Fatigue Crack Growth Behavior of Additively Manufactured Ti Metal Matrix Composite with TiB Particles
Abstract
:1. Introduction
2. Experimental Method, and Results
3. Discussion
4. Conclusions
- The AM technique produces Ti-TiB composite with a strong particle–matrix interface.
- The directional fatigue crack growth rate experimental results show an overall isotropic fatigue crack growth behavior.
- The slight changes in the fatigue crack growth behavior are due to the frequent clustering of TiB particles observed in the microstructure of the Ti-TiB MMC.
- The dominant fatigue crack growth mechanisms for the AM Ti-TiB MMC are identified as void nucleation and coalescence in the region where the TiB particles are distributed without any TiB clusters while crack growth through the particle and matrix in the regions with particle clusters.
- A comparison of fatigue crack growth rates with other competitive materials such as steels and Ni alloys shows that the AM process, PTA-SFFF for Ti-TiB MMC production, needs improvement in its fatigue properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clyne, T.W.; Hull, D. An Introduction to Composite Materials, 3rd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Ishikawa, T.; Amaoka, K.; Masubuchi, Y.; Yamamoto, T.; Yamanaka, A.; Arai, M.; Takahashi, J. Overview of automotive structural composites technology developments in Japan. Compos. Sci. Technol. 2018, 155, 221–246. [Google Scholar] [CrossRef]
- de Queiroz, H.F.M.; Banea, M.D.; Cavalcanti, D.K.K. Adhesively bonded joints of jute, glass and hybrid jute/glass fibre-reinforced polymer composites for automotive industry. Appl. Adhes. Sci. 2021, 9, 2. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Kumar, R.; Pruncu, C.I. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [Google Scholar] [CrossRef]
- Tiwary, A.; Kumar, R.; Chohan, J.S. A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 2022, 51, 865–870. [Google Scholar] [CrossRef]
- Chak, V.; Chattopadhyay, H.; Dora, T.L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J. Manuf. Process. 2020, 56, 1059–1074. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Deng, K.K.; Hu, X.S.; Wu, K. Magnesium matrix composite reinforced by nanoparticles—A review. J. Magnes. Alloy. 2021, 9, 57–77. [Google Scholar] [CrossRef]
- Hayat, M.D.; Singh, H.; He, Z.; Cao, P. Titanium metal matrix composites: An overview. Compos. Part A Appl. Sci. Manuf. 2019, 121, 418–438. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M. (Eds.) Titanium and Titanium Alloys; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Rahman, M.; Wong, Y.S.; Zareena, A.R. Machinability of Titanium Alloys. JSME Int. J. Ser. C 2003, 46, 107–115. [Google Scholar] [CrossRef]
- Advanced Research Projects Agency–Energy. METALS Program Overview. Available online: https://arpa-e.energy.gov/sites/default/files/documents/files/METALS_ProgramSummary.pdf (accessed on 27 February 2024).
- Otte, J.A.; Zou, J.; Dargusch, M.S. High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting. J. Mater. Sci. Technol. 2022, 118, 114–127. [Google Scholar] [CrossRef]
- Shalnova, S.A.; Volosevich, D.V.; Sannikov, M.I.; Magidov, I.S.; Mikhaylovskiy, K.V.; Turichin, G.A.; Klimova-Korsmik, O.G. Direct energy deposition of SiC reinforced Ti–6Al–4V metal matrix composites: Structure and mechanical properties. Ceram. Int. 2022, 48, 35076–35084. [Google Scholar] [CrossRef]
- Samandi, M.; Storm, R.; Loutfy, R.; Withers, J. The development of plasma transferred arc solid free form fabrication as a cost effective production methodology. In Proceedings of the 22nd Heat Treating Society Conference and the 2nd International Surface Engineering Congress, Indianapolis, IN, USA, 15–17 September 2003; pp. 513–519. [Google Scholar]
- Chawla, N.; Shen, Y.-L. Mechanical Behavior of Particle Reinforced Metal Matrix Composites. Adv. Eng. Mater. 2001, 3, 357–370. [Google Scholar] [CrossRef]
- Hua, Y.; Gu, L. Prediction of the thermomechanical behavior of particle-reinforced metal matrix composites. Compos. Part B Eng. 2013, 45, 1464–1470. [Google Scholar] [CrossRef]
- Rohatgi, P.K. Metal matrix Composites. Def. Sci. J. 1993, 43, 323–349. [Google Scholar] [CrossRef]
- Vasudévan, A.K.; Sadananda, K. Fatigue crack growth behavior of composites. Metall. Mater. Trans. A 1995, 26, 3199–3210. [Google Scholar] [CrossRef]
- AlMangour, B.; Grzesiak, D.; Yang, J.-M. Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content. Mater. Des. 2016, 104, 141–151. [Google Scholar] [CrossRef]
- Oliveira, J.P.; LaLonde, A.D.; Ma, J. Processing parameters in laser powder bed fusion metal additive manufacturing. Mater. Des. 2020, 193, 108762. [Google Scholar] [CrossRef]
- Yakout, M.; Cadamuro, A.; Elbestawi, M.A.; Veldhuis, S.C. The selection of process parameters in additive manufacturing for aerospace alloys. Int. J. Adv. Manuf. Technol. 2017, 92, 2081–2098. [Google Scholar] [CrossRef]
- Mojumder, S.; Gan, Z.; Li, Y.; Al Amin, A.; Liu, W.K. Linking process parameters with lack-of-fusion porosity for laser powder bed fusion metal additive manufacturing. Addit. Manuf. 2023, 68, 103500. [Google Scholar] [CrossRef]
- Gaisin, R.A.; Imayev, V.M.; Imayev, R.M. Microstructure and Mechanical Properties of a Near-α-Titanium-Alloy/TiB Composite Prepared in situ by Casting and Subjected to Deformation and Heat Treatment. Phys. Met. Metallogr. 2018, 119, 907–916. [Google Scholar] [CrossRef]
- Prokudina, V.K. Titanium Nitride. In Concise Encyclopedia of Self-Propagating High-Temperature Synthesis; Elsevier: Amsterdam, The Netherlands, 2017; pp. 398–401. [Google Scholar]
- Munro, R.G. Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 709. [Google Scholar] [CrossRef]
- Chang, K.; Wang, X.; Liang, E.; Zhang, R. On the texture and mechanical property anisotropy of Ti6Al4V alloy fabricated by powder-bed based laser additive manufacturing. Vacuum 2020, 181, 109732. [Google Scholar] [CrossRef]
- Lizzul, L.; Sorgato, M.; Bertolini, R.; Ghiotti, A.; Bruschi, S. Influence of additive manufacturing-induced anisotropy on tool wear in end milling of Ti6Al4V. Tribol. Int. 2020, 146, 106200. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, P.; Wang, F.; Lu, Y.H.; Shoji, T. Anisotropy of microstructure and corrosion resistance of 316L stainless steel fabricated by wire and arc additive manufacturing. Corros. Sci. 2022, 206, 110549. [Google Scholar] [CrossRef]
- Balakumar, T.; Riahi, R.A.; Edrisy, A. Experimental and Analytical Study of Directional Isothermal Fatigue in Additively Manufactured Ti-TiB Metal Matrix Composites. Metals 2024, 14, 408. [Google Scholar] [CrossRef]
- Bourell, D.; Kruth, J.P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.M.; Clare, A. Materials for additive manufacturing. CIRP Ann. 2017, 66, 659–681. [Google Scholar] [CrossRef]
- Bellini, C.; Berto, F.; Di Cocco, V.; Iacoviello, F.; Mocanu, L.P.; Razavi, N. Additive manufacturing processes for metals and effects of defects on mechanical strength: A review. Procedia Struct. Integr. 2021, 33, 498–508. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Pan, J.; Hathaway, R.B.; Barkey, M.E. Fatigue Testing and Analysis: Theory and Practice, 8th ed.; Elsevier; Butterworth-Heinemann: Burlington, MA, USA, 2005. [Google Scholar]
- Jiang, R.; Everitt, S.; Lewandowski, M.; Gao, N.; Reed, P.A.S. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes. Int. J. Fatigue 2014, 62, 217–227. [Google Scholar] [CrossRef]
- Luo, J. Small and long fatigue crack growth behaviour of a PM Ni-based superalloy, Udimet 720. Int. J. Fatigue 2004, 26, 113–124. [Google Scholar] [CrossRef]
- Gao, Y.; Stölken, J.S.; Kumar, M.; Ritchie, R.O. High-cycle fatigue of nickel-base superalloy René 104 (ME3): Interaction of microstructurally small cracks with grain boundaries of known character. Acta Mater. 2007, 55, 3155–3167. [Google Scholar] [CrossRef]
- Kumar, M.; Ahmad, S.; Singh, I.V.; Rao, A.V.; Kumar, J.; Kumar, V. Experimental and numerical studies to estimate fatigue crack growth behavior of Ni-based super alloy. Theor. Appl. Fract. Mech. 2018, 96, 604–616. [Google Scholar] [CrossRef]
- Cheng, X.; Petrov, R.; Zhao, L.; Janssen, M. Fatigue crack growth in TRIP steel under positive R-ratios. Eng. Fract. Mech. 2008, 75, 739–749. [Google Scholar] [CrossRef]
- Kalnaus, S.; Fan, F.; Jiang, Y.; Vasudevan, A.K. An experimental investigation of fatigue crack growth of stainless steel 304L. Int. J. Fatigue 2009, 31, 840–849. [Google Scholar] [CrossRef]
- ASTM E647; Annual Book of ASTM Standards. Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM: West Conshohocken, PA, USA, 2001.
- Balakumar, T.; Riahi, R.; Edrisy, A. An investigation of fatigue of additively manufactured commercially pure Alpha–Ti alloy at 350 °C. J. Mater. Res. Technol. 2023, 26, 7300–7311. [Google Scholar] [CrossRef]
- Hasib, M.T.; Ostergaard, H.E.; Liu, Q.; Li, X.; Kruzic, J.J. Tensile and fatigue crack growth behavior of commercially pure titanium produced by laser powder bed fusion additive manufacturing. Addit. Manuf. 2021, 45, 102027. [Google Scholar] [CrossRef]
- DiCecco, L.-A.; Mehdi, M.; Edrisy, A. Fatigue Improvement of Additive Manufactured Ti–TiB Material through Shot Peening. Metals 2021, 11, 1423. [Google Scholar] [CrossRef]
Property | Ti (Pure) | TiB | TiC | TiN | SiC | TiB2 |
---|---|---|---|---|---|---|
Young’s modulus (GPa) | 110 | 550 | 460 | 390 | 420 | 565 |
Ultimate tensile strength (GPa) | 0.22 | 8 | 3.55 | Refractory compound | 3.45 | 1.8 * |
Density (g/cm3) | 4.57 | 4.56 | 4.92 | 5.43 | 3.21 | 4.50 |
Thermal expansion coefficient at 20 10−6 K−1) | 8.8 | 8.6 | 7.4 | 9.35 | 4.3 | 6.4 |
Material | Ni-Based Superalloys | Steel | ||||
---|---|---|---|---|---|---|
P/M * Ni-Based Turbine Disk Alloy | P/M * Udimet 720 | P/M * Rene’ 104 | Ni-Based Superalloy | Low Alloy TRIP Steel | Stainless Steel 304L | |
Composition | A | B | C | D | E | F |
Stress ratio (R) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Environment | air | air | air | air | air | air |
Temperature () | 650 725 650 725 | RT | RT | RT | RT | RT |
Specimen type | SENB | FPB | FPB | CT | CN | CT |
Frequency (HZ) | 20 | 80–105 | 25–50 | 10 | 10 | 2–15 0.5–10 3–20 |
Reference | [33] | [34] | [35] | [36] | [37] | [38] |
Composition Label in Table 2 | Alloy Composition (in wt.%) | Reference |
---|---|---|
A | 12.5 Cr, 20.7 Co, 2.7 Mo, 3.5 Ti, 3.5 Al, 0.03 C, 0.03 B, 4.3 W, 0.05 Zr, 1.6 Ta, 1.5 Nb, 49.59 Ni | [33] |
B | 0.02–0.04 C, 0.03–0.04 B, 0.025–0.50 Zr, 4.75–5.25 Ti, 2.25–2.75 Al, 17.5–18.5 Cr, 2.75–3.25 Mo, 14.0–15.5 Co, 1.10–1.40 W, balance Ni | [34] |
C | Nickel-base superalloy, ME3 (also known as Rene´ 104): alloy composition was not provided | [35] |
D | 0.4 V, 1.6 Al, 2.4 Ti, 10.8 O, 19.0 Cr, 65.8 Ni | [36] |
E | 0.188 C, 1.502 Mn, 0.254 Si, 0.443 Al, 0.015 P | [37] |
F | 0.03 C, 18.0–20.0 Cr, 8.0–12.0 Ni, 1.0 Si, 2.0 Mn, 0.03 S, 0.045 P | [38] |
LC Specimen | PC Specimen | |
---|---|---|
Line equation | Log = 5.7973 Log − 10.467 | Log = 6.1306 Log − 11.102 |
Gradient, m | 5.7973 6 | 6.1306 6 |
Intercept | −10.467 | −11.102 |
c | 3.41193 10−11 10−11 | 7.90679 10−12 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakumar, T.; Edrisy, A.; Riahi, R.A. Fatigue Crack Growth Behavior of Additively Manufactured Ti Metal Matrix Composite with TiB Particles. Coatings 2024, 14, 1447. https://doi.org/10.3390/coatings14111447
Balakumar T, Edrisy A, Riahi RA. Fatigue Crack Growth Behavior of Additively Manufactured Ti Metal Matrix Composite with TiB Particles. Coatings. 2024; 14(11):1447. https://doi.org/10.3390/coatings14111447
Chicago/Turabian StyleBalakumar, Thevika, Afsaneh Edrisy, and Reza A. Riahi. 2024. "Fatigue Crack Growth Behavior of Additively Manufactured Ti Metal Matrix Composite with TiB Particles" Coatings 14, no. 11: 1447. https://doi.org/10.3390/coatings14111447