Bidirectional Face Aging Synthesis Based on Improved Deep Convolutional Generative Adversarial Networks
Abstract
:1. Introduction
2. Related Work
2.1. Face Detection
2.2. Face Progression and Regression
2.3. Generative Adversarial Network
3. Proposed Method
3.1. Framework
3.2. Encoder
3.3. Generator
3.4. Descriminator
3.5. Loss Function
4. Experiment
4.1. Dataset
4.2. Network Training
4.3. Comparison and Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lanitis, A.; Taylor, C.J.; Cootes, T.F. Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 442–455. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, G.; Huang, T.S. Age synthesis and estimation via faces: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1955–1976. [Google Scholar] [PubMed]
- Dosovitskiy, A.; Brox, T. Generating Images with Perceptual Similarity Metrics Based on Deep Networks. 2016. Available online: http://papers.nips.cc/paper/6157-generating-images-with-perceptual-similarity-metrics-based-on-deep-networks (accessed on 17 February 2019).
- Kang, S.-J. Multi-User Identification-Based Eye-Tracking Algorithm Using Position Estimation. Sensors 2017, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. arXiv, 2017; arXiv:1708.02002. [Google Scholar]
- Ramanathan, N.; Chellappa, R. Modeling shape and textural variations in aging faces. In Proceedings of the 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, Amsterdam, The Netherlands, 17–19 September 2008; pp. 1–8. [Google Scholar]
- Kemelmacher-Shlizerman, I.; Suwajanakorn, S.; Seitz, S.M. Illumination-aware age progression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 3334–3341. [Google Scholar]
- Park, U.; Tong, Y.; Jain, A.K. Age-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 947–954. [Google Scholar] [CrossRef]
- Wang, W.; Cui, Z.; Yan, Y.; Feng, J.; Yan, S.; Shu, X.; Sebe, N. Recurrent face aging. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2378–2386. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Antipov, G.; Baccouche, M.; Dugelay, J.-L. Face aging with conditional generative adversarial networks. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2089–2093. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv, 2014; arXiv:1411.1784. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv, 2015; arXiv:1511.06434. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein gan. arXiv, 2017; arXiv:1701.07875. [Google Scholar]
- Berthelot, D.; Schumm, T.; Metz, L. BEGAN: Boundary equilibrium generative adversarial networks. arXiv, 2017; arXiv:1703.10717. [Google Scholar]
- Zhang, Z.; Song, Y.; Qi, H. Age progression/regression by conditional adversarial autoencoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4352–4360. [Google Scholar]
- Ricanek, K.; Tesafaye, T. Morph: A longitudinal image database of normal adult age-progression. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 10–12 April 2006; pp. 341–345. [Google Scholar]
- Chen, B.-C.; Chen, C.-S.; Hsu, W.H. Cross-age reference coding for age-invariant face recognition and retrieval. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 768–783. [Google Scholar]
- Rothe, R.; Timofte, R.; Van Gool, L. Dex: Deep expectation of apparent age from a single image. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015; pp. 10–15. [Google Scholar]
- Dlib C++ Library. Available online: http://dlib.net/ (accessed on 22 December 2018).
- Niu, Z.; Zhou, M.; Wang, L.; Gao, X.; Hua, G. Ordinal regression with multiple output CNN for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4920–4928. [Google Scholar]
- Lu, J.; Liong, V.E.; Zhou, J. Cost-sensitive local binary feature learning for facial age estimation. IEEE Trans. Image Process. 2015, 24, 5356–5368. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, C.; Dong, M.J. Deep Age Estimation: From Classification to Ranking. IEEE Trans. Multimedia 2018, 20, 2209–2222. [Google Scholar] [CrossRef]
- Hu, Z.; Wen, Y.; Wang, J.; Wang, M.; Hong, R.; Yan, S. Facial Age Estimation with Age Difference. IEEE Trans. Image Process. 2017, 26, 3087–3097. [Google Scholar] [CrossRef] [PubMed]
- Carcagnì, P.; Coco, M.D.; Cazzato, D.; Leo, M.; Distante, C. A study on different experimental configurations for age, race, and gender estimation problems. EURASIP J. Image Video Process. 2015, 2015, 37. [Google Scholar] [CrossRef]
- Amos, B.; Ludwiczuk, B.; Satyanarayanan, M.J. Openface: A General-Purpose Face Recognition Library with Mobile Applications. 2016. Available online: https://scholar.google.com.tw/scholar?hl=en&as_sdt=0%2C5&q=Openface%3A+A+general-purpose+face+recognition+library+with+mobile+applications.+&btnG= (accessed on 25 December 2018).
- Face Transformer (FT) Demo. Available online: http://cherry.dcs.aber.ac.uk/transformer/ (accessed on 27 December 2018).
- TL-GAN: Transparent Latent-Space GAN. Available online: https://github.com/SummitKwan/transparent_latent_gan/ (accessed on 17 January 2019).
- Yang, H.; Huang, D.; Wang, Y.; Wang, H.; Tang, Y. Face aging effect simulation using hidden factor analysis joint sparse representation. IEEE Trans. Image Process. 2016, 25, 2493–2507. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Tang, J.; Lai, H.; Liu, L.; Yan, S. Personalized age progression with aging dictionary. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3970–3978. [Google Scholar]
Target | Generated Images | Real Images |
---|---|---|
Accuracy Ratio | 83.6% | 91.8% |
MAE Error | 0.2812 | 0.1263 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zou, Y.; Xie, C.; Kuang, H.; Ma, X. Bidirectional Face Aging Synthesis Based on Improved Deep Convolutional Generative Adversarial Networks. Information 2019, 10, 69. https://doi.org/10.3390/info10020069
Liu X, Zou Y, Xie C, Kuang H, Ma X. Bidirectional Face Aging Synthesis Based on Improved Deep Convolutional Generative Adversarial Networks. Information. 2019; 10(2):69. https://doi.org/10.3390/info10020069
Chicago/Turabian StyleLiu, Xinhua, Yao Zou, Chengjuan Xie, Hailan Kuang, and Xiaolin Ma. 2019. "Bidirectional Face Aging Synthesis Based on Improved Deep Convolutional Generative Adversarial Networks" Information 10, no. 2: 69. https://doi.org/10.3390/info10020069
APA StyleLiu, X., Zou, Y., Xie, C., Kuang, H., & Ma, X. (2019). Bidirectional Face Aging Synthesis Based on Improved Deep Convolutional Generative Adversarial Networks. Information, 10(2), 69. https://doi.org/10.3390/info10020069