. Sci. Rep. 2021, 11, 6207. [Google Scholar] [CrossRef] [PubMed]
- Longinetti, E.; Wallin, A.R.; Samuelsson, K.; Press, R.; Zachau, A.; Ronnevi, L.-O.; Kierkegaard, M.; Andersen, P.M.; Hillert, J.; Fang, F.; et al. The Swedish motor neuron disease quality registry. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 528–537. [Google Scholar] [CrossRef]
- Benjaminsen, E.; Alstadhaug, K.B.; Gulsvik, M.; Baloch, F.K.; Odeh, F. Amyotrophic lateral sclerosis in Nordland county, Norway, 2000–2015: Prevalence, incidence, and clinical features. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 522–527. [Google Scholar] [CrossRef]
- Dorst, J.; Chen, L.; Rosenbohm, A.; Dreyhaupt, J.; Hübers, A.; Schuster, J.; Weishaupt, J.H.; Kassubek, J.; Gess, B.; Meyer, T.; et al. Prognostic factors in ALS: A comparison between Germany and China. J. Neurol. 2019, 266, 1516–1525. [Google Scholar] [CrossRef]
- Fantini, R.; Mandrioli, J.; Zona, S.; Antenora, F.; Iattoni, A.; Monelli, M.; Fini, N.; Tonelli, R.; Clini, E.; Marchioni, A. Ultrasound assessment of diaphragmatic function in patients with amyotrophic lateral sclerosis. Respirology 2016, 21, 932–938. [Google Scholar] [CrossRef]
- Pinto, S.; Alves, P.; Swash, M.; de Carvalho, M. Phrenic nerve stimulation is more sensitive than ultrasound measurement of diaphragm thickness in assessing early ALS progression. Neurophysiol. Clin. 2016, 47, 69–73. [Google Scholar] [CrossRef]
- Shefner, J.M.; Al-Chalabi, A.; Baker, M.R.; Cui, L.-Y.; de Carvalho, M.; Eisen, A.; Grosskreutz, J.; Hardiman, O.; Henderson, R.; Matamala, J.M.; et al. A proposal for new diagnostic criteria for ALS. Clin. Neurophysiol. 2020, 131, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Vidovic, M.; Müschen, L.H.; Brakemeier, S.; Machetanz, G.; Naumann, M.; Castro-Gomez, S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023, 12, 736. [Google Scholar] [CrossRef]
- de Carvalho, M.; Swash, M.; Pinto, S. Diaphragmatic Neurophysiology and Respiratory Markers in ALS. Front. Neurol. 2019, 10, 143. [Google Scholar] [CrossRef]
- Pinto, S.; Gromicho, M.; Santos, M.O.O.; Swash, M.; De Carvalho, M. Respiratory onset in amyotrophic lateral sclerosis: Clinical features and spreading pattern. Amyotroph. Lateral Scler. Front. Degener. 2022, 24, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Hobson-Webb, L.D.; Simmons, Z. Ultrasound in the diagnosis and monitoring of amyotrophic lateral sclerosis: A review. Muscle Nerve 2019, 60, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Shoesmith, C.L.; Findlater, K.; Rowe, A.; Strong, M.J. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J. Neurol. Neurosurg. Psychiatry 2007, 78, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Suratos, C.T.; Takamatsu, N.; Yamazaki, H.; Osaki, Y.; Fukumoto, T.; Nodera, H.; Izumi, Y. Utility of phrenic nerve ultrasound in amyotrophic lateral sclerosis. Acta Neurol. Belg. 2020, 121, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Rowland, L.P. How amyotrophic lateral sclerosis got its name: The clinical-pathologic genius of Jean-Martin Charcot. Arch. Neurol. 2001, 58, 512–515. [Google Scholar] [CrossRef]
- Kwon, S.; Min, J.-H.; Cho, H.-J.; Joo, B.-E.; Bin Cho, E.; Seok, J.M.; Kim, M.-J.; Kim, B.J. Usefulness of phrenic latency and forced vital capacity in patients with ALS with latent respiratory dysfunction. Clin. Neurophysiol. 2015, 126, 1421–1426. [Google Scholar] [CrossRef]
- Ngo, S.; Steyn, F.; McCombe, P. Body mass index and dietary intervention: Implications for prognosis of amyotrophic lateral sclerosis. J. Neurol. Sci. 2014, 340, 5–12. [Google Scholar] [CrossRef]
- Laveneziana, P.; Albuquerque, A.; Aliverti, A.; Babb, T.; Barreiro, E.; Dres, M.; Dubé, B.P.; Fauroux, B.; Gea, J.; Guenette, J.A.; et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur. Respir J. 2019, 53, 1801214. [Google Scholar] [CrossRef] [PubMed]
- Resman-Gǎspěrsč, A.; Podnar, S. Phrenic nerve conduction studies: Technical aspects and normative data. Muscle Nerve 2008, 37, 36–41. [Google Scholar] [CrossRef]
- Chang, J.; Shaw, T.B.; Holdom, C.J.; McCombe, P.A.; Henderson, R.D.; Fripp, J.; Barth, M.; Guo, C.C.; Ngo, S.T.; Steyn, F.J.; et al. Lower hypothalamic volume with lower body mass index is associated with shorter survival in patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 2022, 30, 57–68. [Google Scholar] [CrossRef]
- Walter, U.; Sobiella, G.; Prudlo, J.; Batchakaschvili, M.; Böhmert, J.; Storch, A.; Hermann, A. Ultrasonic detection of vagus, accessory, and phrenic nerve atrophy in amyotrophic lateral sclerosis: Relation to impairment and mortality. Eur. J. Neurol. 2023, 31, e16127. [Google Scholar] [CrossRef] [PubMed]
- Bradley, W.G.; Good, P.; Rasool, C.G.; Adelman, L.S. Morphometric and biochemical studies of peripheral nerves in amyotrophic lateral sclerosis. Ann. Neurol. 1983, 14, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.R.; Glass, J.D. Axonal Degeneration in Motor Neuron Disease. Neurodegener. Dis. 2007, 4, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Heiman-Patterson, T.D.; Khazaal, O.; Yu, D.; Sherman, M.E.; Kasarskis, E.J.; Jackson, C.E.; the PEG NIV Study Group. Pulmonary function decline in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 54–61. [Google Scholar] [CrossRef]
- El Helow, M.R.; Ahmed, S.F.; El Bably, M.M.; ElHadba, D.M. Neuromuscular Phrenic Nerve Ultrasound versus Nerve Conduction Study of Phrenic Nerve in Amyotrophic Lateral Sclerosis. Qjm Int. J. Med. 2024, 117, hcae070.537. [Google Scholar] [CrossRef]
Variable | Control Group | ALS Group | p Value a |
---|---|---|---|
Number | 64 | 32 | |
LMN—14 UMN—9 Bulbar—9 | |||
Age years, mean ± SD (range, years) | 60.84 ± 10.67 | 59.34 ± 9.93 | p = 0.508 |
Sex (M:F) | 1:1.37 | 1.28:1 | p = 0.193 b |
Weight kg, mean ± SD (range, kg) | 80.81 ± 14.48 | 72.22 ± 15.59 | p = 0.846 |
Height cm, mean ± SD (range, cm) | 170.56 ± 9.92 | 170.16 ± 8.98 | p = 0.009 |
Hip circumference ± SD (range, cm) | 103.19 ± 8.07 | 98.97 ± 13.62 | p = 0.002 |
Waist circumference ± SD (range, cm) | 92.92 ± 10.48 | 84.84 ± 13.87 | p = 0.113 |
BMI Kg/m2 ± min/max (range, Kg/m2) | 27.72 (18.67–36.63) | 24.89 (18.99–36.57) | p = 0.001 c |
Control Group Right | ALS Right | p Value | Control Group Left | ALS Left | p Value | ||
---|---|---|---|---|---|---|---|
Homogeneity | Homogenous | 92.2% | 43.8% | <0.001 | 87.5% | 40.6% | <0.001 |
Heterogenous | 7.8% | 56.2% | <0.001 | 12.5% | 59.4% | <0.001 | |
Echogenicity | Hypoechoic | 75% | 37.5% | <0.001 | 78.1% | 37.5% | <0.001 |
Isoechoic | 25% | 40.6% | <0.001 | 21.9% | 34.4% | <0.001 | |
Hyperechoic | 0% | 21.9% | <0.001 | 0% | 28.1% | <0.001 |
Right PN US Patients Nr.—32 | Left PN US Patients Nr.—32 | |
---|---|---|
Demographics | ||
Height cm | p-0.269 | p-0.124 |
Weight kg | p < 0.016 | p < 0.001 |
BMI kg/m2 | p < 0.026 | p-0.004 |
Waist circumference cm | p < 0.025 | p-0.011 |
Hip circumference cm | p-0.149 | p-0.053 |
Sex | p-0.777 | p-0.974 |
Age | p-0.894 | p-0.348 |
Age at disease onset | p-0.728 | p-0.34 |
Duration of illness | p-0.529 | p-0.704 |
Compass-31 | p < 0.001 | p-0.089 |
ALFSR-R | p < 0.001 | p < 0.001 |
Control Group Patients Nr.—64 | ALS Group Patients Nr.—32 | p Value | |
---|---|---|---|
Latency right ms ± min/max (range, ms) | 6.75 (4.5–7.8) | 6.40 (2.5–11.9) | 0.498 |
Amplitude right mV ± min/max (range, mV) | 1.25 (0.9–1.9) | 0.40 (0.1–1.0) | <0.001 |
Area right mVms ± min/max (range, mVms) | 11.20 (5.4–17.3) | 3.80 (0.6–10.2) | <0.001 |
Latency left ms ± min/max (range, ms) | 7.10 (4.8–8.0) | 6.65 (2.7–10.1) | 0.369 |
Amplitude left mV ± min/max (range, mV) | 1.35 (1.0–1.8) | 0.4 (0.1–6.0) | <0.001 |
Area left mVms ± min/max (range, mVms) | 11.15 (6.2–17) | 3.85 (0.9–10.1) | <0.001 |
ALS Patients Nr.—32 | FEV1 l | FEV1 % | FVC l | FVC % | FEV1/FVC | FEV1/FVC % | |
---|---|---|---|---|---|---|---|
Latency | Right | 0.05 | 0.18 | 0.13 | 0.09 | 0.11 | 0.12 |
Left | 0.09 | 0.22 | 0.21 | 0.15 | 0.33 | 0.37 | |
Amplitude | Right | 0.77 | 0.13 | 0.23 | 0.14 | 0.62 | 0.74 |
Left | 1.00 | 0.17 | 0.65 | 0.14 | 0.86 | 0.86 | |
Area left | Right | 0.94 | 0.19 | 0.48 | 0.16 | 0.93 | 0.84 |
Left | 0.73 | 0.15 | 0.33 | 0.16 | 0.79 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laucius, O.; Drūteika, J.; Balnytė, R.; Palačionytė, J.; Ališauskienė, M.; Petrikonis, K.; Vaitkus, A. Phrenic Nerve Sonography Alterations in Patients with ALS: Insight with Clinical and Neurophysiological Findings. J. Clin. Med. 2024, 13, 6302. https://doi.org/10.3390/jcm13216302
Laucius O, Drūteika J, Balnytė R, Palačionytė J, Ališauskienė M, Petrikonis K, Vaitkus A. Phrenic Nerve Sonography Alterations in Patients with ALS: Insight with Clinical and Neurophysiological Findings. Journal of Clinical Medicine. 2024; 13(21):6302. https://doi.org/10.3390/jcm13216302
Chicago/Turabian StyleLaucius, Ovidijus, Justinas Drūteika, Renata Balnytė, Jolita Palačionytė, Miglė Ališauskienė, Kęstutis Petrikonis, and Antanas Vaitkus. 2024. "Phrenic Nerve Sonography Alterations in Patients with ALS: Insight with Clinical and Neurophysiological Findings" Journal of Clinical Medicine 13, no. 21: 6302. https://doi.org/10.3390/jcm13216302
APA StyleLaucius, O., Drūteika, J., Balnytė, R., Palačionytė, J., Ališauskienė, M., Petrikonis, K., & Vaitkus, A. (2024). Phrenic Nerve Sonography Alterations in Patients with ALS: Insight with Clinical and Neurophysiological Findings. Journal of Clinical Medicine, 13(21), 6302. https://doi.org/10.3390/jcm13216302