Experimental Investigation of the Effect of NiCrTi Coating on the Ash Condensation Characteristics of High-Alkali Coals
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Experimental Setup
2.3. Condensation Experiments
2.4. Methods of Analysis
3. Results and Discussion
3.1. Effect of Temperature on Flue Gas Condensation Products
3.2. Condensation Experiment
3.3. Analysis of the Surface and Cross-Section of NiCrTi Coatings After Condensation Experiments
3.4. Factsage Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, C.; Qu, S.; Zhang, J.; Wang, Y.; Zhang, Y. Distribution, occurrence and leaching dynamic behavior of sodium in Zhundong coal. Fuel 2017, 190, 189–197. [Google Scholar] [CrossRef]
- Yang, H.; Jin, J.; Liu, D.; Wang, Y.; Zhao, B. The influence of vermiculite on the ash deposition formation process of Zhundong coal. Fuel 2018, 230, 89–97. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, J.; Hou, F.; Zhang, Y.; Wang, G.; Liu, B.; Zhai, Z. Understanding effect of phosphorus-based additive on ash deposition characteristics during high-sodium and high-calcium Zhundong coal combustion in drop-tube furnace. Fuel 2021, 287, 119462. [Google Scholar] [CrossRef]
- Wei, B.; Tan, H.; Wang, X.; Ruan, R.; Hu, Z.; Wang, Y. Investigation on ash deposition characteristics during Zhundong coal combustion. J. Energy Inst. 2018, 91, 33–42. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, Z.; Wang, X.; Li, J.; Liu, Q. Microstructure and high temperature oxidation behavior of laser cladding C22 coating. Mater. Today Commun. 2022, 33, 104603. [Google Scholar] [CrossRef]
- Jeyaprakash, N.; Yang, C.; Karuppasamy, S.; Dhineshkumar, S. Evaluation of microstructure, nanoindentation and corrosion behavior of laser cladded Stellite-6 alloy on Inconel-625 substrate. Mater. Today Commun. 2022, 31, 103370. [Google Scholar] [CrossRef]
- Li, R.; Kai, X.; Yang, T.; Sun, Y.; He, Y.; Shen, S. Release and transformation of alkali metals during co-combustion of coal and sulfur-rich wheat straw. Energy Convers. Manag. 2014, 83, 197–202. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Cao, Z.; Di, H. Investigation on minerals migration during co-firing of different straw/coal blending ratios. Energy Convers. Manag. 2013, 74, 279–285. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y.; Song, S.; Yue, J.; Chen, B.; Liu, Y.; Zou, Y. A new on-line combustion optimization approach for ultra-supercritical coal-fired boiler to improve boiler efficiency, reduce NOx emission and enhance operating safety. Energy 2023, 282, 128748. [Google Scholar] [CrossRef]
- Chi, H.; Pans, M.; Bai, M.; Sun, C.; Hussain, T.; Sun, W.; Yao, Y.; Lyu, J.; Liu, H. Experimental investigations on the chlorine-induced corrosion of HVOF thermal sprayed Stellite-6 and NiAl coatings with fluidised bed biomass/anthracite combustion systems. Fuel 2021, 288, 119607. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Chen, T.; Wang, G.; Li, H.; Hu, H.; Yu, Y.; Yao, H. Application of Coatings to Alleviate Fireside Corrosion on Heat Transfer Tubes during the Combustion of Low-Grade Solid Fuels: A Review. Energy Fuels 2020, 34, 11752–11770. [Google Scholar] [CrossRef]
- Muthu, S.; Arivarasu, M.; Sivaswamy, G. Life assessment of thermal sprayed alloy 825 in waste heat incineration environment. Int. J. Press. Vessel. Pip. 2023, 202, 104919. [Google Scholar] [CrossRef]
- Senthilkumar, V.; Thiyagarajan, B.; Duraiselvam, M.; Karthick, K. Effect of thermal cycle on Ni–Cr based nanostructured thermal spray coating in boiler tubes. Trans. Nonferrous Met. Soc. China 2015, 25, 1533–1554. [Google Scholar] [CrossRef]
- Thiyagarajan, B.; Senthilkumar, V. Experimental studies on fly-ash erosion behavior of Ni-Cr based nanostructured thermal spray coating in boiler tubes. Mater. Manuf. Process. 2017, 32, 1209–1217. [Google Scholar] [CrossRef]
- Richard, W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. Sci. 1996, 22, 29–120. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Y.; Yue, J.; Dong, L.; Liu, L.; Zha, J.; Yu, M.; Chen, B.; Zhu, Z.; Liu, H. Improvement of slagging monitoring and soot-blowing of waterwall in a 650MWe coal-fired utility boiler. J. Energy Inst. 2021, 96, 106–120. [Google Scholar] [CrossRef]
- Wei, B.; Tan, H.; Wang, Y.; Wang, X.; Yang, T.; Ruan, R. Investigation of characteristics and formation mechanisms of deposits on different positions in full-scale boiler burning high alkali coal. Appl. Therm. Eng. 2017, 119, 449–458. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, H.; Xu, K.; Xu, Q.; Li, L. Investigation on the fusion characterization and melting kinetics of ashes from co-firing of anthracite and pine sawdust. Renew. Energy 2020, 145, 835–846. [Google Scholar] [CrossRef]
- Qi, X.; Song, G.; Song, W.; Yang, S.; Lu, Q. Effects of wall temperature on slagging and ash deposition of Zhundong coal during circulating fluidized bed gasification. Appl. Therm. Eng. 2016, 106, 1127–1135. [Google Scholar] [CrossRef]
- Yu, K.; Chen, X.; Cai, T.; Ma, J.; Liu, D.; Liang, C. Release and migration characteristics of sodium and potassium in high alkali coal under oxy-fuel fluidized bed combustion condition. Fuel 2020, 262, 116413. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Liu, D.; Yang, H.; Kou, X. Understanding ash deposition for Zhundong coal combustion in 330MW utility boiler: Focusing on surface temperature effects. Fuel 2018, 216, 697–706. [Google Scholar] [CrossRef]
- Guo, S.; Jiang, Y.; Li, J.; Yu, Z.; Zhao, J.; Fang, Y. Correlations between Coal Compositions and Sodium Release during Steam Gasification of Sodium-Rich Coals. Energy Fuels 2017, 31, 6025–6033. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Wei, B.; Zhang, L.; Tan, H.; Yang, T.; Mikulčić, H.; Duić, N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing. Appl. Therm. Eng. 2015, 80, 150–159. [Google Scholar] [CrossRef]
- Dai, B.; Wu, X.; Zhang, L. Establishing a novel and yet simple methodology based on the use of modified inclined plane (M-IP) for high-temperature slag viscosity measurement. Fuel 2018, 233, 299–308. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Yan, K.; Chen, N.; Zhang, J.; Xu, X.; Dai, B.; Zhang, J.; Zhang, L. Ash deposition and fouling behavior of Chinese Xinjiang high-alkali coal in 3 MWth pilot-scale combustion test. Fuel 2016, 181, 1191–1202. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, H. Investigation of the fouling characteristics during co-combustion of Shenhua coal and corn stalk: Effect of deposition surface. Fuel 2019, 256, 115939. [Google Scholar] [CrossRef]
- Sidhu, T.; Prakash, S.; Agrawal, R. Hot corrosion studies of HVOF NiCrBSi and Stellite-6 coatings on a Ni-based superalloy in an actual industrial environment of a coal fired boiler. Surf. Coat. Technol. 2006, 201, 1602–1612. [Google Scholar] [CrossRef]
- Scrivani, A.; Ianelli, S.; Rossi, A.; Groppetti, R.; Casadei, F.; Rizzi, G. A contribution to the surface analysis and characterisation of HVOF coatings for petrochemical application. Wear 2001, 250, 107–113. [Google Scholar] [CrossRef]
- Hussain, T.; Simms, N.; Nicholls, J.; Oakey, J. Fireside corrosion degradation of HVOF thermal sprayed FeCrAl coating at 700–800 °C. Surf. Coat. Technol. 2015, 268, 165–172. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Li, F.; Chi, Z. Lyophobicity and slagging resistance mechanism of h-BN based coating for coal-fired boilers. Fuel Process. Technol. 2019, 188, 43–50. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, C.; Yuan, C.; Xu, H.; Ma, L.; Fang, Q.; Chen, G. Investigation on the influence of sulfur and chlorine on the initial deposition/fouling characteristics of a high-alkali coal. Fuel Process. Technol. 2020, 198, 106234. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, C.; Zhang, X.; Li, X.; Wei, B.; Tan, P.; Fang, Q.; Chen, G.; Xia, J. Release and transformation characteristics of Na/Ca/S compounds of Zhundong coal during combustion/CO2 gasification. J. Energy Inst. 2020, 93, 752–765. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, Y.; Chi, Z.; Zhang, G. High-temperature sulfur corrosion behavior of h-BN-based ceramic coating prepared by slurry method. Mater. Chem. Phys. 2018, 206, 186–192. [Google Scholar] [CrossRef]
- Reddy, L.; Sattari, M.; Davis, C.; Shipway, P.; Halvarsson, M.; Hussain, T. Influence of KCl and HCl on a laser clad FeCrAl alloy: In-Situ SEM and controlled environment High temperature corrosion. Corros. Sci. 2019, 158, 108076. [Google Scholar] [CrossRef]
- Li, J.; Zhu, M.; Zhang, Z. Characterisation of ash deposits on a probe at different temperatures during combustion of a Zhundong lignite in a drop tube furnace. Fuel Process. Technol. 2016, 144, 155–163. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, L.; Sun, Y.; Zhang, H.; Duan, C.; Yu, H. Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling. Mater. Charact. 2016, 113, 108–116. [Google Scholar] [CrossRef]
- Qi, X.; Song, G.; Yang, S.; Yang, Z.; Lyu, Q. Exploration of effective bed material for use as fouling/agglomeration preventatives in circulating fluidized bed gasification of high-sodium lignite. Fuel 2018, 217, 577–586. [Google Scholar] [CrossRef]
Proximate Analysis (wt.%) | |
Mar | 7.63 |
Aar | 2.99 |
Var | 20.37 |
FCar | 47.93 |
Ultimate analysis (wt.%, dry basis) | |
Car | 54.51 |
Har | 2.87 |
Oar | 10.08 |
Nar | 0.44 |
Sar | 0.41 |
Clar | 0.062 |
Qnet.ar(kJ/kg) | 19.55 |
Ash composition (wt.%) | |
SiO2 | 6.38 |
Al2O3 | 5.97 |
Fe2O3 | 6.74 |
CaO | 22.5 |
MgO | 12.35 |
TiO2 | 0.27 |
SO3 | 22.63 |
K2O | 0.19 |
Na2O | 11.88 |
Parameter | Value |
---|---|
Oxygen flow rate (L/min) | 810 |
Kerosene flow rate (L/min) | 0.45 |
Carrier gas flow rate (N2) (L/min) | 10.5 |
Powder delivery (g/min) | 55 |
Spray distance (mm) | 345 |
Linear velocity (mm/s) | 500 |
Major Products | Reaction | Delta H/(KJ/mol) | Delta G/(KJ/mol) | Reaction Number |
---|---|---|---|---|
NiCr2O4 | NiO + Cr2O3 → NiCr2O4 | −10.17 | −11.68 | R1 |
Ni + 2Cr + 2O2 → NiCr2O4 | −1355.67 | −937.53 | R2 | |
TiO2 | Ti + O2 → TiO2 | −940.97 | −714.76 | R3 |
Cr2O3 | 4Cr + 3O2 → 2Cr2O3 | −1112.67 | −799.76 | R4 |
GaSO4 | CaO + SO3 → GaSO4 | −378.64 | −173.28 | R5 |
2CaO + 2SO2 + O2 → 2GaSO4 | −475.13 | −153.14 | R6 | |
CaSiO3 | CaO + SiO2 → CaSiO3 | −92.71 | −87.72 | R7 |
CaCO3 + SiO2 → CaSiO3 + CO2 | 71.79 | −108.06 | R8 | |
CaSO4 + SiO2 → CaSiO3 + SO3 | 285.93 | 85.56 | R9 | |
Fe2SiO4 | 2FeO + SiO2 → Fe2SiO4 | −44.68 | −21.20 | R10 |
2Fe2O3 + 2SiO2 → 2Fe2SiO4 + O2 | 234.80 | 110.31 | R11 | |
2Fe3O4 + 3SiO2 → 3Fe2SiO4 + O2 | 153.76 | 86.96 | R12 | |
NaAlSi3O8 | Na2O + Al2O3 + 5SiO2 → 2NaAlSi3O8 | −170.83 | −193.11 | R13 |
Na2SO4+ Al2O3 + 6SiO2 → 2NaAlSi3O8 + SO3 | 103.50 | 12.08 | R14 | |
2NaCl + Al2O3 + 6SiO2 + H2O → 2NaAlSi3O8 + 2HCl | 58.26 | −19.02 | R15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Hu, L.; Ding, Q. Experimental Investigation of the Effect of NiCrTi Coating on the Ash Condensation Characteristics of High-Alkali Coals. Coatings 2024, 14, 1594. https://doi.org/10.3390/coatings14121594
Liang Q, Hu L, Ding Q. Experimental Investigation of the Effect of NiCrTi Coating on the Ash Condensation Characteristics of High-Alkali Coals. Coatings. 2024; 14(12):1594. https://doi.org/10.3390/coatings14121594
Chicago/Turabian StyleLiang, Quan, Lina Hu, and Qiheng Ding. 2024. "Experimental Investigation of the Effect of NiCrTi Coating on the Ash Condensation Characteristics of High-Alkali Coals" Coatings 14, no. 12: 1594. https://doi.org/10.3390/coatings14121594
APA StyleLiang, Q., Hu, L., & Ding, Q. (2024). Experimental Investigation of the Effect of NiCrTi Coating on the Ash Condensation Characteristics of High-Alkali Coals. Coatings, 14(12), 1594. https://doi.org/10.3390/coatings14121594