Wave–Tide Interaction by Typhoon Ampil on Wave and Storm Surge in the Changjiang River Estuary and Its Adjacent Coastal Areas
Abstract
:1. Introduction
2. Methods and Datasets
2.1. Numerical Model
2.1.1. SCHISM Hydrodynamic Model
2.1.2. WWMIII Wave Model
2.2. Model Configurations
2.3. Numerical Experiments
2.4. Observed Data
3. Model Assessments
3.1. Validation of Wave
3.2. Validation of Tide
3.3. Validation of Storm Surge
4. Results and Discussions
4.1. Effect of Water Levels on SWH
4.2. Effect of Wave-Tide Interaction on SWH
4.3. Contribution of Wave Setup to Storm Surge
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, C.; Yin, C.; Zhang, W.; Xiong, M.; Zhang, J. Numerical simulation on surge due to landfall of typhoon in the Yangtze Estuary: Ampil (No.1810) as an example. Hydro-Sci. Mar. Eng. 2021, 1, 70–77. [Google Scholar]
- Chen, C.; Beardsley, R.C.; Luettich, R.A.; Westerink, J.J.; Wang, H.; Perrie, W.; Xu, Q.; Dohahue, A.S.; Qi, J.; Lin, H.; et al. Extratropical storm inundation testbed: Intermodal comparisons in Scituate, Massachusetts. J. Geophys. Res. Oceans 2013, 118, 5054–5073. [Google Scholar] [CrossRef]
- Chen, C.; Lin, Z.; Beardsley, R.C.; Shyka, T.A.; Zhang, Y.; Xu, Q.; Qi, J.; Lin, H.; Xu, D. Impacts of sea level rise on future storm-induced coastal inundations over massachusetts coast. Nat. Hazards 2021, 106, 375–399. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Zhang, Y.J.; Magnusson, L.; Loftis, J.D.; Forrest, D. Cross-scale modeling of storm surge, tide, and inundation in Mid-Atlantic Bight and New York City during Hurricane Sandy, 2012. Estuar. Coast. Shelf Sci. 2020, 233, 106544. [Google Scholar] [CrossRef]
- Chi, Y.; Rong, Z. Assessment of Extreme Storm Surges over the Changjiang River Estuary from a Wave–Current Coupled Model. J. Mar. Sci. Eng. 2021, 9, 1222. [Google Scholar] [CrossRef]
- Irish, J.L.; Resio, D.T. A hydrodynamics-based surge scale for hurricanes. Ocean Eng. 2010, 37, 69–81. [Google Scholar] [CrossRef]
- Salmun, H.; Molod, A. The Use of a Statistical Model of Storm Surge as a Bias Correction for Dynamical Surge Models and its Applicability along the U.S. East Coast. J. Mar. Sci. Eng. 2015, 3, 73–86. [Google Scholar] [CrossRef]
- Araki, Y.; Tomohiro, Y.; Adrean, W.; Nobuhito, M. Statistical prediction of storm surge height time series by convolutional neural network and its long-term projection. J. Jpn. Soc. Civ. Eng. 2020, 76, 1093–1098. [Google Scholar] [CrossRef]
- Islam, M.R.; Lee, C.Y.; Mandli, K.T.; Takagi, H. A new tropical cyclone surge index incorporating the effects of coastal geometry, bathymetry and storm information. Sci. Rep. 2021, 11, 16747. [Google Scholar] [CrossRef]
- Bretschneider, C.L. Hurricane design—Wave practices. J. Waterw. Harb. Div. 1957, 124, 39–62. [Google Scholar] [CrossRef]
- Neumann, G.; Pierson, W.J. A detailed comparison of theoretical wave spectra and wave forecasting methods. Dtsch. Hydrogr. Zeitschrift. 1957, 10, 73–92. [Google Scholar] [CrossRef]
- Luettich, R.A.; Westerink, J.J. Formulation and Numerical Iimplementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX; University of North Carolina at Chapel Hill: Morehead City, NC, USA, 2004. [Google Scholar]
- Ding, Y.; Yao, Z.G.; Zhou, L.L.; Bao, M.; Zang, Z.C. Numerical modeling of the seasonal circulation in the coastal ocean of the Northern South China Sea. Front. Earth Sci. 2018, 14, 90–109. [Google Scholar] [CrossRef]
- Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Warren, I.R.; Bach, H.K. MIKE 21: A modelling system for estuaries, coastal waters and seas. Environ. Model. Softw. 1992, 7, 229–240. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Palma, E.D.; Matano, R.P. On the implementation of passive open boundary conditions for a general circulation model: The barotropic mode. J. Geophys. Res. Oceans 1998, 103, 1319–1341. [Google Scholar] [CrossRef]
- Hansen, J.E.; Elias, E.; List, J.H.; Erikson, L.H.; Barnard, P.L. Tidally influenced alongshore circulation at an inlet-adjacent shoreline. Cont. Shelf Res. 2013, 56, 26–38. [Google Scholar] [CrossRef]
- Moon, I.J.; Kwon, J.I.; Lee, J.C.; Shim, J.; Kang, S.K.; Oh, I.S.; Kwon, S.J. Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Model. 2009, 29, 115–127. [Google Scholar] [CrossRef]
- Blain, C.A.; Westerink, J.J. The influence of domain size on the response characteristics of a hurricane storm surge model. J. Geophys. Res. 1994, 99, 18467–18479. [Google Scholar] [CrossRef]
- Shen, J.; Gong, W.; Wang, H.V. Water level response to 1999 Hurricane Floyd in the Chesapeake Bay. Cont. Shelf Res. 2006, 26, 2484–2502. [Google Scholar] [CrossRef]
- Irish, J.L.; Resio, D.T.; Ratcliff, J.J. The Influence of Storm Size on Hurricane Surge. J. Phys. Oceanogr. 2006, 38, 2003–2013. [Google Scholar] [CrossRef]
- Zhong, L.; Li, M.; Zhang, D.L. How do uncertainties in hurricane model forecasts affect storm surge predictions in a semi-enclosed bay? Estuar. Coast. Shelf Sci. 2010, 90, 61–72. [Google Scholar] [CrossRef]
- Ringler, T.; Petersen, M.; Higdon, R.L.; Jacobsen, D.; Jones, P.W.; Maltrud, M. A multi-resolution approach to global ocean modeling. Ocean Model. 2013, 69, 211–232. [Google Scholar] [CrossRef]
- Li, A.; Guan, S.; Mo, D.; Hou, Y.; Hong, X.; Liu, Z. Modeling wave effects on storm surge from different typhoon intensities and sizes in the South China Sea. Estuar. Coast. Shelf Sci. 2020, 235, 106551. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Huang, W.; Xie, Y. Effects of sea level rise and typhoon intensity on storm surge and waves in Pearl River Estuary. Ocean Eng. 2017, 136, 80–93. [Google Scholar] [CrossRef]
- Feng, X.; Yin, B.; Yang, D. Effect of hurricane paths on storm surge response at Tianjin, China. Estuar. Coast. Shelf Sci. 2012, 106, 58–68. [Google Scholar] [CrossRef]
- Islam, M.R.; Takagi, H. Typhoon parameter sensitivity of storm surge in the semi-enclosed Tokyo Bay. Front. Earth Sci. 2020, 14, 553–567. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Phys. Oceanogr. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Tolman, H.L. WAVEWATCH III Development Group. User Manual and System Documentation of WAVEWATCH III; National Oceanic and Atmospheric Administration (NOAA): Washington, DC, USA, 2014. [Google Scholar]
- Zijlema, M.; Vledder, G.P.; Holthuijsen, L.H. Bottom friction and wind drag for wave models. Coast. Eng. 2012, 65, 19–26. [Google Scholar] [CrossRef]
- Chen, H.S. Effects of bottom friction and boundary absorption on water wave scattering. Appl. Ocean Res. 1986, 8, 99–104. [Google Scholar] [CrossRef]
- Lee, J.W.; Irish, J.L.; Michelle, T.B.; Marcy, D.C. Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning. Coast. Eng. 2021, 170, 104024. [Google Scholar] [CrossRef]
- Valle, R.; Alexandra, N.; Curchitser, E.N.; Bruyère, C.L.; McOwen, S. Implementation of an Artificial Neural Network for Storm Surge Forecasting. J. Geophys. Res. 2021, 126, e2020JD033266. [Google Scholar] [CrossRef]
- Park, Y.; Kim, E.; Choi, Y.; Seo, G.; Kim, Y.; Kim, H. Storm Surge Forecasting along Korea Strait Using Artificial Neural Network. J. Mar. Sci. Eng. 2022, 10, 535. [Google Scholar] [CrossRef]
- Ali, M.; Ramendra, P. Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition. Renew. Sustain. Energy Rev. 2019, 104, 281–295. [Google Scholar] [CrossRef]
- Shahaboddin, S.; Mosavi, A.H.; Rabczuk, T.; Nabipour, N.; Chau, K. Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines. Eng. Appl. Comput. Fluid Mech. 2020, 14, 805–817. [Google Scholar]
- Demetris, D.; Michailides, C.; Papanastasiou, G.; Onoufriou, T. Coastal zone significant wave height prediction by supervised machine learning classification algorithms. Ocean Eng. 2021, 221, 108592. [Google Scholar] [CrossRef]
- Wolf, J.; Prandle, D. Some observations of wave–current interaction. Coast. Eng. 1999, 37, 471–485. [Google Scholar] [CrossRef]
- Olabarrieta, M.; Geyer, R.W.; Kumar, N. The role of morphology and wave-current interaction at tidal inlets: An idealized modeling analysis. J. Geophys. Res. Oceans 2014, 119, 8818–8837. [Google Scholar] [CrossRef]
- Elahi, M.W.E.; Wang, X.H.; Salcedo-Castro, J.; Ritchie, E.A. Influence of Wave–Current Interaction on a Cyclone-Induced Storm Surge Event in the Ganges–Brahmaputra–Meghna Delta: Part 1—Effects on Water Level. J. Mar. Sci. Eng. 2023, 11, 328. [Google Scholar] [CrossRef]
- Olabarrieta, M.; Warner, J.C.; Kumar, N. Wave-current interaction in Willapa Bay. J. Geophys. Res. 2011, 116, C12014. [Google Scholar] [CrossRef]
- Jonsson, I.G.; Skougaard, C.; Wang, J.D. Interaction between waves and currents. Coast. Eng. 1970, 1, 489–507. [Google Scholar] [CrossRef]
- Jonsson, I.G. Measurements in the turbulent wave boundary layer. Int. Ass. Hydr. Res. 10th Congr. 1963, 1, 85–92. [Google Scholar]
- Kang, K.R.; Kim, S. Wave–tide interactions during a strong storm event in Kyunggi Bay, Korea. Ocean Eng. 2015, 108, 10–20. [Google Scholar] [CrossRef]
- Lewis, M.J.; Palmer, T.; Hashemi, R.; Robins, P.E.; Saulter, A.; Brown, J.M.; Lewis, H.W.; Neill, S.P. Wave-tide interaction modulates nearshore wave height. Ocean Dyn. 2019, 69, 367–384. [Google Scholar] [CrossRef]
- Idier, D.; Bertin, X.; Thompson, P.; Pickering, M.D. Interactions Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and Contributions to Sea Level Variations at the Coast. Surv. Geophys. 2019, 40, 1603–1630. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S.; Stewart, R. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech. 1962, 13, 481–504. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S.; Stewart, R. Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res 1964, 11, 529–562. [Google Scholar] [CrossRef]
- Xie, L.; Liu, H.; Peng, M. The effect of wave–current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Model. 2008, 20, 252–269. [Google Scholar] [CrossRef]
- Sebastian, A.; Proft, J.; Casey Dietrich, J.; Du, W.; Bedient, P.B.; Dawson, C.N. Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ADCIRC model. Coast. Eng. 2014, 88, 171–181. [Google Scholar] [CrossRef]
- Vijayan, L.; Huang, W.; Ma, M.; Ozguven, E.; Ghorbanzadeh, M.; Yang, J.; Yang, Z. Improving the accuracy of hurricane wave modeling in Gulf of Mexico with dynamically-coupled SWAN and ADCIRC. Ocean Eng. 2023, 274, 114044. [Google Scholar] [CrossRef]
- Hong, J.-S.; Moon, J.-H.; Kim, T. Effect of Breaking Waves on Near-Surface Mixing in an Ocean-Wave Coupling System under Calm Wind Conditions. J. Mar. Sci. Eng. 2020, 8, 540–555. [Google Scholar] [CrossRef]
- Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A. Wave–current interaction: Effect on the wave field in a semi-enclosed basin. Ocean Model. 2013, 70, 152–165. [Google Scholar] [CrossRef]
- Liu, C.; Jia, Y.; Onat, Y.; Cifuentes-Lorenzen, A.; Ilia, A.; McCardell, G.; Fake, T.; O’Donnell, J. Estimating the Annual Exceedance Probability of Water Levels and Wave Heights from High Resolution Coupled Wave-Circulation Models in Long Island Sound. J. Mar. Sci. Eng. 2020, 8, 475–495. [Google Scholar] [CrossRef]
- Qi, J.; Chen, C.; Beardsley, R.C.; Perrie, W.; Cowles, G.W.; Lai, Z. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications. Ocean Model. 2009, 28, 153–166. [Google Scholar] [CrossRef]
- Lavaud, L.; Bertin, X.; Martins, K.; Arnaud, G.; Bouin, M.-N. The contribution of short-wave breaking to storm surges: The case Klaus in the Southern Bay of Biscay. Ocean Model. 2020, 156, 101710. [Google Scholar] [CrossRef]
- Daniels, T.; Fearon, G.; Vilaplana, A.; Hewitson, B.; Rautenbach, C. On the importance of wind generated waves in embayments with complex orographic features—A South African case study. Appl. Ocean Res. 2022, 128, 103355. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yasuda, T.; Mase, H. Numerical analysis of effects of tidal variations on storm surges and waves. Appl. Ocean Res. 2008, 30, 311–322. [Google Scholar] [CrossRef]
- Mengual, B.; Bertin, X.; Place, F.; Pezerat, M.; Coulombier, T.; Mendes, D.; Fortunato, A.B. Wave-current interactions at the Tagus Estuary Mouth (Portugal) under storm wave conditions. Ocean Model. 2022, 175, 102035. [Google Scholar] [CrossRef]
- Du, M.; Hou, Y.; Qi, P.; Wang, K. The impact of different historical typhoon tracks on storm surge: A case study of Zhejiang, China. J. Mar. Sci. 2020, 206, 103318. [Google Scholar] [CrossRef]
- He, Z.; Tang, Y.; Xia, Y.; Chen, B.; Xu, J.; Yu, Z.; Li, L. Interaction impacts of tides, waves and winds on storm surge in a channel-island system: Observational and numerical study in Yangshan Harbor. Ocean Dyn. 2020, 70, 307–325. [Google Scholar] [CrossRef]
- Hsiao, S.-C.; Chen, H.; Chen, W.-B.; Chang, C.-H.; Lin, L.-Y. Quantifying the contribution of nonlinear interactions to storm tide simulations during a super typhoon event. Ocean Eng. 2019, 194, 106661. [Google Scholar] [CrossRef]
- Song, H.; Kuang, C.; Wang, X.H.; Ma, Z. Wave-current interactions during extreme weather conditions in southwest of Bohai Bay, China. Ocean Eng. 2020, 216, 108068. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ye, F.; Stanev, E.V.; Grashorn, S. Seamless cross-scale modeling with SCHISM. Ocean Model. 2016, 102, 64–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Baptista, A. SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model. 2008, 21, 71–96. [Google Scholar] [CrossRef]
- Roland, A. Development of WWMIII II: Spectral Wave Modeling on Unstructured Meshes. Ph.D. Thesis, The Institute of Hydraulic and Water Resources Engineering, Darmstadt University of Technology, Darmstadt, Germany, 2008. [Google Scholar]
- Roland, A.; Zhang, Y.; Wang, H.V.; Meng, Y.; Teng, Y.; Maderich, V.; Brovchenko, I.; Dutour-Sikiric, M.; Zanke, U. A fully coupled wave-current model on unstructured grids. J. Geophys. Res. 2012, 117, C00J33. [Google Scholar] [CrossRef]
- Hsu, T.-W.; Ou, S.-H.; Liau, J.-M. Hindcasting nearshore wind waves using a FEM code for SWAN. Coast. Eng. 2005, 52, 177–195. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. J. Geophys. Res. 1996, 101, 8741–8743. [Google Scholar] [CrossRef]
- Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation—GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosci. J. 2018, 8, 63. [Google Scholar] [CrossRef]
- Lyard, F.H.; Allain, D.J.; Cancet, M.; Carrère, L.; Picot, N. FES2014 Global ocean tide atlas: Design and performance. Ocean Sci. 2021, 17, 615–649. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.; Chuang, H.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1940 to present. Copernic. Clim. Change Serv. Clim. Data Store 2023, 146, 1999–2049. [Google Scholar] [CrossRef]
- Battjes, J.A.; Janssen, J. Energy loss and set-up due to breaking of random waves. In Proceedings of the 16th Conference on Coastal Engineering, Hamburg, Germany, 27 August–3 September 1978; Available online: http://resolver.tudelft.nl/uuid:2fba43fe-f8bd-42ac-85ee-848312d2e27e (accessed on 1 January 1978).
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP); Deutsches Hydrographisches Institut: Hamburg, Germany, 1973; Available online: http://resolver.tudelft.nl/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc (accessed on 1 January 1973).
- Wang, C.; Wang, X.; Liu, C.; Jia, S.; Wang, Y. A Typhoon Dataset of the Yellow Sea and East China Sea from 2010 to 2018. Sci. Data Bank 2020, 5. [Google Scholar] [CrossRef]
- Bennis, A.-C.; Furgerot, L.; Bailly Du Bois, P.; Poizot, E.; Méar, Y.; Dumas, F. A winter storm in Alderney Race: Impacts of 3D wave–current interactions on the hydrodynamic and tidal stream energy. Appl. Ocean Res. 2022, 120, 103009. [Google Scholar] [CrossRef]
Dataset Name | Time | Spatial Resolution | Temporal Resolution |
---|---|---|---|
CFSv2 | 1 July 2018–31 July 2018 | 0.205° × 0.204° | 1 h |
ERA5 | 1 July 2018–31 July 2018 | 0.25° × 0.25° | 1 h |
Simulation | Forcing in SCHISM | Forcing in WWMIII |
---|---|---|
Exp1 | Tide, wind, SLP, wave | elevation, current, wind |
Exp2 | Tide, wind, SLP | elevation, current, wind |
Exp3 | Tide, wind, SLP, | current, wind |
Exp4 | Tide, wind, SLP, | elevation, wind |
Exp5 | \ | Wind |
Exp6 | Tide | \ |
Time | Lat (°) | Lon (°) | Pre (hPa) | Wind (kt) |
---|---|---|---|---|
20 July 2018 09:00 | 23.8 | 130.3 | 985 | 50 |
20 July 2018 12:00 | 24.5 | 129.9 | 985 | 50 |
20 July 2018 15:00 | 24.9 | 129.5 | 985 | 50 |
20 July 2018 18:00 | 25.6 | 129.0 | 985 | 50 |
20 July 2018 21:00 | 26.2 | 128.7 | 985 | 50 |
20 July 2018 23:00 | 26.6 | 128.3 | 985 | 50 |
21 July 2018 00:00 | 26.7 | 127.9 | 985 | 50 |
21 July 2018 03:00 | 27.3 | 127.3 | 985 | 50 |
21 July 2018 06:00 | 27.8 | 126.7 | 985 | 50 |
21 July 2018 12:00 | 28.6 | 125.9 | 985 | 50 |
21 July 2018 18:00 | 29.6 | 124.5 | 985 | 50 |
22 July 2018 00:00 | 30.7 | 123.2 | 985 | 45 |
22 July 2018 06:00 | 31.8 | 121.9 | 985 | 45 |
22 July 2018 12:00 | 32.7 | 120.7 | 985 | 40 |
22 July 2018 18:00 | 33.4 | 119.8 | 990 | 35 |
22 July 2018 00:00 | 34.5 | 119.2 | 992 | 35 |
22 July 2018 06:00 | 35.1 | 118.7 | 992 | 35 |
Measurement | Name | Latitude | Longitude |
---|---|---|---|
Wave buoy | No.06 | 30°43′ N | 123°08′ E |
No.10 | 31°22′ N | 122°00′ E | |
No.11 | 31°00′ N | 122°49′ E | |
No.12 | 30°30′ N | 122°33′ E | |
No.14 | 31°06′ N | 122°32′ E | |
No.20 | 29°45′ N | 122°45′ E | |
Tidal gauge | Luchaogang | 30°50′ N | 121°50′ E |
Dajishan | 30°49′ N | 122°10′ E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ji, Q.; Xie, M.; Wu, Y.; Tian, Y. Wave–Tide Interaction by Typhoon Ampil on Wave and Storm Surge in the Changjiang River Estuary and Its Adjacent Coastal Areas. J. Mar. Sci. Eng. 2023, 11, 1984. https://doi.org/10.3390/jmse11101984
Zhang Y, Ji Q, Xie M, Wu Y, Tian Y. Wave–Tide Interaction by Typhoon Ampil on Wave and Storm Surge in the Changjiang River Estuary and Its Adjacent Coastal Areas. Journal of Marine Science and Engineering. 2023; 11(10):1984. https://doi.org/10.3390/jmse11101984
Chicago/Turabian StyleZhang, Yuting, Qiyan Ji, Minghong Xie, You Wu, and Yilun Tian. 2023. "Wave–Tide Interaction by Typhoon Ampil on Wave and Storm Surge in the Changjiang River Estuary and Its Adjacent Coastal Areas" Journal of Marine Science and Engineering 11, no. 10: 1984. https://doi.org/10.3390/jmse11101984
APA StyleZhang, Y., Ji, Q., Xie, M., Wu, Y., & Tian, Y. (2023). Wave–Tide Interaction by Typhoon Ampil on Wave and Storm Surge in the Changjiang River Estuary and Its Adjacent Coastal Areas. Journal of Marine Science and Engineering, 11(10), 1984. https://doi.org/10.3390/jmse11101984