Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently
Abstract
:1. Introduction
2. Structure Design and Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, J.Q.; Li, J.; Zhang, Y.T.; Ding, X.; Wu, L. Terahertz wave modulation technology: Harnessing the light of terahertz. Nat. Mag. 2023, 45, 1–16. [Google Scholar]
- Fan, S.; He, Y.; Ung, B.S.; Pickwell-MacPherson, E. The growth of biomedical terahertz research. J. Phys. D Appl. Phys. 2014, 47, 374009. [Google Scholar] [CrossRef]
- Oh, S.J.; Kim, S.-H.; Jeong, K.; Park, Y.; Huh, Y.M.; Son, J.H.; Suh, J.S. Measurement depth enhancement in terahertz imaging of biological tissues. Opt. Express 2013, 21, 21299–21305. [Google Scholar] [CrossRef] [PubMed]
- Arbab, M.H.; Winebrenner, D.P.; Dickey, T.C.; Chen, A.; Klein, M.B.; Mourad, P.D. Terahertz spectroscopy for the assessment of burn injuries in vivo. J. Biomed. Opt. 2013, 18, 077004. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.C.; Paine, S.; Yao, Q.J.; Lin, Z.H.; Li, X.X.; Duan, W.Y.; Matsuo, H.; Zhang, Q.; Yang, J.; Ashley, M.C.B.; et al. Terahertz and far-infrared windows opened at Dome A in Antarctica. Nat. Astron. 2017, 1, 0001. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, T.S.; Xing, Y.C.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Pinaud, M.; Humbert, G.; Engelbrecht, S.; Merlat, L.; Fischer, B.M.; Crunteanu, A. Terahertz Devices Using the Optical Activation of Gete Phase Change Materials: Toward Fully Reconfigurable Functionalities. ACS Photonics 2021, 8, 3272–3281. [Google Scholar] [CrossRef]
- Fu, X.J.; Yang, F.; Liu, C.X.; Wu, X.; Cui, T.J. Terahertz Beam Steering Technologies: From Phased Arrays to Field-Programmable Metasurfaces. Adv. Opt. Mater. 2020, 8, 1900628. [Google Scholar] [CrossRef]
- Koch, M. Terahertz Technology: A Land to Be Discovered. Opt. Photonics News 2007, 18, 20–25. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [Green Version]
- Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 2011, 5, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Shalaev, V.M. Optica lnegative-index metamaterials. Nat. Photonics 2007, 1, 41–48. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Nemat Nasser, S.C.; Schultz, S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterials. Appl. Phys. Lett. 2001, 78, 489–491. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendry, J.B. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.M.; Yuan, Y.; Ran, L.X.; Jiang, T.; Kong, J.A.; Chan, C.T.; Zhou, L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 2007, 99, 063908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.J.; He, Q.; Hao, J.M.; Zhou, L. A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt. Lett. 2011, 36, 927–929. [Google Scholar] [CrossRef] [Green Version]
- Burckel, D.B.; Wendt, J.R.; Eyck, G.A.T.; Ginn, J.C.; Ellis, A.R.; Brener, I.; Sinclair, M.B. Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers. Adv. Mater. 2010, 22, 4916. [Google Scholar] [CrossRef]
- Yu, N.F.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
- Paul, O.; Reinhard, B.; Krolla, B.; Beigang, R.; Rahm, M. Gradient index metamaterial based on slot elements. Appl. Phys. Lett. 2010, 96, 241110. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.R.; Cheng, Y.Z.; Chen, F.; Luo, H.; Wu, L. Efficiency tunable broadband terahertz graphene metasurface for circular polarization anomalous reflection and plane focusing effect. Diam. Relat. Mater. 2023, 131, 109605. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Qian, Y.J.; Luo, H.; Chen, F.; Cheng, Z.Z. Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Phys. E 2023, 146, 115527. [Google Scholar] [CrossRef]
- Li, Z.R.; Cheng, Y.Z.; Luo, H.; Chen, F.; Li, X.C. Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J. Alloys Compd. 2022, 925, 166617. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Cheng, Y.Z.; Chen, F.; Luo, H.; Wu, L. Efficiency adjustable terahertz circular polarization anomalous refraction and planar focusing based on a bi-layered complementary Z-shaped graphene metasurface. Opt. Soc. Am. B 2022, 39, 705–712. [Google Scholar] [CrossRef]
- Chen, X.; Zou, H.; Su, M.; Tang, L.; Wang, C.; Chen, S.; Su, C.; Li, Y. All-Dielectric Metasurface-Based Beam Splitter with Arbitrary Splitting Ratio. Nanomaterials 2021, 11, 1137. [Google Scholar] [CrossRef]
- Fan, J.P.; Cheng, Y.Z.; He, B. High-Efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies. Phys. D Appl. Phys. 2021, 54, 115101. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.Z.; Li, X.C. Terahertz transmission-type metasurface for the linear and circular polarization wavefront manipulation. Adv. Theory Simul. 2022, 5, 127932. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Zhu, Z.; Dong, G.H.; Lv, T.T.; Li, Y.X.; Guan, C.Y.; Shi, J.H.; Zhang, H. High-efficiency Huygens’ metasurface for terahertz wave manipulation. Opt. Lett. 2019, 44, 3482–3485. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Yu, J.W.; Li, X.C. Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures. Appl. Phys. B 2022, 128, 1. [Google Scholar] [CrossRef]
- Liu, M.K.; Yang, Q.L.; Rifat, A.A.; Raj, V.; Komar, A.; Han, J.G.; Rahmani, M.; Hattori, T.H.; Neshev, D.; Powell, D.A.; et al. Deeply Subwavelength Metasurface Resonators for Terahertz Wavefront Manipulation. Adv. Opt. Mater. 2019, 7, 1900736. [Google Scholar] [CrossRef]
- You, X.; Fumeaux, C.; Withayachumnankul, W. Tutorial on broadband transmissive metasurfaces for wavefront and polarization control of terahertz waves. J. Appl. Phys. 2022, 131, 061101. [Google Scholar] [CrossRef]
- Jia, R.D.; Gao, Y.F.; Xu, Q.; Feng, X.; Wang, Q.W.; Gu, J.Q.; Tian, Z.; Ouyang, C.; Han, J.G.; Zhang, W.L. Achromatic Dielectric Metasurface with Linear Phase Gradient in the Terahertz Domain. Adv. Opt. Mater. 2021, 9, 2001403. [Google Scholar] [CrossRef]
- You, X.; Ako, R.T.; Lees, W.S.-L.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Terahertz transmissive half-wave metasurface with enhanced bandwidth. Opt. Lett. 2021, 46, 4164–4167. [Google Scholar] [CrossRef] [PubMed]
- Kan, T.; Isozaki, A.; Kanda, N.; Nemoto, N.; Konishi, K.; Takahashi, H.; Kuwata-Gonokami, M.; Matsumoto, K.; Shimoyama, I. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 2015, 6, 8422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konishi, K.; Kan, T.; Kuwata-Gonokami, M. Tunable and nonlinear metamaterials for controlling circular polarization. J. Appl. Phys. 2020, 127, 230902. [Google Scholar] [CrossRef]
- You, X.; Ako, R.T.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Mechanically tunable terahertz circular polarizer with versatile functions. Laser Photonics Rev. 2023, 17, 22000305. [Google Scholar] [CrossRef]
- Wu, T.S.; Liu, Z.H.; Wang, Y.P.; Zhang, H.X.; Yang, Z.N.; Cao, W.P.; Yang, D. All-Dielectric Phase-Gradient Metasurface Performing High-Efciency Anomalous Transmission in the Near-Infrared Region. Nanoscale Res. Lett. 2021, 16, 158. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Yang, D.R.; Li, X.C. Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region. Phys. B Condens. Matter 2022, 640, 414047. [Google Scholar] [CrossRef]
- Shanei, M.M.; Fathi, D.; Ghasemifard, F.; Quevedo-Teruel, O. All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry. Sci. Rep. 2019, 9, 13641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, X.Q.; Ouyang, C.; Xu, N.; Cao, W.; Wei, X.; Song, G.; Gu, J.; Tian, Z.; O’Hara, J.F.; Han, J.; et al. Active metasurface terahertz deflector with phase discontinuities. Opt. Express 2015, 23, 27152–27158. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.L.; Guo, Y.H.; Pu, M.B.; Li, X.; Ma, X.L.; Luo, X.G. A tunable metasurface deflector based on MIM waveguide Filled with Phase-Change Material. Plasmonics 2019, 14, 1735–1741. [Google Scholar] [CrossRef]
- Kim, S. Broadband phase-change metagrating design for efficient active reflection steering. Curr. Opt. Photonics 2021, 5, 134–140. [Google Scholar]
- Yu, F.L.; Zhao, Z.Y.; Chen, J.; Wang, J.; Jin, R.; Chen, J.; Wang, J.; Li, G.; Chen, X.; Lu, W. Reconfigurable metasurface with tunable and achromatic beam deflections. Opt. Mater. Express 2021, 12, 49–58. [Google Scholar] [CrossRef]
- Seren, H.R.; Keiser, G.R.; Cao, L.; Zhang, J.; Strikwerda, A.C.; Fan, K.; Metcalfe, G.D.; Wraback, M.; Zhang, X.; Averitt, R.D. Optically modulated multiband terahertz perfect absorber. Adv. Opt. Mater. 2014, 2, 1221–1226. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Gong, R.Z.; Zhao, J.C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves. Opt. Mater. 2016, 62, 28–33. [Google Scholar] [CrossRef]
- Liu, X.W.; Liu, H.J.; Sun, Q.B.; Huang, N. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive Silicon. Appl. Opt. 2015, 54, 3478–3483. [Google Scholar] [CrossRef]
- Bing, P.B.; Guo, X.Y.; Wang, H.; Li, Z.Y.; Yao, J.Q. Characteristic analysis of a photoexcited tunable metamaterial absorber for terahertz waves. J. Opt. 2019, 48, 179–183. [Google Scholar] [CrossRef]
- Zhao, J.C.; Cheng, Y.Z.; Cheng, Z.Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves. IEEE Photonics J. 2018, 10, 4600210. [Google Scholar] [CrossRef]
- Song, Z.Y.; Wang, Z.S.; Wei, M.L. Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces. Mater. Lett. 2019, 234, 138–141. [Google Scholar] [CrossRef]
- Zhao, X.G.; Wang, Y.; Schalch, J.; Duan, G.W.; Cremin, K.; Zhang, J.D.; Chen, C.X.; Averitt, R.D.; Zhang, X. Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers. ACS Photonics 2019, 6, 830–837. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, L.S.; Cui, Z.J.; Zhang, X.J.; Zhang, X.; Zhu, Y.Q.; Zhang, K. Optically tunable single narrow band all-dielectric terahertz metamaterials absorber. AIP Adv. 2020, 10, 045039. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Liu, J.Q.; Chen, F.; Luo, H.; Li, X.C. Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A 2021, 402, 127345. [Google Scholar] [CrossRef]
- Kanda, N.; Konishi, K.; Kuwata-Gonokami, M. All-photoinduced terahertz optical activity. Opt. Lett. 2014, 39, 3274–3277. [Google Scholar] [CrossRef]
- Kanda, N.; Konishi, K.; Kuwata-Gonokami, M. Dynamics of photo-induced terahertz optical activity in metal chiral gratings. Opt. Lett. 2012, 37, 3510–3512. [Google Scholar] [CrossRef]
- Li, N.; Zhao, J.; Tang, P.; Cheng, Y. Design of all-metal 3D anisotropic metamaterial for ultrabroadband terahertz reflective linear polarization conversion. Phys. Status Solidi B 2023, 5, 2300104. [Google Scholar] [CrossRef]
- Zhao, J.; Li, N.; Cheng, Y. All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion. Opt. Commun. 2023, 536, 129372. [Google Scholar]
- Li, N.; Zhao, J.; Tang, P.; Cheng, Y. Broadband and high-efficient reflective linear-circular polarization convertor based on three-dimensional all-metal anisotropic metamaterial at terahertz frequencies. Opt. Commun. 2023, 538, 129544. [Google Scholar] [CrossRef]
- Yang, D.R.; Cheng, Y.Z.; Luo, H.; Chen, F.; Wu, L. Ultra-thin and ultra-broadband terahertz single-layer metasurface based on double-arrow-shaped resonator structure for full-space wavefront manipulation. Adv. Theory Simul. 2023, 15, 312. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Ni, C.; Cheng, Y.; Dong, L.; Wu, L. Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently. Nanomaterials 2023, 13, 1846. https://doi.org/10.3390/nano13121846
Xu Z, Ni C, Cheng Y, Dong L, Wu L. Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently. Nanomaterials. 2023; 13(12):1846. https://doi.org/10.3390/nano13121846
Chicago/Turabian StyleXu, Zhixiang, Cheng Ni, Yongzhi Cheng, Linhui Dong, and Ling Wu. 2023. "Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently" Nanomaterials 13, no. 12: 1846. https://doi.org/10.3390/nano13121846
APA StyleXu, Z., Ni, C., Cheng, Y., Dong, L., & Wu, L. (2023). Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently. Nanomaterials, 13(12), 1846. https://doi.org/10.3390/nano13121846