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Abstract: In the complex organisational landscape, managing workforce diversity effectively has
become crucial due to rapid technological advancements and shifting societal values. This study
explores strategic workforce management through the novel methodological framework consisting
of the evolutionary game theory concept integrated with replicator dynamics and traditional game
theory, addressing a notable gap in the literature and suggesting an evolutionarily stable workforce
structure. Key findings indicate that targeted rewards for the most Enthusiastic employee type can
reduce overall costs and enhance workforce efficiency, although managing a diverse team remains
complex. The study reveals that while short-term incentives boost immediate productivity, long-term
rewards facilitate favourable behavioural changes, which are crucial for sustaining organisational
performance. Additionally, the role of artificial intelligence (AI) is highlighted, emphasising its poten-
tial to integrate with these theoretical models, thereby enhancing decision-making processes. The
study underscores the importance of strategic leadership in navigating these dynamics, suggesting
that leaders must tailor their approaches to balance short-term incentives and long-term rewards to
maintain an optimal workforce structure.

Keywords: leadership; game theory; evolutionary game theory; replicator dynamic; strategic decisions;
employee groups; optimisation; artificial intelligence

1. Introduction

Rapid advancements in technology and shifts in human behaviour have profoundly
transformed societal values and priorities in the modern era. Today’s organisational leaders
face the challenge of managing a workforce that spans diverse generational perspectives,
each with unique motivational drivers and engagement preferences. The task is further
complicated by the need to cater to both individuals who thrive under close supervision
and those who prefer autonomy and independence in their work.

Effective leadership now requires an understanding of these varied motivational
drivers to tailor strategies that engage and maximise the potential of all team members.
Employee engagement, a critical driver of business success, hinges on this understanding.
Studies consistently link higher levels of employee engagement to increased profitability,
underscoring the importance of fostering a work environment that accommodates diverse
needs and preferences. Excellent leadership represents a key element that differentiates
outstanding organisations from good ones. This study—which builds on previous work
by Talajić, Vrankić, and Kopal [1]—explores strategic workforce management through
the novel methodological framework consisting of the evolutionary game theory concept
integrated with replicator dynamics and traditional game theory.

Related to traditional game theory, Kopal and Korkut [2] describe it as a strategic
interplay in which the result of an individual’s decision is dependent on the decisions
made by others. Similarly, Dixit and Skeath [3] provide a comparable explanation, stating
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that game theory addresses scenarios in which multiple players base their decisions on the
anticipated actions of their counterparts.

Jehly and Renny [4] define a strategic game as a pair in which one part of the pair
is the set of all strategies available to each of the players (the so-called pure strategies).
In contrast, the other part of the pair is a function (the so-called payment function) that
calculates the payment for a chosen strategy of one player, taking into account the strategic
choices of all other players. The same authors define a mixed strategy game as a probability
distribution over pure strategies that each player has.

Additionally, related to traditional game theory, the concept of Nash equilibrium is
highlighted. It states that no player can benefit by changing their strategy while the other
players keep theirs unchanged. It represents a state of mutual best responses, where each
player’s strategy is optimal given the strategies of all other players. Essentially, it is a
situation where every participant is doing the best they can, given the choices of their
opponents [5].

When a game has a single Nash equilibrium, the choices become clear for rational
players. However, the theory faces challenges when multiple Nash equilibriums are present.
The dilemma then arises: Which equilibrium should a player choose, especially if not all
players behave rationally? In such scenarios, evolutionary game theory becomes relevant.
As an extension of the traditional principles of game theory, evolutionary game theory
examines how equilibriums are achieved through players’ learning processes, informed by
their experiences of trial and error.

Traditional game theory has been utilised to model the principal–agent relationship, fo-
cusing on the conflicts and incentives between leaders and followers. However, significant
numerical models in this area are limited. Bierman and Fernandez [6] explored leadership
through a principal–agent game theory model, but their approach did not account for the
heterogeneity of employees. Research done by Talajić, Vrankić, and Kopal [1] expanded
on this by considering three distinct employee types: Enthusiast, Worker, and Parasite; and
using traditional game theory combined with replicator dynamics to optimise workforce
structure for better financial outcomes.

Smith and Price [7] developed a concept through a simulation of interactions among
animals utilising five strategies: Mouse, Hawk, Bully, Retaliator, and Prober Retaliator.
Their research considered various animal species with differing abilities. Their simulation
demonstrated that a dominant strategy emerges over others, signifying the animal species
that ultimately prevails. In this context, pure strategies represent specific traits found within
individuals of a population, whereas mixed strategies indicate the portion of the population
exhibiting a certain trait. Utility is defined as the number of offspring an individual is
expected to produce if the offspring adopt the same pure strategy (trait) as their parent. The
concept of Nash equilibrium, as outlined in traditional game theory, does not align well with
evolutionary games. This discrepancy arises because the evolutionary approach, rooted in
biology (animals), does not take rationality as a key factor in achieving equilibrium.

Hence, the concept of an evolutionarily stable strategy (ESS) was formulated. ESS
examines the composition of the population (the distribution of each trait within the
population) in a way that is resilient to the potential emergence of mutants, where a mutant
is defined as a player who adopts a different pure strategy. A strategy is considered
stable when the mutant strategy yields a lower utility compared to the original strategy,
indicating that the mutant strategy will not prevail within the population. When applied to
humans, this refers to a scenario in which a minority of individuals attempts to alter the
prevailing strategy of the population but achieves lower utility than the strategy currently
in place. The determination of ESS is influenced not only by the specific power of the
species (including humans) but also by the frequency of each type within the population.

The collection of pure strategies (various types or characteristics within the population)
is determined by S = {s1, s2, . . . sn}. A mixed strategy signifies the composition of the
population, reflecting the proportion of each type within the population, and is defined by
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P = {p 1, p2, . . . , pn|p1 + p2 + . . . + pn = 1} where pi is the percentage of type with pure
strategy si.

Baron [8] introduced a pivotal concept in evolutionary game theory—the ESS—which
is a strategy that, if adopted by a population, cannot be invaded by any alternative strategy
that is initially rare. The ESS theorem, a cornerstone of evolutionary game theory, states
that if a strategy is evolutionarily stable, it must be a Nash equilibrium. However, not all
Nash equilibria are evolutionarily stable. The theorem establishes the necessary conditions
for a strategy to be considered an ESS:

1. Strategy Superiority: The strategy must yield a higher fitness (or payoff) against itself
than any mutant (alternative) strategy does against it. This ensures that within a
population using the ESS, any mutant strategy will be less successful. In other words,
for a strategy S to be an ESS, it must have a higher fitness against a mutant strategy T
than T has against itself, whenever T is rare. This means that S can resist invasion by
any small number of mutants adopting a different strategy T.

2. Stability Condition: If there is a tie in the first condition, meaning the ESS and the
mutant strategy yield the same fitness against the ESS, the ESS must perform better
against the mutant strategy than the mutant does against itself. In other words, if
the fitness of S against T is equal to the fitness of T against itself (indicating a neutral
stability), then S must have a higher fitness against itself than T does against S, to
ensure that S remains stable and cannot be replaced by T.

These conditions ensure that an ESS is not only a Nash equilibrium but also robust
against invasion by alternative strategies, providing a stable state in the evolutionary
dynamics of populations.

While the application of evolutionary game theory in leadership studies is less preva-
lent, it has shown promise in analysing strategic interactions and stability within organisa-
tions. Studies by Maussa Perez et al. [9], and Szolnoki and Perc [10] have demonstrated the
utility of evolutionary game theory in evaluating strategic behaviours and social dilemmas.
Ref. [9] specifically highlighted the role of evolutionary strategies in promoting cooperative
behaviour within entrepreneurial activities. Ref. [10] proposed that in evolutionary social
dilemmas, effective leaders should diverge from conformist behaviour, emphasising the
importance of non-conformist strategies in achieving a competitive advantage.

Han, Albrecht, and Woolridge [11] investigated the mechanisms of the emergence
and evolution of collective behaviours in multi-agent systems (MAS) through the lens of
evolutionary game theory and agent-based modelling. Their work emphasises the impor-
tance of cognitive and emotional mechanisms in promoting prosocial behaviours within
organisations. Similarly, Cun [12] developed a business intelligence simulation model
aimed at enhancing leadership and crisis management through game theory techniques
and machine learning models, demonstrating the potential of artificial intelligence (AI) in
optimising leadership strategies.

Zhang et al. [13] investigated the impact of anxiety on cooperative behaviour using a
network evolutionary game theory approach. Their study introduced an anxiety threshold
to model the tendency of anxious players to change strategies, highlighting the significant
influence of peer pressure and individual anxiety on cooperative behaviour. Ma et al. [14]
examined the interplay between fiscal policy, the stability of farmers’ cooperatives, and
environmentally friendly digital management through an evolutionary game theory-based
study; revealing critical insights into the factors influencing cooperative stability and
pro-environmental behaviour.

Dong et al. [15] presented an innovative study on promoting cooperation in multi-
agent systems using evolutionary game dynamics with a focus on agents utilising local
information and the introduction of the “hide” strategy. This approach is designed to
reduce defection and enhance stable payoffs among agents. Cheng et al. [16] proposed a
consortium blockchain-based leasing platform that facilitates information sharing between
small and medium-sized enterprises and leasing firms, using evolutionary game theory
to model the dynamics of contract compliance. Li et al. [17] investigated the role of
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oxytocin in promoting fairness and cooperation in heterogeneous networks through data-
driven evolutionary game models. Their study revealed that oxytocin enhances prosocial
behaviours by increasing inequality aversion, providing insights into the mechanisms
underpinning fairness and cooperation in human networks.

Taylor and Jonker [18] were at the forefront of developing the replicator dynamic
equation. This model captures the evolution of strategies in both continuous and discrete
settings using non-linear first-order differential equations and non-linear difference equa-
tions, respectively. This model provided a basis for understanding stability and asymptotic
behaviour. They applied this model to a population of haploid organisms, each committed
to a single pure strategy throughout their lifespan, with the assumption that these strategies
are passed down to their offspring.

The change in the population’s mix strategy is influenced by the rate at which users
of each strategy reproduce. The change in the ratio pi of individuals adopting a specific
strategy si corresponds to the difference between the fitness of said strategy Ei and the
mean fitness of the entire population M. This concept is encapsulated in the form of a
replicator dynamic equation:

.
pi = pi ∗ (Ei − M).

Despite all these advancements, there remains a notable gap in the literature regard-
ing the integration of traditional game theory, evolutionary game theory, and replicator
dynamics into a comprehensive framework for workforce management. This study seeks
to address this gap by proposing a novel model that leverages these three theoretical
approaches to optimise employee engagement and organisational performance.

Building on the foundational work of [1], this paper introduces a “cockpit” approach
for dynamic employee management, allowing for real-time strategy adjustments. The
integration of evolutionary game theory adds a significant layer of novelty by identifying
ESS, which contributes to system stability.

The primary aim of this paper is to define a comprehensive theoretical framework that
incorporates traditional game theory, evolutionary game theory, and replicator dynamics.
This framework offers a new perspective on leadership and principal–agent relationships,
addressing a notable gap in the current literature. Specifically, this study seeks to answer
the following research questions:

1. Can the model developed by [1] be fine-tuned by utilising parameter variation to
determine the optimal ratio of employee types for effective workforce management?

2. How can the concept of evolutionary game theory provide additional insights into
this field of research?

3. Is there a structured theoretical framework that can serve as an effective leadership
tool for managing people and achieving better organisational outcomes?

Furthermore, the increasing development and application of AI in business processes
highlights the potential for integrating these theoretical models into AI-powered systems.
Such integration can enhance decision-making processes, improve the quality of decisions,
and accelerate digital transformation within organisations.

This study involves several key steps to achieve its objectives. Firstly, the existing
model by [1] is extended by integrating evolutionary game theory to identify a stable and
efficient workforce structure. This involves mathematical modelling and analysis using
game theory and replicator dynamics. The next step is the development of the “cockpit”
approach for real-time strategy adjustments. This model is then tested and validated
through simulations and case studies to assess its practical applicability and effectiveness.
Finally, the implications of integrating AI into these models are highlighted to provide a
comprehensive framework for future applications in workforce management.

This paper contributes to the existing literature by proposing a novel, integrative
approach to workforce management. It combines traditional game theory, evolutionary
game theory, and replicator dynamics to create a comprehensive framework that addresses
the complex dynamics of employee engagement and organisational performance. Through
this framework, leaders can better understand and manage their workforce, ultimately
driving improved business outcomes.
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2. Literature Review
2.1. The Role of Leadership in Modern Organisation

According to Hogan and Kaiser [19], leadership is a real and vastly consequential
phenomenon that significantly impacts team and organisational performance. They argue
that personality is an important predictor of leadership effectiveness, which can be used to
select future leaders or improve current ones.

According to Ulrich and Smallwood [20], leadership involves both individual and
organisational components. They argue that individual leaders play critical roles in shaping
strategy, executing decisions, managing talent, developing future talent, and acting with
personal proficiency. However, they emphasise that organisational leadership—which
involves building a cadre of future leaders capable of shaping the organisation’s culture
and creating patterns of success—is even more important. They propose an outside/in
view of leadership, focusing on business values rather than psychological principles. Ul-
rich and Smallwood [20] outline four key principles of effective leadership: clarifying
why leadership matters, nailing the basics, creating a leadership brand, and ensuring
leadership sustainability.

Strategic leadership research has seen significant growth and diversification over the
past few decades, addressing numerous themes and perspectives [21] according to which
the field of strategic leadership is inherently tied to digital transformation and innovation,
highlighting the importance of top management teams in driving organisational success.
Comprehensive bibliometric–temporal analysis in [21] underscores the evolving nature of
strategic leadership research, identifying key trends and future research directions that are
critical for scholars and practitioners alike.

Digitalisation requires leaders to adopt new skills and characteristics to effectively nav-
igate the challenges and opportunities presented by digital transformation [22]. According
to this, successful digital leadership involves being visionary and customer-centred while
embracing change and promoting teamwork and collaboration. The review highlights the
importance of flat hierarchies, employee empowerment, digital savviness, and engagement
in partnerships and ecosystems for leaders aiming to succeed in digitalisation initiatives.

Gilli, Lettner and Guettel [23] argue that as digitalisation intensifies within organisa-
tions, the role of business leaders is evolving to emphasise traditional leadership virtues
alongside new digital skills. Leaders now need to manage relationships actively, oversee
social processes within their teams, and navigate change processes effectively.

According to Amalia and Prayekti [24], the work environment plays a crucial role in
shaping employee morale and productivity. They highlight that transformational leadership
can significantly enhance employee motivation and engagement. Furthermore, their study
demonstrates that incentives are a powerful tool in boosting employees’ morale and overall
job performance. They argue that effective transformational leadership can lead to im-
proved organisational performance by increasing employee morale. The research indicates
that a well-designed incentive programme can positively impact employee motivation and
performance. Furthermore, it shows that integrating transformational leadership practices
within an organisation can lead to a more motivated and high-performing workforce.

The study by Feng, Zhang, and Zhang [25] provides a comprehensive analysis of the
role of compensation and incentives in facilitating digital transformation within organisa-
tions. It highlights that there is a nonlinear relationship between monetary compensation
and digital transformation outcomes, suggesting an optimal level of compensation to
maximise effectiveness. Additionally, the research discusses the concept of managerial
myopia, where short-term goals may conflict with long-term digitalisation objectives. The
authors emphasise the importance of equity-based incentives as a more effective strategy
for promoting digital transformation; offering valuable insights for managers, investors,
and policymakers aiming to navigate the complexities of digital transformation in the
modern knowledge economy.

Zhu and Xie [26] highlight the crucial role of compensation incentives in human
resource management, emphasising their significance in attracting and retaining talent,
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motivating employees, and enhancing performance. They argue that a well-designed
compensation system not only fosters a positive workplace culture but also aligns employee
objectives with organisational goals, thus driving overall company performance.

2.2. Game Theory and Leadership

One of the ways in which traditional game theory views leadership can be seen
through the idea of the principal–agent (leader–follower) theory. The theory is described
as an approach to addressing issues related to the assignment of duties from principals
to agents and from leadership to followers; especially when there is a conflict of interest
between the two groups [27]. Similarly, agency theory is explained as an economic concept
that considers a company to be a collection of contracts between self-interested parties [28].
In his analysis of corporate governance within the banking sector, Tan [29] characterises
agency theory as the study of a firm’s behaviour through the lens of contracts between
various stakeholders.

Stankova and Olsder [30] present the adverse-selection principal–agent framework
as an inverted Stackelberg game. The study argues that an agent consistently endeavours
to optimise their utility by adopting the identity of a different agent category. It outlines
an ideal strategy for the principal based on the assumption that the agent’s goal is to
maximise their earnings. This model accounts for only a single agent type. While the
authors hinted at the possibility of broadening the research scope to encompass multiple
agents in subsequent studies, no such advancements have been reported thus far. The
interaction between the principal and the agent employs incentive theory as a strategic tool
for the principal to shape the agent’s behaviour.

Shapiro and Stiglitz [31] investigated the concept of involuntary unemployment by
examining the framework of the principal–agent relationship. They illustrated how the
principal’s lack of ability to monitor an employee’s effort without incurring costs leads
to involuntary unemployment as a feature of equilibrium. They argued that the efficacy
of the threat of dismissal hinges on the extent of the loss experienced by the Worker
upon termination. If a dismissed employee can promptly secure another position with a
comparable salary, the threat of dismissal fails to incentivise effective work performance.
An organisation might derive benefits from enforced unemployment if it leads to a decrease
in the expected utility for the laid-off Workers. The unemployment rate at equilibrium
needs to be sufficiently high to ensure that a Worker is more motivated to perform diligently
rather than to shirk.

Bierman and Fernandez [6] researched the topic of involuntary unemployment through
a moral hazard scenario, applying the principal–agent framework from game theory. Their
examination focused on scenarios of involuntary unemployment, characterised by an em-
ployer’s decision not to employ a person despite their readiness to work for the current
market salary. They illustrated a condition where involuntary unemployment exists in
equilibrium. The game initiates with an employment offer from the employer, followed by
the employee’s decision to accept the offer and the level of effort they intend to contribute.
The employer cannot directly observe the employee’s effort, and it is left to “nature” to
determine the employee’s effectiveness. Initially, the employee’s von Neumann utility
function is established—along with the employer’s revenue function—which depends on
the quantity of effective work produced by the employee (assuming uniform effectiveness
across all employees). Utilising these definitions, a dynamic principal–agent game was
constructed. Through the optimisation of the employee’s expected utility, the optimal
amount of effective work was derived, taking into consideration both the offered wage
and the reservation wage (the employee’s response to the offered wage) [32]. The em-
ployer’s profit function was then formulated based on the employee’s reaction curve. It
was demonstrated that in certain scenarios, the employer compensates the employee with
double the reservation wage to incentivise higher productivity (thus reducing the level of
moral hazard). At equilibrium, all employers offer the same wage, which must surpass the
market-clearing wage. Otherwise, any employee dismissed from one job would immedi-
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ately secure another. Ultimately, it was concluded that no employer benefits from paying a
new employee less than what is paid to existing employees within the organisation. The
marginal value product of an employee falls below their wage (if the wage is higher than
the reservation wage). Since employees cannot guarantee and commit to a certain level of
efficient work, companies compensate with a higher wage (efficient wage) that exceeds the
equilibrium wage produced by the standard supply and demand mechanism, aiming to
achieve a greater level of efficient work.

Ref. [6] takes a step forward by describing leadership followers through a principal–
agent game theory model. The model does not recognise different agents (followers),
assuming that all followers are of the same type, and that is its main drawback.

No relevant studies exist on replicator dynamics related to modelling leadership from
this theoretical perspective. Some literature suggests that principles could be applied to the
leadership–follower concept.

In their study, Carrera and Pavlinović [33] explored how the concept of place attach-
ment (player identity) plays a crucial role in environmental preservation. In their work,
the authors used the ESS concept in combination with the replicator dynamic. The use
of a combination of those theories in their article was an inspiration for this paper. They
identified two categories of participants: those with a strong connection to the place and
those without such connection. Participants had the option to either contribute to enhanc-
ing environmental quality or not doing so. A notable aspect of their research was the
observation of individuals deeply connected to their environment who, nonetheless, chose
not to contribute to a better-quality environment. This suggests that an increase in the
number of individuals who feel a strong connection to a place does not necessarily lead to
improved environmental conditions.

Conversely, they discovered that individuals lacking a strong sense of place identity
might still take actions to improve environmental quality, indicating that environmental
conditions could improve even with an increase in the number of such individuals. Hence,
assessing the dynamics of change among these groups to identify stable equilibriums
is critical. They employed the replicator dynamic equation for pinpointing potential
equilibrium states and utilised a geometrical method (phase portraits) for evaluating
stability. Their findings highlighted that the approach of individuals who are connected to
their place and actively work towards environmental sustainability is evolutionarily stable.
Another key insight was that a population solely comprising strongly attached individuals
who do not contribute to environmental enhancement is not viable, as it reduces the benefits
for those committed to environmental quality. Furthermore, they observed that, over time,
those with a strong identity who do not invest in environmental quality could coexist with
those who lack a strong identity and do not invest; eventually leading to a shift where the
former group loses their strong sense of identity.

Vrankić, Herceg, and Pejić Bach [34] introduced various business tactics within a
duopoly; categorising them as dominant, reactive, cooperative, and tit-for-tat strategies.
Over time, a firm’s approach evolves in response to the strategy adopted by its competitor;
a process accurately captured through replicator dynamics. The initial set of strategies
employed heavily influences the eventual structure of the industry. Their work incorporated
the use of phase portrait methodology for the analysis of the system’s dynamics.

In their research, the authors of [1] considered the heterogeneity of employees, avoid-
ing the assumption that all employees are of the same type, as the authors of [6] did. The
principal–agent concept was applied to three distinct groups of employees (agents): Enthu-
siasts, Workers, and Parasites. This approach represented a further development beyond [6].

The Enthusiastic type is a proactive employee who enjoys attractive and innovative
tasks, is highly engaged, and likes to work.

The Worker group is a type of employee who is not ambitious and prefers repetitive
tasks. Having a secure salary is important to this group, and it plays a vital role in the
organisation’s operational activities.

The Parasite, on the other hand, is the type who slacks off and dislikes work.
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For this reason, it is assumed that the Enthusiast type works 100% of the time, giving
them an effort level of 1. The Parasite type, who dislikes working, works 0% of the time
and has an effort level of 0. The Worker group works between 0% and 100% of the time and
has an effort level between 0 and 1.

The researchers examined employees in teams of two and calculated the payoffs (total
costs) through all possible pair combinations.

The results indicate that, in the short run, it is impossible to eliminate the Parasite type,
and the optimal combination is 59% of the Worker type, 24% of the Enthusiast type, and
17% of the Parasite type. However, in the long run, there would be about 71% Workers and
29% Enthusiasts.

It is assumed that, in the long run, Parasites will act like Workers to avoid being
caught not working. This scenario was specifically examined by the authors. To calculate
the optimal and stable proportions of groups in the population, traditional game theory
combined with replicator dynamics is used. Both numerical and geometrical (phase portrait)
methods are employed to describe the direction in which the population moves to achieve
stability. This work is among the few that describe the leadership–follower relationship
through these two theories, and its results and findings will form the basis of this paper.

Their research does not use evolutionary game theory and the ESS concept. This paper
will extend their model by adding evolutionary game theory. The integration of these
three theories into one model represents a significant scientific contribution, as people
management and leadership have not previously been viewed through the lens of these
three theories.

Graser et al. [35] apply game theory to the hiring process by modelling candidate
selection as a strategic game between the HR manager and job candidates. The utility
function evaluates candidates’ professional and soft skills, aiming to maximise the benefit
to the company. This approach highlights the competitive nature of recruitment, where
both the employer and candidates’ strategies to achieve their best outcomes. By viewing
the selection process through the lens of game theory, the study provides insights into
optimal decision-making strategies, balancing the interests of both the employer and
potential employees.

Drouvelis and Pearce [36] examine the impact of intelligence on decision-making in
infinitely repeated sequential public goods games. Their research indicates that leaders with
higher intelligence are less likely to engage in free-riding behaviour, leading to increased
group contributions and higher overall profitability. From a game theory perspective, this
study underscores how intelligence can influence strategic choices, particularly in contexts
requiring long-term cooperation and trust. These findings suggest practical implications
for organisational policies aimed at promoting teamwork and group success by leveraging
cognitive skills.

Zhang, Liang, and Wang [37] explore the optimal reinsurance and investment strate-
gies for insurers and reinsurers using a mixed leadership game framework. In this model,
the insurer acts as a leader in determining investment in risky assets and as a follower in
setting reinsurance retention levels. Conversely, the reinsurer leads in setting reinsurance
premiums but follows in investment decisions. By solving the Hamilton–Jacobi–Bellman
(HJB) equations, they derive a Stackelberg–Nash equilibrium, providing theoretical and
numerical insights into the economic implications of this mixed leadership dynamic.

In the context of multi-agent interactions, Khan and Fridovich-Keil [38] introduce
an iterative algorithm for solving dynamic Stackelberg games with nonlinear dynamics
and nonquadratic costs, demonstrating consistent convergence. They also propose the
Stackelberg Leadership Filter (SLF): an online method for identifying leaders in two-agent
games based on observed behaviours. This research enhances understanding of leadership
inference in dynamic and complex environments, applying game theory to predict and
interpret strategic interactions among agents, particularly in simulated driving scenarios.

Wang et al. [39] address the leader–follower consensus problem in hybrid multi-agent
systems using game theory. Their study models the competitive behaviour of agents
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as a multiplayer game, designing cost functions for each agent based on game rules.
They analyse the necessary and sufficient conditions for achieving consensus in systems
with both continuous and discrete-time agents, providing a game-theoretic framework to
understand the dynamics of cooperation and competition among multiple agents. This
research highlights the application of game theory to control systems, demonstrating how
strategic interactions can lead to optimised collective behaviour.

2.3. Evolutionary Game Theory and Leadership

Han, Albrecht, and Woolridge [11] investigate the mechanisms of emergence and
evolution of collective behaviours in multi-agent systems (MAS) through the lens of evo-
lutionary game theory (EGT) and agent-based modelling (ABM). They explore various
strategies; from incorporating cognitive and emotional mechanisms to promoting proso-
cial behaviours, emphasising the importance of these approaches in understanding and
engineering MAS.

Cun [12] explores the development of a business intelligence simulation model aimed
at enhancing leadership and crisis management through game theory techniques and ma-
chine learning models. The study highlights the use of a variational recurrent Boltzmann
learning model (VRBL) for crisis management and leadership analysis, demonstrating
the advantages of machine learning in prediction accuracy over traditional econometric
models. The research also emphasises the importance of cloud network modelling in
improving execution time, network performance, data optimisation, and reducing end-
to-end delay. Cun’s findings suggest that the final fusion model outperforms traditional
voting and averaging techniques in terms of prediction performance, making it a valu-
able tool for crisis management. The study underlines the potential of AI together with
game theory to revolutionise business practices by providing advanced solutions for risk
assessment and proactive crisis response; thus enhancing the stability and efficiency of
organisational operations.

Zhang et al. [13] investigate the impact of anxiety on cooperative behaviour using a
network evolutionary game theory approach. The study introduces an anxiety threshold to
model the tendency of anxious players to change strategies, considering both endogenous
anxiety and peer pressure as sources. The findings highlight that higher anxiety leads to
greater strategy shifts, and a combination of peer pressure and individual anxiety signifi-
cantly influences cooperative behaviour within networks. The research also incorporates a
collapse threshold to explore factors influencing the proportion of overanxious individuals,
offering insights into how these dynamics affect group cooperation. Simulation results
demonstrate that focusing on past game records or possessing strong resilience can lead
to stable cooperation. At the same time, overanxious individuals can destabilise group
dynamics unless moderated by peer pressure and strategic adjustments.

Ma et al. [14] conducted an evolutionary game theory-based study to examine the
interplay between fiscal policy, the stability of farmers’ cooperatives, and environmentally
friendly digital management. Their research highlights the critical role of fiscal policy
support, brand influence, and market share in determining the stability and contract
selection within cooperative associations. The study also reveals that input costs and
breaches of contracts by residents significantly impact the stability and pro-environmental
behaviour of these associations.

Dong et al. [15] present an innovative study on promoting cooperation in multi-agent
systems (MAS) using evolutionary game dynamics, with a focus on agents utilising local
information and the introduction of the “hide” strategy. This approach is designed to
reduce defection and enhance stable payoffs among agents. By considering only their own
and non-defective neighbours’ payoffs, agents can make more informed decisions, leading
to stable equilibrium states under various conditions. The study’s findings underscore the
utility of the hidden strategy in promoting cooperation, providing valuable insights for au-
tonomous decision-making in MAS. The introduction of the hidden strategy is particularly
effective in scenarios where agents face high risks, such as autonomous unmanned systems
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(AUS) operating under poor communication conditions. The research highlights the im-
portance of local information in decision-making processes, suggesting that non-defective
neighbour information can significantly influence agent behaviour and system stability.
This study provides a practical reference for the development of cooperation promotion
mechanisms in MAS, particularly in high-stakes environments such as military operations
or disaster response.

Cheng et al. [16] propose a consortium blockchain-based leasing platform (CBLP)
that facilitates information sharing between small and medium-sized enterprises (SMEs)
and leasing firms (LFs) using evolutionary game theory (EGT) to model the dynamics of
contract compliance. Their study reveals that both SMEs and LFs can achieve a “win-win”
strategy by complying with contracts and adopting blockchain technology (BCT), particu-
larly when incentives and penalties are appropriately balanced. The findings emphasise
that large residual values of leased assets and the maintenance outsourcing model signifi-
cantly influence the likelihood of SMEs defaulting; suggesting that blockchain integration
could mitigate these risks by enhancing transparency and trust. The article highlights
the potential of blockchain technology in addressing information asymmetry and default
risks in the leasing sector. By implementing a consortium blockchain, SMEs and LFs can
share critical data more efficiently, thereby improving credit assessments and asset man-
agement. The research also underscores the importance of designing effective incentive
mechanisms to encourage SMEs to comply with lease contracts and participate in the
blockchain network, ultimately leading to a more sustainable and trustworthy leasing
environment. Furthermore, the study suggests that the evolutionary game model can guide
policymakers in optimising these mechanisms to foster cooperative behaviour among all
stakeholders involved in the leasing process.

Li et al. [17] investigate the role of oxytocin in promoting fairness and cooperation in
heterogeneous networks through data-driven evolutionary game models. Their study re-
veals that oxytocin enhances prosocial behaviours by increasing inequality aversion, which,
when combined with network heterogeneity, leads to the amplification and diffusion of
fairness and cooperation. This effect is particularly pronounced in the ultimatum game and
the two-stage prisoner’s dilemma game with punishment. In contrast, the trust game shows
that trust enhanced by oxytocin remains locally confined and does not promote broader
prosociality. These findings provide insights into the mechanisms underpinning fairness
and cooperation in human networks and highlight the differential impact of oxytocin
across various social games. The research underscores the significant impact of oxytocin
on promoting fairness and cooperation in social networks. By integrating oxytocin with
evolutionary game models, the study demonstrates that central nodes in heterogeneous
networks can amplify and spread prosocial behaviours initiated by inequality aversion. The
distinct outcomes across different social games suggest that the mechanism of punishment,
rather than reward, is more effective in fostering network-wide cooperation. These insights
are crucial for understanding the complex interplay between biological factors and social
network structures in driving human cooperative behaviour. The study’s findings also sug-
gest potential applications in designing interventions to enhance fairness and cooperation
in various social contexts.

The perspective of leadership through the concept of evolutionary game theory can be
found in the literature, though not as extensively as one might expect given the theory’s
potential. What follows is an overview of a few papers whose content may inspire further
research in this area.

Maussa Perez et al. [9] demonstrated the significance of evolutionary game theory
in evaluating and enhancing entrepreneurial activities. Szolnoki and Perc [10] proposed
that in the context of evolutionary social dilemmas, effective leaders should diverge from
conformist behaviour. Contrary to the traditional belief in evolutionary game theory that
individuals will naturally gravitate towards strategies yielding the highest payoffs, their
research highlighted situations where individuals opt for the most adopted strategies due
to a herd mentality or collective behaviour; this underscores that outcomes favoured by
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the majority are often the most desirable. They argued that, especially in evolutionary
social dilemmas, ideal leaders are those who resist conforming to majority behaviours,
instead aiming to rally substantial groups around prevalent strategies to compete in the
marketplace effectively. The methodology proposed by the authors presents a novel and
compelling approach.

In their study, Silveira and Vasconcelos [40] investigated the strategic choices of
retail companies within a duopoly market, focusing on two main strategies: maximising
profits and maximising revenues. They sought to determine whether profit maximisation
consistently represents an ESS. Employing evolutionary game theory and the replicator
dynamic, they constructed an agent-based model and revealed instances where revenue
maximisation emerged as an ESS, offering higher payoffs than the conventionally favoured
profit maximisation strategy, as discussed in [32]. Their findings indicated that in a Cournot
duopoly scenario, the choice between revenue and profit maximisation (disregarding
production costs) depends on the market’s size and the company’s operational efficiency.
They demonstrated that companies could alter their strategic approach over time through
dynamic adaptation and learning. The viability of revenue maximisation as an ESS is
contingent upon the specific business strategies of a company, such as the emphasis on
expanding market share, wherein revenue growth assumes greater significance.

In the evolving digital economy, strategic management of workforce diversity has
become critical for fostering innovation and maintaining competitive advantage. An evolu-
tionary game theory approach provides a robust framework for analysing the interactions
between diverse workforce strategies and organisational outcomes.

Vrankić [41] explores the dynamics of corporate social responsibility (CSR) in duopolies,
highlighting how firms’ investments in socially responsible activities can significantly influ-
ence market shares and profitability. His findings emphasise that strategic CSR investments,
particularly under competitive pressures, can enhance an organisation’s market position
and drive social welfare improvements.

By integrating his insights into the evolutionary game theory approach, it can be
better explained how strategic management of workforce diversity not only contributes to
ethical and socially responsible business practices, but also catalyses achieving competitive
advantage in a digitally driven market. The alignment of CSR initiatives with workforce
diversity strategies can thus be seen as a vital element in the broader context of digital
transformation and economic sustainability.

In the realm of strategic management of workforce diversity, employing an evolution-
ary game theory approach can provide robust insights into the dynamics of organisational
behaviour and decision-making. Georgiou [42] analysed investment strategies in high-
intensity R&D entities and constructed a game theory matrix using empirical data to
evaluate how managerial decisions regarding the capitalisation of development costs in-
fluence investor behaviour. This method highlights the importance of strategic financial
decision-making under conditions of uncertainty and risk, which parallels the complexities
faced in managing a diverse workforce in AI-driven systems.

2.4. Game Theory and AI

Game theory has increasingly intersected with deep learning, offering a rich frame-
work for modelling and solving complex problems. Hazra and Anjaria [43] provide an
extensive survey on the applications of game theory in deep learning, highlighting its
potential to enhance model performance. They discuss how game-theoretic concepts un-
derpin various deep learning architectures, including generative adversarial networks
(GANs). GANs—framed as two-player zero-sum games—benefit significantly from game
theory in training generative and discriminative models, leading to advancements in image
generation and classification tasks. Their review underscores the symbiotic relationship
between game theory and deep learning, showcasing its utility in addressing intricate
problems in AI. Their study also details how game theory aids in reinforcement learning
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and other deep learning architectures; providing valuable insights, challenges, and future
research directions in these fields.

Harré [44] discusses the role of a cognitive representation of others’ unobserved causal
states, which is central to the psychology of social interactions. This concept, known
as the “Theory of Mind”, is crucial for understanding how agents simplify the task of
predicting others’ behaviour. In his examination of introspection and theory of mind, the
author highlights the economic analysis of game theory and its significance in modelling
interpersonal relationships for both biological and artificial agents. He suggests that, while
game theory is instrumental, it is not entirely sufficient and psychological refinements
are necessary. The coordination challenges between artificial agents and humans are
also addressed, emphasising the need to understand the cognitive processes that enable
intelligent agents to make decisions in the presence of other intelligent agents. He points out
that such understanding is vital for enhancing AI’s ability to support human endeavours.

He et al. [45] introduce a novel approach to integrating generative artificial intelli-
gence (GAI) with game theory to address complex networking optimisation problems in
mobile networking. They highlight the inherent complexities of game theory-based solu-
tions, which traditionally require extensive human expertise and experience. However, the
authors propose that the advanced reasoning and generation capabilities of GAI can signif-
icantly enhance the design and optimisation processes in mobile networking. They discuss
the synergistic benefits of combining these two fields, noting how GAI can mitigate some of
the limitations of traditional game theory applications. The authors present a game theory
framework enabled by large language models (LLMs) and demonstrate its effectiveness
through a case study focused on secured UAV networks. This innovative approach could
pave the way for more efficient and effective solutions to complex networking challenges.

Schelble et al. [46] conducted an empirical study examining how different reinforce-
ment learning algorithms and game theory scenarios influence cooperation in human–AI
teams. Their findings indicated that the Deep-Q Network (DQN) algorithm facilitated
higher levels of cooperation compared to other algorithms; and the Hawk Dove scenario
resulted in more significant cooperation than the Prisoner’s Dilemma scenario. The study
emphasised the importance of task and social framing in human–AI systems, demonstrat-
ing that the chosen reinforcement learning model and game theory scenario significantly
impact the cooperation levels within these systems. Moreover, the research highlighted
the potential of game theory as a valuable tool for evaluating and enhancing human–AI
interaction, by fostering cooperative behaviours. The implications of this study suggest
that a deeper understanding and careful design of human–AI systems can lead to more
effective and harmonious cooperation between humans and AI.

Li and Lee [47] explore the intricate dynamics of goal alignment within human–AI
teams. They present a dynamic game-theoretical framework that integrates the drift-
diffusion model to simulate the interdependency between humans and AI. Their study
highlights that situational structures and strategic behaviours significantly influence the
process of goal alignment, with findings suggesting that teaming with altruistic agents in
competitive situations can lead to the highest team performance. This work underscores
the complexity of modelling goal alignment and provides a foundation for designing more
effective human–AI teaming systems.

Tennenholtz [48] found the relationship between game theory and artificial intelligence.
These two fields have evolved separately, yet share common origins; and the author
emphasises the importance of bridging the gap between these disciplines by exploring
foundational issues in representation, reasoning, and learning that intersect both areas.

Shen et al. [49] examine the convergence of AI and game theory in the context of
next-generation communication networks, highlighting the limitations of traditional math-
ematical methods in addressing user behaviour. They propose a novel framework that
combines machine learning and game theory to enhance network management, specifically
addressing the network selection problem in 5G ultra-dense and heterogeneous networks.
Their simulation results demonstrate the framework’s effectiveness in reducing user delay.
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Wang, Wan, and Wang [50] explore the integration of human values into ethical AI
using experimental game theory. They propose a mathematical framework that links moral
philosophy concepts—such as Kantian and utilitarian ethics—with industry standards
for ethical AI, such as the IEEE P7000 [51] series. Their study demonstrates how values
derived from experimental game theory, particularly trust game experiments, can inform
the development of ethical AI systems. Additionally, they discuss using the iterated
Prisoner’s Dilemma game to test the ethical behaviour of AI algorithms, highlighting the
advantages of their approach over existing methods.

Wang, Fu, and Chen [52] discuss the intersection of evolutionary game theory (EGT)
and AI, highlighting the potential for cross-fertilisation between these fields to advance
multi-agent learning systems. EGT focuses on the evolution of strategies within a popula-
tion, where individuals adapt based on social learning. At the same time, AI— particularly
in multi-agent environments—involves intelligent agents adjusting their strategies based on
feedback and experience. This intersection is crucial for developing collective, cooperative
intelligence, which bridges evolutionary dynamics and multi-agent reinforcement learning;
addressing real-world problems through learning, adaptation, cooperation, competition,
robustness, and stability.

Xing et al. [53] present an innovative approach to optimising path planning for robots
in a human–robot collaboration environment typical of Industry 4.0. The study addresses
the challenges faced by robots in navigating complex, dynamic environments shared with
human Workers. Traditional deep reinforcement learning algorithms struggle with slow
convergence in such scenarios. To overcome this, the authors propose a hybrid method
that integrates deep reinforcement learning with game theory. Their approach involves
a heuristic method to assess collision risks, employing deep reinforcement learning for
path optimisation when no risk is detected and formulating a cooperative game to resolve
collision concerns when risks are present. Numerical results demonstrate the superiority
of their proposed algorithm over state-of-the-art solutions in distributed path planning
for robots.

Yang et al. [54] used the integration of generative AI with game theory to overcome
traditional limitations in handling large-scale and dynamic strategic interactions. The study
identifies the challenges posed by traditional non-AI and discriminative AI approaches
in deriving solutions and optimising performance in network games. By leveraging the
superior data analysis and generation capabilities of generative AI, the authors propose a
framework that enhances model formulation, solution derivation, and strategy improve-
ment in game theory applications. The effectiveness of this integration is demonstrated
through a case study on optimising machine learning model performance against false
data injection attacks. The paper concludes with future research directions, highlighting
the potential advancements in generative AI-enabled game theory.

In their study, Djehiche and Tembine [55] articulate that the results produced by
generative AI, such as those by BloombergGPT, align precisely with Nash equilibria in non-
potential games. Their work is about the convergence properties of deep neural networks,
elucidating how these AI systems achieve equilibrium states. Additionally, they extend
their analysis to federated learning systems, offering a comprehensive view of how neural
network architectures can be optimised and stabilised through game-theoretic principles.

3. Methodology

The main theoretical frameworks to be used are traditional game theory, evolutionary
game theory, and replicator dynamics.

The paper will use the concept of a Nash equilibrium in terms of traditional game
theory. It plays a critical role in all decision-making processes and explains the Nash
equilibrium and the methods by which players reach these equilibriums.
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For checking an ESS, the reformulation of the main ESS theorem given by Baron (2013)
is used [8]. The strategy is an ESS if and only if:

u(p∗, p∗) > u(p, p∗), ∀pI ∈ [0, 1] and p ̸= p∗

or
u(p∗, p∗) = u(p, p∗) ⇒ u(p∗, p) > u(p, p), ∀p ̸= p∗

(1)

where u is a fitness for the entire population; p = (p1, p2, p3 . . .) is any mix strategy
combination in a population (all probability distribution over the different entities in the
population), and p∗ = (p1

∗, p2
∗, p3

∗ . . .) is an equilibrium point.
The third theory that will be used is the replicator dynamic theory. As mentioned

above, the emphasis of this theory lies on the evolution of the population; specifically, on
the shift in strategies over time through the comparison of payoffs, as discussed in this
paper. It is presumed that strategies yielding higher payoffs are considered superior.

The variation in the population’s mixed strategy distribution is determined by the
reproduction rate of individuals following each strategy. The adjustment in the proportion
pi of the population utilising a particular strategy si is related to the discrepancy between
the fitness of that strategy Ei and the average fitness M of the population. This principle is
captured through the replicator dynamic equation:

.
pi = pi ∗ (Ei − M) (2)

“Fitness of the strategy si is equal to the expected payment of playing strategy si
whereby payments while playing that strategy are weighted with the relative frequencies
of the individuals with whom this strategy is faced”, as defined in [32] (p. 62).

Ref. [32] (p. 63) further defines that “the average fitness of the population is equal
to the expected payment of the population in which the fitness of a particular strategy is
weighted with the relative frequencies of individuals (who play a particular strategy) in
the population”.

The fitness of strategy si corresponds to the anticipated payoff from engaging in
strategy si, with payoffs during its execution being adjusted based on the proportions of
the counterparts. The population’s mean fitness is the aggregate expected payoff, where
the effectiveness of a specific strategy is adjusted by the proportional representation of
individuals (engaging in that strategy) within the population:

M = ∑n
i=1 pi ∗ Ei (3)

Ref. [32] (p. 63) defines that “to find points where the system tends to move in the
long and short run and its stability, those points where the replicator dynamics equation
equals zero (

.
pi = 0) should be found”. Sometimes, these points are called stationary points.

Simon and Blum [56] presented a fundamental stability theorem with the rules for checking
point stability. The steps mentioned above will be used in this paper as well.

To identify the equilibrium points towards which the system gravitates and to ascertain
its equilibrium stability, the points at which

.
pi = pi ∗ (Ei − M) = 0 will be located and

referred to as stationary points. Simon and Blum (1994) [56] provide a foundational stability
theorem that outlines the criteria for evaluating the stability of these points. This theorem
will be used as well.

The results in [8] will be used to describe the relationship between identifying sta-
tionary points via the replicator dynamic equation and the notion of evolutionarily stable
strategies. An evolutionarily stable strategy is an asymptotically stable stationary point in
the context of

.
pi = 0. Furthermore, the interplay among evolutionarily stable strategies, the

replicator dynamics, Nash equilibria, and their stability is described as follows and used in
this paper:
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• A point acting as a Nash equilibrium (within a symmetric game setting) concurrently
satisfies the condition of

.
pi = 0;

• If a point is recognised as a strict Nash equilibrium, it is locally asymptotically stable;
• A point that stands as a locally asymptotically stable solution of

.
pi = 0 qualifies as a

Nash equilibrium.

When determining the stability of critical points through numerical methods proves
challenging, a geometrical approach will be used. This technique is known as phase portrait
analysis, which will be used in this paper as well, particularly in the context of non-linear
systems. Phase portraits provide a comprehensive view and insight into the dynamics
of systems. Typically, a combination of both numerical and geometrical methods will
be applied.

Direction Fields and Phase Portraits are presented as techniques to visualise the
solutions of differential equations over time, providing perspectives on system stability via
graphical interpretation. This strategy is applicable to nonlinear systems, characterised by
equations with several variables, illustrating the movement of particles and the dynamics
of the system through Vector Fields and Phase Diagrams. The method and examples are
provided by [56].

4. Modelling
4.1. Previous Results Used for Modelling

For the development of this model, results obtained from [1] will be used, which are
listed below. The foundation for modelling has been taken from [32].

First, the employee (agent type) will be categorised as one of three types, as already
described above: Enthusiast, Worker, or Parasite.

Utility function for the Worker type is defined as:

u2 =

{
w(1 − e2) + s ∗ e+e2

2 with given probability e+e2
2

w with given probability 1 − e+e2
2

(4)

where e is an effort of any other agent type (including the Worker type as well); e2 is an
effort of Worker type; s is the incentive factor (the principal stimulates the agent to work
with the incentive factor). Calculated pair-wise outcomes two tables will be used:

Table 1 represents the payment matrix with respect to the total payment for row
players for all team combinations. (Parasite acts as a Worker).

Table 1. Total payment matrix (Parasite is in the role of a Worker).

p1 p2 p3 = 1−p1−p2

Employee Type E W P

E 1 2 −
√

2
4

1

W 1 +
√

2
4

3
2 1

P 1 3
2

3
2

Source: [1].

Table 1 displays the payment matrix detailing the total payment for row players across
all team configurations. (Parasite is in the role of a Worker).

Table 2 shows the payment matrix, which includes two figures for each team pairing.
The first figures in every cell denote the total expected costs (TEC), while the second figures
reflect the effective work output (EW) of the team in question:
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Table 2. TEC and EW strategic matrix.

p1 p2 p3 = 1−p1−p2

Employee Type E W P

E 2; 2
(

4 −
√

2
2

)
;
√

2 2; 1

W
(

4 −
√

2
2

)
;
√

2 5; 2 3; 1

P 2; 1 3; 1 5; 2
Source: [1].

The overall expected payment for the Enthusiast is:

E1 = p1 ∗ 1 + p2 ∗
(

2 −
√

2
4

)
+ (1 − p1 − p2) ∗ 1 = 1 + p2 ∗

(
1 −

√
2

4

)
(5)

The overall expected payment for the Worker is:

E2 = p1 ∗
(

1 +

√
2

4

)
+ p2 ∗

3
2
+ (1 − p1 − p2) ∗ 1 = 1 + p1 ∗

√
2

4
+ p

2
∗ 1

2
(6)

The overall expected payment for the Parasite is:

E3 = 1 ∗ p1 +
3
2
∗ p2 + (1 − p1 − p2) ∗

3
2
=

3
2
− 1

2
p1 (7)

The overall expected payment for all is:

ETOTAL =
3
2
− p1 −

1
2
∗ p2 +

1
2
∗ p1

2 +
1
2
∗ p2

2 +
3
2
∗ p1 ∗ p2 (8)

The aggregate mean expected cost of effective work (total AEC) is given by:

Total AEC =
2 ∗ p1

2 +
(

4 −
√

2
2

)
∗ 2 ∗ p1 ∗ p2 + 4 ∗ p1 ∗ p3 + 5 ∗ p2

2 + 6∗p2 ∗ p3 + 5 ∗ p3
2

2 ∗ p1
2 +

√
2 ∗ 2 ∗ p1 ∗ p2 + 2 ∗ p1 ∗ p3 + 2 ∗ p22 + 2 ∗ p2 ∗ p3 + 2 ∗ p32

(9)

In all the above terms, p1 represent the proportion of Enthusiasts in the population, p2
the proportion of Workers and p3 proportion of Parasites (p1 + p2 + p3 = 1). After presenting
all the necessary results of the model developed by Talajić, Vrankić, and Kopal [1], the model
will be extended by incorporating additional parameters and integrating evolutionary
game theory.

4.2. Extension of the Model with Reward Parameter for Enthusiast

Ref. [32] (p. 106) define that the parameter “reward” is incorporated into the model by
rewarding only the Enthusiast type. The value of the reward parameter for the Enthusiast is
denoted by a. Using this in Table 1, the payment for the Enthusiast should be adjusted by
the reward parameter (see Table 3).

Table 3. Total payment matrix adjusted for reward parameter.

p1 p2 p3 = 1−p1−p2

Employee Type E W P

E 1 + a 2 + a −
√

2
4

1 + a

W 1 +
√

2
4

3
2 1

P 1 3
2

3
2
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In the model, the reward parameter is applied exclusively to the Enthusiast type by
providing them with a reward. The magnitude of this reward for the Enthusiast is indicated
by the variable a. This adjustment is applied in Table 1, where the Enthusiast’s payment is
modified according to the reward parameter (Table 3).

Expected payment for the Enthusiast is recalculated transforming (5); and using the
fact that Parasite is in the role of Worker implies that p3 = 0 ⇒ p2 = 1 − p1

E1 = 2 + a −
√

2
4

− p1

(
1 −

√
2

4

)
(10)

For the Worker (E2) and the Parasite (E3) the expected payments remain the same, but
E2 will be adjusted using the fact that p3 = 0.

E2 = 1 + p1 ∗
√

2
4

+ p
2
∗ 1

2
=

3
2
− p1

(
1
2
−

√
2

4

)
(11)

For a ≥
√

2
4 then E1 > E2 as soon as p2 > 0, leading to conclusion that for the

equilibrium to be (E1 = E2)p2 should be zero. In this case, this is the pure Nash equilibrium
(p1 = 1; p2 = 0; p3 = 0).

For 0 < a <
√

2
4 the Nash equilibrium (using (10) and (11)) is calculated as:

E1 = E2

2 + a −
√

2
4 − p1

(
1 −

√
2

4

)
= 3

2 − p1

(
1
2 −

√
2

4

)
p1 = 1 + 2a −

√
2

2 ⇒ p2 = 1 − p1 =
√

2
2 − 2a

First it should be checked if (p1 = 1 + 2a −
√

2
2 , p2 =

√
2

2 − 2a, p3 = 0) is really the
Nash equilibrium. To prove that it must be checked whether in this point E3 < E1 and
E3 < E2.

E3 < E1 ⇒ (using (7) and (10) and given mixed strategy equilibrium):

3
2 − 1

2 ∗ p1 < 2 + a −
√

2
4 − p1

(
1 −

√
2

4

)
3
2 − 1

2 ∗
(

1 + 2a −
√

2
2

)
< 2 + a −

√
2

4 −
(

1 + 2a −
√

2
2

)(
1 −

√
2

4

)
a >

√
2−2
4 ≈ −0.59

For all a that 0 < a <
√

2
4 the above inequality always holds true.

The same is checked for E3 < E2 using (11) and (7):

3
2 − 1

2 ∗ p1 < 3
2 − p1

(
1
2 −

√
2

4

)
3
2 − 1

2 ∗
(

1 + 2a −
√

2
2

)
< 3

2 −
(

1 + 2a −
√

2
2

)(
1
2 −

√
2

4

)
a >

√
2−2
4 ≈ −0.15

For all a that 0 < a <
√

2
4 the above inequality always holds true.

With these calculations, it has been proved that (p1
∗ = 1 + 2a −

√
2

2 , p2
∗ =

√
2

2 −
2a, p3

∗ = 0) is really the Nash equilibrium.

4.2.1. Introduction of Evolutionary Game Theory in the Model
The next step is checking the ESS. Using (7), (10), and (11), it follows:

ETOTAL = p1E1 + p2E2 + p3E3 =
3
2
− p1 −

1
2
∗ p2 +

1
2
∗ p1

2 +
1
2
∗ p2

2 +
3
2
∗ p1 ∗ p2 + p1a (12)
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u(p, p) = ETOTAL=
3
2
− p1 −

1
2
∗ p2 +

1
2
∗ p1

2 +
1
2
∗ p2

2 +
3
2
∗ p1 ∗ p2 + p1a

From p2 = 1 − p1 implies u(p, p) = 3
2 + ap1 − 1

2 p1
2.

From (10) and (11):

u(p∗, p)= p1
∗ ∗ E1 + p2

∗ ∗ E2 + p3
∗ ∗ E3

u(p∗, p) = a
[
2 + 2a −

√
2 − p1

]
+

9
4
+−

√
2

2
− p1

(
1 −

√
2

2

)
From (1) being an ESS the inequality u(p∗, p)− u(p, p) ≥ 0 should be satisfied.

u(p∗, p)− u(p, p) =
1
2

[
p1

2 − 2p1

(
1 −

√
2

2

)
+

3
2
−
√

2

]
+ a
[
2 + 2a −

√
2 − p1

]
− ap1

u(p∗, p)− u(p, p) =
1
2
[p1 −

(
1 + 2a −

√
2

2

)
]

2

≥ 0

From the above point, p1 = 1 + 2a −
√

2
2 , p2 =

√
2

2 − 2a, p3 = 0 is an ESS.

For point (p1 = 1; p2 = 0; p3 = 0) from Table 3 and the fact a >
√

2
4 implies that this

point is the strict Nash equilibrium, so this is ESS.
With the fact that

(
p1 = 1; p2 = 0; p3 = 0

)
is the Nash equilibrium considering the

second player’s decision, the optimal response of the first player is a convex mix of the
Enthusiast and Worker strategies, incorporating calculations for a =

√
2

4 . The ESS holds

when a =
√

2
4 .

In this case, it has been simulated that the Enthusiast receives a reward; whereas
the other two types do not, indicating a certain bias towards the Enthusiast. Points
(p1 = 1 + 2a −

√
2

2 , p2 =
√

2
2 − 2a, p3 = 0) and

(
p1 = 1, p2 = 0, p3 = 0

)
are asymptotic sta-

ble ESS.

4.2.2. Optimal Reward Calculation

To calculate the optimal reward (a), one should find an a that reduces total AEC to its
minimum. Using the equilibrium point (p1 = 1 + 2a −

√
2

2 , p2 =
√

2
2 − 2a, p3 = 0) and (9),

total AEC is given by:

Total AEC =
2 ∗
(

1 + 2a −
√

2
2

)2
+
(

4 −
√

2
2

)
∗ 2 ∗

(
1 + 2a −

√
2

2

)
∗
(√

2
2 − 2a

)
+ 4 ∗

(
1 + 2a −

√
2

2

)
∗ 0 + 5 ∗

(√
2

2 − 2a
)2

+ 6
(√

2
2 − 2a

)
∗ 0 + 5 ∗ 02

2 ∗
(

1 + 2a −
√

2
2

)2
+
√

2 ∗ 2 ∗
(

1 + 2a −
√

2
2

)
∗
(√

2
2 − 2a

)
+ 2 ∗

(
1 + 2a −

√
2

2

)
∗ 0 + 2 ∗

(√
2

2 − 2a
)2

+ 2
(√

2
2 − 2a

)
∗ 0 + 2 ∗ 02

Total AEC =
1 + 5

√
2 − 2a

(
10 − 3

√
2
)
+ 8

√
2a2

2
[
3
(

2 −
√

2
)
+ 4a

(
4 − 3

√
2
)
+ 8a2

(
2 −

√
2
)]

Considering that, for the mixed strategy point, the range for a fall within an interval
[0,

√
2

4 ) (see Figure 1). For a =
√

2
4 it is point

(
p1 = 1, p2 = 0, p3 = 0

)
that represents the

pure Nash equilibrium, which is also an ESS. The total AEC function is established over a
closed interval

[
0,

√
2

4

]
due to the relevance for those identified as ESS.
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If a >
√

2
4 then

(
p1 = 1, p2 = 0, p3 = 0

)
is an ESS, eliminating the necessity to raise

the cost; thus the optimal value is a =
√

2
4 .

This is true if the principal aims solely for the lowest total AEC at a point where all are
of type Enthusiast, without considering the appeal of that specific point.

4.2.3. Replicator Dynamic and Phase Portrait

For a =
√

2
4 Table 3 is being converted into Table 4.

Table 4. Total payment matrix: Enthusiast reward is a =
√

2
4 .

p1 p2 p3 = 1−p1−p2

Employee Type E W P

E 1 +
√

2
4

2 1 +
√

2
4

W 1 +
√

2
4

3
2 1

P 1 3
2

3
2

For a =
√

2
4 , Enthusiast’s expected payment (5) is transforming to:

E1 = 1 + p2 ∗
(

1 −
√

2
4

)
+

√
2

4
(13)

For Worker (E2) and Parasite (E3) the expected payments are the same as in (6) and (7).
ETOTAL = p1E1 + p2E2 + (1 − p1 − p2)E3 ⇒ from (6), (7) and (13)

ETOTAL = p1

(
1 + p2 ∗

(
1 −

√
2

4

)
+

√
2

4

)
+ p2

(
1 + p1 ∗

√
2

4 + p2 ∗
1
2

)
+(1 − p1 − p2)

(
3
2 − 1

2 ∗ p1

)
after transforming the term:

ETOTAL =
3
2
− p1

(
1 −

√
2

4

)
− 1

2
p2 +

3
2

p1p2 +
1
2

p1
2 +

1
2

p2
2 (14)
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Ref. [32] (p. 115) indicates that “using the replicator dynamics tools (see (2)), the
probability (percentage) growth rate is measured as a difference between the fitness of an
observed agent’s expected payment and the total expected payment”.

Utilising tools of replicator dynamics (refer to (2)), the growth rate in terms of proba-
bility (percentage) is calculated by the difference between the fitness of a particular agent’s
expected payment and the overall expected payment:

.
p1
p1

= E1 − ETOTAL =
1
4
∗ [

√
2 − 2 + p1 ∗

(
4 −

√
2
)
+
(

6 −
√

2
)

p2 − 2p1
2 − 2p2

2 − 6p1 p2] (15)

.
p2
p2

= E2 − ETOTAL =
1
2
∗ [−1 + 2p1 + 2p2 − p1

2 − p2
2 − 3p1 p2] (16)

Equilibrium points:

(a) For (15)

p1 = 0;
or
1
4 ∗
[√

2 − 2 + p1

(
4 −

√
2
)
+
(

6 −
√

2
)

p2 − 2p1
2 − 2p2

2 − 6p1 p2

]
= 0 ⇔

2p2
2 +

(
6p1 − 6 +

√
2
)

p2 + 2p1
2 −

(
4 −

√
2
)

p1 + 2 −
√

2 = 0 (17)

Using (17), this should calculate p2 as a function of p1 and draw this dependence. It
will be the first isocline. The second is p1 = 0.

Determinant of (17) is calculated:

D = 36p1
2 + 38 − 72p1 + 12

√
2p1 − 12

√
2 − 16p1

2 + 8p1

(
4 −

√
2
)
− 16 + 8

√
2

D = 20p1
2 − 40p1 + 4

√
2p1 + 22 − 4

√
2 (18)

using (17) and (18):

(p 2)1,2 =
6 − 6p1 −

√
2 ±

√
D

4
=

6 − 6p1 −
√

2 ±
√

20p1
2 − 40p1 + 4

√
2p1 + 22 − 4

√
2

4
(19)

In Figure 2, isoclines are drawn (dashed lines).
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Figure 2. Isoclines for Enthusiast.

The area of interest is located within the shaded triangle. In Figure 3, the vector field
is represented.
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Figure 3. Vector field for Enthusiast.

(b) For (16)

p2 = 0;
or
1
2 ∗
[
−1 + 2p1 + 2p2 − p1

2 − p2
2 − 3p1 p2

]
= 0 ⇔

p2
2 + (3p1 − 2)p2 + p1

2 − 2p1 + 1 = 0 (20)

Again, this should represent p2 as a function of p1 using (20) and draw this dependence.
It will be the first isocline. The second is p2 = 0.

Determinant of (20) is calculated:

D = 9p1
2 − 12p1 + 4 − 4p1

2 + 8p1 − 4 = 5p1
2 − 4p1 (21)

Using (20) and (21):

(p 2)1,2 =
2 − 3p1 ±

√
D

2
=

2 − 3p1 ±
√

5p1
2 − 4p1

2
(22)

The isocline crosses the shaded region (see Figure 4) exclusively at points (1, 0) and
(0, 1). Within the shaded part E2 − ETOTAL < 0, the vector field appears as shown in
Figure 5.
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Figure 5. Vector field for Workers.

Now all isoclines will be drawn on the same figure and the orbits will be sketched
using the above-described vector fields (see Figure 6). Isoclines will be plotted on a single
diagram, and the orbits will be outlined based on the previously detailed vector fields (see
Figure 6).
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The orbits’ movement analysis showed two attraction points: (p 1 = 1, p2 = 0; p3 = 0)
and (p 1 = 0, p2 = 0; p3 = 1).

Applying (9), the total AEC is computed for both points. For the (p1 = 1, p2 = 0; p3 = 0),
it is 1.354; whereas for the (p 1 = 0, p2 = 0; p3 = 1), it is 2.5. As anticipated, the model
demonstrated that out of these two stable points, a population composed solely of Enthusiast
is preferable. Specifically, the model where only the Enthusiast received a reward resulted
in the lowest total AEC compared to all other scenarios.

Given that the starting structure of the employee population may be unknown, it is
critical to segment the area of attraction based on two distinct potential long-term scenarios,
each with its own total AECs. The issue is whether additional rewards can enhance the
area of attraction to align with the preferred state (p 1 = 1, p2 = 0; p3 = 0), despite leading
to a higher total AEC. By increasing the reward, a, the principal can enlarge this area.
Illustrated in Figure 7, the adjustment of the isocline (17) to cross the horizontal axis at the
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point (p 1 = 0, p2 = 0; p3 = 1) indicates desire state and the feasible enlargement of the
attraction area for the point (p 1 = 1, p2 = 0; p3 = 0).
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With (10) and (12), alongside the necessity to shift the Enthusiast isocline, the replicator
dynamic equation will be derived to achieve the target state ( p2 = 0).

(E 1 − ETOTAL)(p2 = 0) = 1
4
(
−2 + 4p1 − 2p1

2)+ a(1 − p1)
= − 1

2 + p1 − 1
2 p1

2 + a − ap1 = − 1
2 p1

2 + (1 − a)p1 + a − 1
2 = 0.

The calculated result is given by:

(p 1)1,2 = 1 − a ± a ⇒ p1 = 1 or p1 = 1 − 2a.

Given the requirement for the isocline to intersect at point (0,0), then 1 − 2a = 0 ⇒
a = 1

2 .
For the identical value of a, it is imperative to observe where the isocline intersects the

vertical axis to confirm that it lies beyond the shaded triangle.

(E 1 − ETOTAL)(p1 = 0, a = 1
2 ) =

1
4

(
−2 +

(
6 −

√
2
)

p2 − 2p2
2
)
+ 1

2

= 2p2

(
3 −

√
2

2 − p2

)
= 0 ⇒ p2 = 0 or p2 = 3 −

√
2

2

As 3−
√

2
2 > 1, it is evident that the isoclines for a = 1

2 cross the shaded triangle solely
at the point (0,0). In this scenario, total AEC is 1.5 and is greater than 1.354 (total AEC for
a =

√
2

4 ).
By raising the reward, the principal can widen the area of attraction in the direction

of the preferred point, where only the Enthusiast group is present. To achieve this, the
principal must incur a cost to reduce the risk and shrink the area of attraction, leading
to a point solely populated by the Parasite group. This will cost 0.146 more in expenses.
Through the strategic adjustment of rewards, the principal can minimise the risk of ending
up with an undesirable population composition.

In this scenario, discrimination can be an issue (particularly against the Worker group).
This may prompt some Worker agents to adopt Parasite-like behaviours, and this has the
potential to alter the trajectory of the orbit, consequently impacting stability and costs to a
considerable extent. Additionally, the approach of penalising Parasite types for their actions
could be considered as well. These considerations represent potential future enhancements
that will not be presented in this paper. Equally critical is the management of a population
exclusively made up of Enthusiasts, considering their high motivational requirements and
how much will cost the organisation to fulfil those requirements.
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4.3. Scenario with No Incentives for All and with Reward Parameter for Enthusiast

The next scenario analysis proceeds under conditions where there are no incentives (s)
for all agents and with a reward (a) provided exclusively for the Enthusiast. Using (4) and
Table 1, Table 5 shows the payments in this situation.

Table 5. Scenario of payment matrix with reward (a) only for the Enthusiast and no incentive (s) for all.

p1 p2 p3 = 1−p1−p2

Employee Type E W P

E 1 + a 1 + a 1 + a

W 1 1 1

P 1 1 1

The expected payments for each agent are calculated.

E1 = p1(1 + a) + p2(1 + a) + (1 − p1 − p1)(1 + a) = 1 + a

E2 = p1 ∗ 1 + p2 ∗ 1 + (1 − p1 − p1) ∗ 1 = 1

E3 = p1 ∗ 1 + p2 ∗ 1 + (1 − p1 − p1) ∗ 1 = 1

For dynamic ETOTAL is needed:

ETOTAL = p1E1 + p2E2 + (1 − p1 − p2)E1 = p1a + 1

The replicator dynamic equation gives:

.
p1 = p1(E1 − ETOTAL) = p1(1 + a − (p1a + 1)) = ap1(1 − p1) (23)

.
p2 = p2(E2 − ETOTAL) = p2(1 − (p1a + 1)) = −ap1 p2 (24)

From (23) and (24):

• From (23), isoclines for Enthusiast are p1 = 0 and p1 = 1;
• From (24), isoclines for Worker are p1 = 0 and p2 = 0.

In Figure 8, the isoclines (represented by dashed lines) are depicted, with a focus on
the shaded triangle; and potential equilibrium points are identified as A and B.
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Within the region bounded by the isoclines (the shaded triangle) E1 − ETOTAL > 0 and
E2 − ETOTAL < 0. The vector field is formed (see Figure 9).
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The rationale behind this is that every orbit passes through the point (1,0). The
equation line with a slope of k, passing through the point (1,0), can be expressed as:

p2 − 0 = k(p1 − 1) ⇒ p2 = k(p1 − 1) (25)

Putting (25) into (24):
.

p2 = −ap1k(p1 − 1) = k ∗ ap1(1 − p1) = k
.

p1 ⇒ orbits represent lines that intersect at the
point (1, 0).

The orbits’ movements are depicted (see Figure 10), and they tend towards the point
A, (p 1 = 1, p2 = 0, p3 = 0). From Table 5 and the effort of Enthusiast e1 = 1, it can be
calculated that total expected cost is 2 + 2a and total effective work is 2. This leads finally
to a total average expected cost of 1 + a.

Information 2024, 15, x FOR PEER REVIEW  26  of  34 
 

 

𝑝ଶሶ ൌ െ𝑎𝑝ଵ𝑘ሺ𝑝ଵ െ 1ሻ ൌ 𝑘 ∗ 𝑎𝑝ଵሺ1 െ 𝑝ଵሻ ൌ 𝑘𝑝ଵሶ  ⇒ orbits represent lines that intersect at the 
point  ሺ1,0ሻ. 

The orbits’ movements are depicted (see Figure 10), and they tend towards the point 

𝐴,  ሺ𝑝ଵ ൌ 1,𝑝ଶ ൌ 0,𝑝ଷ ൌ 0ሻ .  From  Table  5  and  the  effort  of  Enthusiast  𝑒ଵ ൌ 1,   it  can  be 
calculated that total expected cost is  2  2𝑎  and total effective work is 2. This leads finally 

to a total average expected cost of  1  𝑎. 

 

Figure 10. Movement of orbits in “no incentive” scenario. 

According [32] (p. 123), “extreme case shows that the cost per unit of efficient work 

can be further reduced by eliminating the incentive and very small rewards. However, in 

the short run, the company would not have enough of the efficient workforce necessary 

for business (because there is not enough Enthusiast type). In the long run, the number of 

Enthusiast  types would  increase  to 100%.  In  this extreme case,  it  is confirmed  that  the 

incentive  is  a  good  short-run motivational  tool, while  the  reward  is  a  good  long-run 

motivational tool. By combining these two tools, the organisation minimises (manages) 

the total AEC and makes sure to have enough workforce in the short run. However, again, 

Enthusiastʹs characteristics should be considered so that the company can manage them 

effectively (for future research). The general conclusion  is  that work  is stimulated with 

incentive, while a reward motivates behaviour change.” 

In this extreme scenario, it is demonstrated that the cost per unit of efficient work can 

be further reduced by eliminating incentives and providing minimal rewards. However, 

in the short term, the company may face a shortage of the efficient workforce required for 

operations  (due  to  insufficient Enthusiast  types). Over  the  long  term,  the proportion of 

Enthusiast  type would  grow  to  100%.  This  extreme  case  confirms  that  incentives  are 

effective as short-term motivational tools, while rewards are effective in the long term. By 

integrating these two approaches, the organisation minimises the total AEC and ensures 

an  adequate workforce  in  the  short  term. Nonetheless,  it  is  essential  to  consider  the 

specific  characteristics of Enthusiast  for  effective management.  In  summary,  incentives 

stimulate work, whereas rewards motivate behavioural change. 

5. Findings and Discussion 

This  study  extends  the  theoretical  research  established  by  [1],  illustrating  the 

application of traditional and evolutionary game theory along with replicator dynamics 

in researching the dynamics between leaders and their teams. Two significant novelties 

have been introduced into the existing model. The first novelty introduces a motivating 

reward  parameter  aimed  at  a  specific  employee  group,  while  the  second  embeds 

evolutionary game theory within the modelling approach to evaluate the emergence of 

ESS. 

Figure 10. Movement of orbits in “no incentive” scenario.

According [32] (p. 123), “extreme case shows that the cost per unit of efficient work
can be further reduced by eliminating the incentive and very small rewards. However, in
the short run, the company would not have enough of the efficient workforce necessary
for business (because there is not enough Enthusiast type). In the long run, the number
of Enthusiast types would increase to 100%. In this extreme case, it is confirmed that
the incentive is a good short-run motivational tool, while the reward is a good long-run
motivational tool. By combining these two tools, the organisation minimises (manages) the
total AEC and makes sure to have enough workforce in the short run. However, again,
Enthusiast’s characteristics should be considered so that the company can manage them
effectively (for future research). The general conclusion is that work is stimulated with
incentive, while a reward motivates behaviour change”.
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In this extreme scenario, it is demonstrated that the cost per unit of efficient work can
be further reduced by eliminating incentives and providing minimal rewards. However,
in the short term, the company may face a shortage of the efficient workforce required
for operations (due to insufficient Enthusiast types). Over the long term, the proportion
of Enthusiast type would grow to 100%. This extreme case confirms that incentives are
effective as short-term motivational tools, while rewards are effective in the long term. By
integrating these two approaches, the organisation minimises the total AEC and ensures an
adequate workforce in the short term. Nonetheless, it is essential to consider the specific
characteristics of Enthusiast for effective management. In summary, incentives stimulate
work, whereas rewards motivate behavioural change.

5. Findings and Discussion

This study extends the theoretical research established by [1], illustrating the appli-
cation of traditional and evolutionary game theory along with replicator dynamics in
researching the dynamics between leaders and their teams. Two significant novelties have
been introduced into the existing model. The first novelty introduces a motivating reward
parameter aimed at a specific employee group, while the second embeds evolutionary
game theory within the modelling approach to evaluate the emergence of ESS.

When rewards were allocated solely to the Enthusiast category, the potential for op-
timising costs emerged; evidenced by a reduced cost of 1.354 compared to 2.296 without
the Enthusiast’s reward, as calculated by [1]. A total population of Enthusiast emerges as
the equilibrium, which is theoretically stable but practically challenging. The Enthusiast
category, by nature demanding, may face decreased motivation when tasked with work typ-
ically assigned to Worker category; leading to potential disengagement and attrition. This
could leave the organisation short-staffed and, at its most critical, shift the population to an
equilibrium consisting solely of Parasites. Thus, the extreme scenario suggests that leaders
should also consider rewards for the Worker category and disincentives for Parasites to
achieve a balanced workforce structure, potentially refining the model in future iterations.

Another observed scenario is the further reduction in costs with the removal of incen-
tives for all categories, offering minimal reward to the Enthusiast. Here, the organisation
faces the short-term challenge of an inefficient workforce. These scenarios reveal that
incentives may act as a short-term motivational tool, while rewards serve as a long-term
strategy tool to induce favourable behavioural changes. There may be circumstances where
increasing rewards for the Enthusiast to 1.5 from 1.354, although raising costs slightly,
strategically decreases the risk of a Parasite-dominated workforce with significantly higher
costs. This increase can be seen as paying a premium for risk insurance in various contexts.

While these represent extreme scenarios, they demonstrate the potential of theoretical
models in guiding leadership to apply rewards and incentives for structuring their teams
to achieve optimal outcomes. The paper’s scientific contribution lies not only in modelling
the interplay between a leader and a diverse team but also in applying these findings to
driving leadership strategies and organisational structure definition, and better definitions
of employees’ roles. It suggests scenarios that enable future refinement of the model.

The paper suggests the ideal evolutionary structure based on a theorem, outlining the
criteria for strategies to become evolutionarily stable. For identified equilibrium points, the
ESS status is verified through the theorem, and the optimal ratios are determined.

The results obtained reveal several key findings that align with, enhance, or diverge
from the existing literature. The traditional game theory, as applied in the study, emphasises
the principal–agent relationship and strategic interactions among different employee types
(Enthusiast, Worker, Parasite). This approach aligns with the perspectives offered by Linder
and Foss [27], and O’Donnell and Sanders [28], who discuss the principal–agent framework
in the context of leadership and organisational dynamics.

The use of traditional game theory to model leadership interactions and employee
behaviours confirms the foundational insights provided by these authors, enhancing the
understanding of strategic decision-making processes within organisations. The extension
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of the model to include evolutionary game theory provides insights into the stability of
employee-type structures and the dynamics of strategy evolution. This integration supports
the findings of Szolnoki and Perc [10], who emphasise the importance of non-conformist
strategies in achieving competitive advantage. The study’s results, showing that a balanced
workforce structure can be maintained through strategic adjustments, echo the significance
of ESS in fostering cooperative and competitive behaviours. ESS extension within the
model is an additional upgrade of the model developed by [1], where evolutionary game
theory was not observed.

The modelling results demonstrate that targeted rewards for the Enthusiast category
can optimise organisational costs and improve overall performance. This finding aligns
with the research by Zhang et al. [13], who highlight the importance of equity-based
incentives in promoting digital transformation and cooperative behaviour. The study’s
empirical evidence that rewards can significantly influence employee motivation and
engagement corroborates the theoretical assertions made by these authors. This outcome
also supports the work of Li et al. [17], who noted that enhanced prosocial behaviours
driven by rewards can significantly influence group dynamics.

A comprehensive review of the relationship between game theory and AI indicated
that the use of AI to optimise workforce management strategies is a novel aspect of this
study. This resonates with the work of Hazra and Anjaria [43], who discuss the intersection
of game theory and deep learning. The study’s idea of leveraging AI for dynamic strategy
adjustments and decision-making enhances the practical applicability of theoretical mod-
els, supporting the notion that AI can significantly improve organisational outcomes by
enabling more informed and adaptive leadership strategies. This part extends this field for
future research.

The empirical results indicate that a mix of short-term incentives and long-term
rewards is necessary to maintain an efficient and motivated workforce. This conclusion
is in line with the findings of Amalia and Prayekti [24], who argue that transformational
leadership and well-designed incentive programmes can enhance employee morale and
performance. The study’s insights into the balance of incentives and rewards provide a
deeper understanding of how leadership can strategically influence employee behaviour to
achieve optimal performance.

The integration of evolutionary game theory and replicator dynamics into the work-
force management model offers a more nuanced understanding of how employee types
interact and evolve. This enhancement addresses the gap identified by previous studies that
primarily focused on traditional game theory without considering the evolutionary aspects
of strategy dynamics and more or less only one agent type, such as those by Bierman and
Fernandez (1993) [6], or Stankova and Olsder (2006) [30].

The research reveals how the integrated three-theory model, TER—comprising tradi-
tional game theory (T), evolutionary game theory (E), and replicator dynamics (R)—can
assess the impact of principal–agent relations on organisational performance. Collectively,
these theories forge a robust tool for determining stable, cost-effective workforce ratios that
aid leaders in decision-making.

This integrative approach marks a significant advance in scientific inquiry, positing a
critical framework not just for leadership studies but for broader research applications as
well. The methodological framework is depicted in Figure 11.

The TER model—considering a comprehensive perspective as displayed in Figure 11—
fuses three distinct theories with their respective concepts, methodologies, and tools. The
other aspect represents the system’s state, whether static or dynamic. These perspectives
integrate into a cohesive methodological structure that combines static analysis with dy-
namic processes, evaluating both the structure and stability of populations. Its applications
extend beyond the scenarios presented in the manuscript.
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The theoretical framework provides a robust concept for understanding and man-
aging workforce diversity, offering practical insights for leaders to optimise organisa-
tional performance through the strategic use of rewards and incentives. The alignment
with existing findings and the introduction of new perspectives through AI integration
and evolutionary game theory represent significant contributions to the field of strategic
workforce management.

While the theoretical models provide valuable insights, the practical application of
these models may face challenges; particularly in managing a population of Enthusiast
employees. The high motivational requirements and potential for disengagement among
Enthusiast types when performing routine tasks highlight the need for further refinement
of the model to incorporate practical considerations and real-world constraints.

Like any scientific work, this one also has room for enhancement and opens the
way for new research areas; thereby contributing further to the field. The theoretical and
methodological framework outlined here offers the groundwork for future studies that
may build upon or refine the results of this research or even give way for entirely new
applications of the developed methodological framework.

The categorisation of employee groups in the model is informed by extensive literature
and the author’s profound experience in leadership. Current literature and the author’s
knowledge do not provide a validated theoretical base for such classifications. Although
this limitation does not significantly impact the model’s outcomes, validation would give
the credibility of the defined categories and enhance the rationale behind their selection,
suggesting a potential direction for future research to define these classifications better.

The model deals with a specific structure of employee groups but does not detail the
criteria for assigning individuals to these categories. Identifying the group for a new hire is
not addressed in this paper, but it represents another direction for enhancing the model.
Concepts such as moral hazard and adverse selection from game theory could inform the
development of methods for classifying individual employees.

Furthermore, the model explores the dynamics of employee transition between groups,
without delving into the psychological and sociological drivers of such shifts; indicating an
area for in-depth analysis of these transformative behaviours.

A novel aspect of the model is its observation of the interaction between leaders and
diverse employees. Future enhancements could consider scenarios with multiple leaders
or hierarchical structures where agents manage other agents, introducing complexities to
the calculations due to more intricate variable structures.

While the model initially supposes three employee groups, expanding this to four,
five, or more is a possibility for subsequent research. Although not recommended beyond
five for visual representation purposes, the use of replicator dynamics and ESS remains
viable with more complex computations.
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The presumption that the Enthusiast always gives maximum effort is questioned,
suggesting the integration of a coefficient to vary this effort, allowing for diverse simulations
and potential model refinements.

Incorporating social network analysis could provide additional value, examining the
influence within and between groups, identifying key employees, and enabling leaders to
focus their efforts where most impactful strategically. The innovative SNA approach of
Damij et al. [57] could serve as an initial point for further investigation.

The impact of varying organisational cultures on the model’s efficacy is another aspect
not accounted for, presenting an opportunity to assess how different cultural contexts
might alter the results. Validation across diverse organisations and subsequent model
adjustments constitute promising directions for the model’s evolution, acknowledging the
challenge of creating a universally applicable framework.

One significant contribution of such models in the future should be their integration
into AI-driven processes and the digitalisation of systems. This is in line with the results
of Tagscherer and Carbon [22], who observed digital leadership and pointed out that
digitalisation requires leaders with new skills to navigate digital transformation effectively.

Today’s AI/ML principles operate in a manner that provides the system with a large
amount of data (both structured and unstructured), and the system learns from the data
according to the goal set for it. All these systems attempt to learn autonomously without,
or with less, human involvement.

However, it raises the question of whether these learning processes could still be
improved with the human factor. The models from this and similar papers were created
through the conceptual thinking of experts in the field of game theory. A goal was set, an
approach was presented, necessary functions were defined, and results were obtained by
utilising certain areas of game theory and replicator dynamics.

In integrating human reasoning and artificial intelligence, it is possible to achieve
a significant synergistic effect between humans and technology. The entire process of
conceptual thinking, defining necessary functions, including elements of game theory and
replicator dynamics, can be given by humans as input in the AI modelling process as
additional context in reasoning. Furthermore, with quality human guidance, the AI system
performs modelling and further develops the model.

The fact that the AI system is not only given data from which it learns, which often
represents a “black box” to humans, but is also provided with a theoretical foundation that
has clearly defined theorems and postulates, makes such a system explainable. In today’s
AI world, making the results of AI systems explainable is a significant challenge.

Given that the calculations in this work were performed on a group of three types
of employees with sophisticated artificial intelligence systems, introducing even more
different types of employees would not be a problem. In such a case, more complex
calculations could be transferred from humans to technology. Robust AI systems would
also not have a problem with calculating stationary points, drawing vector fields and orbits,
and checking for ESS and optimal equilibria. This, indeed, represents a huge potential for
further development. Moreover, with good human guidance, AI can also help initially
define the utility function and behaviour function of each type of employee.

Based on this, the software could be developed with such a model at its core, which
would allow for fine-tuning of results by simply changing different parameters to achieve
optimal outcomes. The ultimate benefit would be a model adapted to the culture and
structure of each organisation. Finally, if—in collaboration with the HR team—employees
of the organisation were grouped into defined types through a specific survey, such software
would enable leaders to manage each type of employee strategically, monitor the structure
by type, and make informed decisions in achieving the optimal structure of their employees.

This would then be a real “cockpit” based on AI and game theory expertise, through
which a leader could simulate and evaluate the impact of different structures on the
organisation’s results and thereby plan the hiring of new employees depending on the type
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of employee who would bring optimal results. Besides new hires, such a system would
assist in managing existing employees and their motivation.

In summary, this manuscript not only progresses the model designed [1] through
parameter adjustments and the introduction of new variables but also showcases its prac-
tical application as a theoretical guide to the dynamics between leaders and their teams.
The integration of evolutionary game theory offers fresh insights into the ongoing leader–
follower narrative, addressing the research query posited at the outset and fulfilling the
study’s objectives.

6. Conclusions

In conclusion, the modelling approach in this paper is an innovative perspective
that significantly contributes to the literature on workforce management by integrating
traditional game theory, evolutionary game theory, and replicator dynamics into a cohesive
framework. The primary aim was to optimise employee engagement and organisational per-
formance through strategic management of workforce diversity, particularly by identifying
optimal proportions of different employee types—Enthusiast, Worker, and Parasite—using
mathematical modelling.

This research extends the theoretical foundation laid by Talajić, Vrankić, and Kopal [1]
by introducing two novel elements: a motivating reward parameter and the incorporation
of evolutionary game theory to identify ESS. The integration of these theoretical approaches
provides a robust framework for understanding the complex dynamics of workforce
management. Specifically, the study demonstrates how strategic manipulation of rewards
and incentives can lead to more stable and efficient employee populations, thus contributing
new insights into the application of game theory in human resource management.

The modelling approach in this paper is an innovative perspective on leadership
dynamics, charting new possibilities for leaders globally. The added value of the mod-
elling is the incorporation of evolutionary game theory techniques; a fresh addition to the
relationship between leadership and team dynamics. Analysing these dynamics through
the lens of population shifts—tracking the temporal distribution of different employee
types—marks a progressive step in the study and understanding of leadership’s impact
on team structure. The model predicts the trajectory of various employee types within the
workforce and allows leaders to balance the current structure to an evolutionary stable
state where cost efficiency is maximised.

The model specifically addresses the rewarding of the Enthusiast type. This represents
one of the more radical scenarios, yielding a homogeneous Enthusiast-based workforce
as the stable state. An alternate scenario explored is the absence of initial incentives for
any employee category, with only the Enthusiast receiving additional rewards, which
similarly results in a stable Enthusiast-centric population. Though such extreme workforce
compositions may seem implausible, they underscore the model’s comprehensive scope
and its potential for future research enhancements. Adjustments to the model’s variables
can lead to revised outcomes and more informed decision-making. Considerations might
include varied incentives for the Worker type or sanctions for the Parasite type, as well as
the introduction of different leader types, among other variables.

The practical implications of this study are manifold. By demonstrating that rewards
can effectively motivate Enthusiast employees and that a combination of incentives and re-
wards can optimise workforce structure in both the short and long term, this research offers
actionable strategies for organisational leaders. The findings suggest that while incentives
are effective as short-term motivators, rewards play a crucial role in long-term behavioural
changes. This dual approach can help organisations maintain a balanced and motivated
workforce, thereby enhancing overall performance and reducing operational costs.

The novelty of this study lies in its comprehensive approach to workforce management,
combining multiple theoretical frameworks to provide a detailed analysis of employee
dynamics. This integrative model not only offers a theoretical contribution by filling a
notable gap in the literature but also provides practical guidance for leaders in structuring
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their teams. Future research could build on these findings by exploring the impact of
varying reward structures on different types of employees and further refining the model
to include additional parameters, such as penalties for undesirable behaviours.

The theoretical framework opens an expansive field of possibilities for monitoring the
long-term stability of employee populations, laying the groundwork for future research
initiatives and broader application of this framework. It is particularly well-suited for
larger organisations with sizable workforces, where it demonstrates its practical value
by calculating the ideal proportion of each employee type and thereby influencing the
organisation’s cost structure.

By providing such models (frameworks) as additional context to AI systems, it is
possible to create a strong synergy between humans and technology to achieve even better
and more explainable results. This synergy offers great potential for the development of
AI-based systems in this field in the future.

This study offers a significant contribution to both the theory and practice of workforce
management. Combining traditional game theory, evolutionary game theory, and replicator
dynamics, it provides a nuanced understanding of how strategic management of employee
diversity can enhance organisational performance. The findings underscore the importance
of tailored motivational strategies and offer a roadmap for leaders seeking to leverage these
insights in the context of digital transformation and competitive advantage in the modern
knowledge economy. This research not only advances theoretical models but also provides
actionable guidance for managers, investors, and policymakers navigating the complexities
of workforce management in an increasingly digital and competitive landscape. The idea
of integrating this theoretical framework with AI models serves as an impulse for further
research and the development of robust, explainable AI models driven together by humans
and technology, which could represent a significant practical and scientific contribution in
the future.
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