Horseradish Peroxidase-Encapsulated Fluorescent Bio-Nanoparticle for Ultra-Sensitive and Easy Detection of Hydrogen Peroxide
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Synthesis of BSA-AuNCs and HRP-AuNCs
2.4. Synthesis of HEFBNPs
2.5. Experiments of H2O2 Sensing Using HEFBNPs
3. Results and Discussion
3.1. Size and Morphology of HEFBNPs
3.2. Fluorescence Properties of HEFBNPs
3.3. Detection of H2O2 Based on Fluorescence Quenching of HEFBNPs
3.4. Selectivity of HEFBNPs-Based Fluorescence Sensor for H2O2
3.5. Glass-Based Microfluidic Device for Detection of H2O2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.Y.; Wu, L.; Wan, Y.Q.; Huang, L.L.; Li, N.X.; Chen, J.Y. One-step rapid synthesis of fluorescent silicon nanodots for a hydrogen peroxide-related sensitive and versatile assay based on the inner filter effect. Analysts 2019, 144, 4006–4012. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Hananya, N.; Green, O.; Chen, H.S.; Zhao, A.Q.; Shen, J.G. A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals. Angew. Chem. Int. Ed. 2020, 59, 14326–14330. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Qin, Y.N.; Li, D.; Wang, T.S.; Liu, Y.Q.; Wang, J. Highly sensitive and selective detection of cancer cell with a label-free electrochemical cytosensor. Biosens. Bioelectron. 2013, 41, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P.G. Hydrogen peroxide: A metabolic by-product or a common mediator of aging signals? Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728. [Google Scholar] [CrossRef]
- Hopwood, M.J.; Rapp, I.; Schlosser, C.; Achterberg, E.P. Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans. Sci. Rep. 2017, 7, 43436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, K.K.; Xiang, G.Q.; Wang, C.C.; Huang, F.H.; Liu, J.Z.; Zhang, L.L. ‘Turn-on’ fluorescence sensing of hydrogen peroxide in marine food samples using a carbon dots-MnO2 probe. Luminescence 2020, 35, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Arulraj, A.D.; Devasenathipathy, R.; Chen, S.-M.; Vasantha, V.S.; Wang, S.-F. Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium. Sens. Bio-Sens. Res. 2015, 6, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Zhu, W.L.; Wan, A.J.; Liu, L.B. The mechanism and application of the protein-stabilized gold nanocluster sensing system. Analyst 2017, 142, 567–581. [Google Scholar] [CrossRef]
- Cui, H.; Shao, Z.S.; Song, Z.; Wang, Y.B.; Wang, H.S. Development of gold nanoclusters: From preparation to applications in the field of biomedicine. J. Mater. Chem. C 2020, 8, 14312–14333. [Google Scholar] [CrossRef]
- Goswami, N.; Zheng, K.Y.; Xie, J.P. Bio-NCs-the marriage of ultrasmall metal nanoclusters with biomolecules. Nanoscale 2014, 66, 13328–13347. [Google Scholar] [CrossRef]
- Govindaraju, S.; Ankireddy, S.R.; Viswanath, B.; Kim, J.; Yun, K. Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid. Sci. Rep. 2017, 7, 40298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.G.; Chen, H.; Chen, B.; Zhao, G.H. Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients. Crit. Rev. Food Sci. Nutr. 2018, 58, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.H.; Wu, G.W.; He, D.; Peng, H.P.; Liu, A.L.; Xia, X.H. Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: Analytical applications of hydrogen peroxide, glucose, and catalase detection. Analysts 2015, 140, 7650–7656. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Bhagat, S.; Singh, S. Bovine serum albumin decorated gold nanoclusters: A fluorescence-based nanoprobe for detection of intracellular hydrogen peroxide. Sens. Actuators B Chem. 2021, 327, 128886. [Google Scholar] [CrossRef]
- Wen, F.; Dong, Y.H.; Feng, L.; Wang, S.; Zhang, S.C.; Zhang, X.R. Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Anal. Chem. 2011, 83, 1193–1196. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhong, Q.M.; Wang, Y.L.; Yuan, C.L.; Qin, X.; Xu, Y.J. Colorimetric detection of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of papain. RSC Adv. 2019, 9, 16566–16570. [Google Scholar] [CrossRef] [Green Version]
- Shen, R.; Liu, P.P.; Zhang, Y.Q.; Yu, Z.; Chen, X.Y.; Zhou, L. Sensitive Detection of Single-Cell Secreted H2O2 by Integrating a. Microfluidic Droplet Sensor and Au Nanoclusters. Anal. Chem. 2018, 90, 4478–4484. [Google Scholar] [CrossRef]
- Yang, D.Q.; Luo, M.C.; Di, J.W.; Tu, Y.F.; Yan, J.L. Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid. Microchim. Acta. 2018, 185, 305. [Google Scholar] [CrossRef]
- Mi, W.Y.; Tang, S.; Jin, Y.; Shao, N. Au/Ag Bimetallic Nanoclusters Stabilized by Glutathione and Lysozyme for Ratiometric Sensing of H2O2 and Hydroxyl Radicals. ACS Appl. Nano Mater. 2021, 4, 1586–1595. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Yang, K.L. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions. Enzym. Microb. Technol. 2017, 100, 52–59. [Google Scholar] [CrossRef]
- Xie, J.P.; Zheng, Y.G.; Ying, J.Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Cai, Y.Q.; Zheng, B.Z.; Yuan, H.Y.; Guo, Y.; Xiao, D. Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J. Mater. Chem. 2012, 22, 1000–1005. [Google Scholar] [CrossRef]
- Choi, J.H.; Lim, Y.T.; Oh, B.K. Development of Colorimetric Enzyme-Ball for Signal Amplification of Enzyme-Linked Immunosorbent Assay. Sci. Adv. Mater. 2014, 6, 2572–2576. [Google Scholar] [CrossRef]
- Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020, 12, 604. [Google Scholar] [CrossRef]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012, 152, 168–182. [Google Scholar] [CrossRef]
- Li, F.Q.; Su, H.; Wang, J.; Liu, J.Y.; Zhu, Q.G.; Fei, Y.B.; Pan, Y.H.; Hu, J.H. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int. J. Pharm. 2008, 349, 274–282. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37, 790–802. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, M.; Zhang, Z.; Hong, G.; Xiong, Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res. Lett. 2014, 9, 343. [Google Scholar] [CrossRef]
- Shin, J.H.; Lee, M.J.; Choi, J.H.; Song, J.A.; Kim, T.H.; Oh, B.K. Electrochemical H2O2 biosensor based on horseradish peroxidase encapsulated protein nanoparticles with reduced graphene oxide-modified gold electrode. Nano Converg. 2020, 7, 39. [Google Scholar] [CrossRef]
- Huang, X.; Groves, J.T. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem. Rev. 2018, 118, 2491–2553. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Hu, Y.; Cen, Y.; Chu, X.; Lu, Y. A Dual-Emission Fluorescent Nanocomplex of Gold-Cluster-Decorated Silica Particles for Live Cell Imaging of Highly Reactive Oxygen Species. J. Am. Chem. Soc. 2013, 135, 11595–11602. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Jiang, Z.; Chen, Z.; Tong, L.; Lu, J.; Wang, J. Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim. Acta. 2015, 182, 1911–1916. [Google Scholar] [CrossRef]
- Wang, C.J.; Yang, M.; Mi, G.H.; Zhang, B.; Dou, X.H.; Liu, E.Z.; Hu, X.Y.; Xue, W.M.; Fan, J. Dual-emission fluorescence sensor based on biocompatible bovine serum albumin stabilized copper nanoclusters for ratio and visualization detection of hydrogen peroxide. Dye. Pigm. 2021, 190, 109312. [Google Scholar] [CrossRef]
- Cui, W.W.; Qin, H.Y.; Zhou, Y.; Du, J.X. Determination of the activity of hydrogen peroxide scavenging by using blue-emitting glucose oxidase-stabilized gold nanoclusters as fluorescent nanoprobes and a Fenton reaction that induces fluorescence quenching. Microchim. Acta. 2017, 184, 1103–1108. [Google Scholar] [CrossRef]
- Wen, T.; Qu, F.; Li, N.B.; Luo, H.Q. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal. Chim. Acta. 2012, 749, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Q.; Yang, L.Y.; Huang, L.; Liao, Y.P.; Liu, Y.; Xiao, Q. A novel fluorescent probe for H2O2 detection based on CdSe@ZnS quantum dots/Ag nanocluster hybrid. Anal. Chim. Acta. 2020, 1106, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.Y.; Yao, Y.Y.; Li, D.N.; Zhang, H.R.; Li, W.; Molokee, M. Ratio fluorescent hybrid probe for visualized fluorescence detection of H2O2 in vitro and in vivo. Sens. Actuators B Chem. 2020, 321, 128643. [Google Scholar] [CrossRef]
- Deng, H.H.; Huang, K.Y.; Zhang, M.J.; Zou, Z.Y.; Xu, Y.Y.; Peng, H.P.; Chen, W.; Hong, G.L. Sensitive and selective nitrite assay based on fluorescent gold nanoclusters and Fe2+/Fe3+ redox reaction. Food Chem. 2020, 317, 126456. [Google Scholar] [CrossRef]
- Huang, H.; Li, H.; Feng, J.J.; Wang, A.J. One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe3+. Sens. Actuators B Chem. 2016, 223, 550–556. [Google Scholar] [CrossRef]
- Sebastian, A.; Aarya; Sarangi, B.R.; Sen Mojumdar, S. Lysozyme protected copper nano-cluster: A photo-switch for the selective sensing of Fe2+. J. Photochem. Photobiol. A 2023, 436, 114378. [Google Scholar] [CrossRef]
- Quan, Z.Y.; Xue, F.; Li, H.Y.; Chen, Z.P.; Wang, L.; Zhu, H.X.; Pang, C.L.; He, H. A bioinspired ratiometric fluorescence probe based on cellulose nanocrystal-stabilized gold nanoclusters for live-cell and zebrafish imaging of highly reactive oxygen species. Chem. Eng. J. 2022, 431, 133954. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-J.; Song, J.-A.; Choi, J.-H.; Shin, J.-H.; Myeong, J.-W.; Lee, K.-P.; Kim, T.; Park, K.-E.; Oh, B.-K. Horseradish Peroxidase-Encapsulated Fluorescent Bio-Nanoparticle for Ultra-Sensitive and Easy Detection of Hydrogen Peroxide. Biosensors 2023, 13, 289. https://doi.org/10.3390/bios13020289
Lee M-J, Song J-A, Choi J-H, Shin J-H, Myeong J-W, Lee K-P, Kim T, Park K-E, Oh B-K. Horseradish Peroxidase-Encapsulated Fluorescent Bio-Nanoparticle for Ultra-Sensitive and Easy Detection of Hydrogen Peroxide. Biosensors. 2023; 13(2):289. https://doi.org/10.3390/bios13020289
Chicago/Turabian StyleLee, Myeong-Jun, Ji-Ae Song, Jin-Ha Choi, Jeong-Hyeop Shin, Ji-Woon Myeong, Ki-Ppeum Lee, Taehwan Kim, Ki-Eob Park, and Byung-Keun Oh. 2023. "Horseradish Peroxidase-Encapsulated Fluorescent Bio-Nanoparticle for Ultra-Sensitive and Easy Detection of Hydrogen Peroxide" Biosensors 13, no. 2: 289. https://doi.org/10.3390/bios13020289
APA StyleLee, M.-J., Song, J.-A., Choi, J.-H., Shin, J.-H., Myeong, J.-W., Lee, K.-P., Kim, T., Park, K.-E., & Oh, B.-K. (2023). Horseradish Peroxidase-Encapsulated Fluorescent Bio-Nanoparticle for Ultra-Sensitive and Easy Detection of Hydrogen Peroxide. Biosensors, 13(2), 289. https://doi.org/10.3390/bios13020289