
Citation: Bastos Silva, C.; Pompilio,

P.E.; Otobo, T.S.; Tertuliano Filho, H.

Reconstructing Signals in Millimeter

Wave Channels Using Bayesian-Based

Fading Models. Electronics 2024, 13,

4406. https://doi.org/10.3390/

electronics13224406

Academic Editor: Dimitra I.

Kaklamani

Received: 28 August 2024

Revised: 1 October 2024

Accepted: 3 October 2024

Published: 11 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Reconstructing Signals in Millimeter Wave Channels Using
Bayesian-Based Fading Models
Claudio Bastos Silva * , Pedro E. Pompilio , Theoma S. Otobo and Horacio Tertuliano Filho

Department of Electrical Engineering, Federal University of Parana—UFPR, Av. Cel. Francisco H. dos Santos, 100,
Curitiba 81530-000, Brazil; pedropompilio@ufpr.br (P.E.P.); theomaotobo95@gmail.com (T.S.O.);
tertuliano@ufpr.br (H.T.F.)
* Correspondence: clbtx@uol.com.br; Tel.: +55-41-99948-7225

Abstract: Fading in communication channels presents eminently stochastic characteristics and is a
significant challenge, especially at millimeter wave (mmW) frequencies, where the need for lines of
sight and the high attenuation of obstacles complicate transmission. This article presents a model
based on Bayesian fundamentals intended to improve the description and simulation of stochastic
fading effects in these channels. It also includes the use of signal processing techniques to simulate and
reconstruct the received signal, simulating the communication channel with an FIR filter. The results
obtained by simulating the model show its ability to efficiently capture rapid and profound variations
in the signal, typical of those that occur in urban and suburban environments and transmissions in
the mmW spectrum. It also provides greater uniformity in signal reconstruction compared to the
traditional models that are in use. Using Bayesian fundamentals, which allow dynamic adaptation
to change in channel behavior, can improve the efficiency and reliability of networks, especially
modern smart networks. Compared to traditional models, the proposed model offers improved
signal reconstruction and fading mitigation accuracy, with prospects for future integration in smart
communication systems. The better capacity in signal reconstruction presents itself as a differentiator
of the model, suggesting greater precision in data transmission.

Keywords: Bayesian model; channel fading; particle filter; signal reconstruction

1. Introduction

The development of the telecommunications market is increasingly driving research
and development toward intelligent, high-capacity, high-speed wireless networks that can
adapt to the environment and provide a wide variety of services, some of which are already
in use and others are yet to be discovered.

Building an intelligent environment with devices that interact with the medium and
that are capable of connecting to the network at very high speeds will require devices
that are aware of their surroundings, learn from environmental variations, and adapt their
internal configurations based on new statistical variations.

Fading in a telecommunications channel is a phenomenon that directly affects the
quality and stability of the system. It occurs due to variations in the signal amplitude in the
channel and has an eminently stochastic behavior. The fading severity depends on factors
such as link architecture, propagation scenario, carrier frequency, relative speed (in mobile
communications) between transmitter and receiver, and other propagation characteristics
of an electromagnetic signal. While traditional models such as those of Rice, Rayleigh, and
Nakagami effectively describe fading in the microwave spectrum, there is no agreement on
their effectiveness in the millimeter wave (mmW) and submillimeter wave spectrum due
to the unique propagation behavior in this frequency range.

Using Bayesian techniques can bring flexibility to modeling the fading phenomenon
and signal processing in smart networks, favoring the implementation of AI and ma-
chine learning algorithms and improving methods and tactics to neutralize adverse effects
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imposed on signal propagation. This ultimately results in more efficient and reliable
telecommunications networks.

In the literature, a general Bayesian model was not found to describe the fading phe-
nomenon, only for the analyses of specific characteristics or metrics. Studies [1] investigate
fading channel models, comparing traditional models, such as Rayleigh and Nakagami-m,
and more advanced models, the κ-µ shadowed model, for mmW frequencies; however, this
case unifies a variation in the models with a specific distribution. The authors of [2] present
an experimentally validated fading model for Terahertz (THz) wireless communication
systems based on ambient measurements. They demonstrate that the α–µ distribution
better fits the small-scale fading characteristics in THz channels, outperforming tradi-
tional models such as Rice, Nakagami-m, and Rayleigh. These studies use frequentist
statistical techniques.

In implementing advanced signal reconstruction techniques, such as particle filters
that use Bayesian foundations, it is expected that the models will have better adaptability
and performance when applied to Bayesian models or algorithms, such as the one proposed
in this work. The work in [3] is relevant, where a multiscale particle filter is employed
to extract the channel state information (CSI) from the available noisy observations and
obtain sufficient parameter statistics. Based on the dates, the Bayes statistical inference
theorem derives a conditional posterior probability density distribution for detection
threshold value.

Also, the work of [4] presents an improved particle filtering technique for estimating
channel coefficients and detecting signals transmitted over fading channels, especially
Rayleigh flat fading. The method improves the accuracy of signal detection in non-Gaussian
communication systems.

The authors of [5] deal with improvements in particle filters (PFs) for real-time appli-
cations. They propose new Bayesian resampling techniques that increase the efficiency and
speed of the filtering process without compromising accuracy.

This paper introduces a model for channel fading in mmW channels based on the
Bayesian fundamentals, which, favored by the great increase in computational processing
power to deal with large data sets, offers significant advantages over traditional models
and can overcome the limitations inherent to each one. Furthermore, the paper demon-
strates the effectiveness of the proposed model in mitigating the effects of channel fading,
compared with other models, in the reconstruction of the signal at the receiver using signal
processing techniques.

2. Background

The efficiency and reliability of a communication link depend mainly on the quality
of the signal received, which should ideally mirror the transmitted information closely.
However, disturbances, like noise and interference generated during transmission, can
affect quality. Various factors contribute to these disturbances, such as space loss, thermal
noise, echo, co-channel interference, intermodulation, and atmospheric effects. In mobile
communications, multipath propagation and the Doppler effect also significantly influence
channel behavior [6].

The Doppler effect arises from the motion between the transmitter and receiver, caus-
ing changes in frequency due to time compression or expansion, which acts as an additive
frequency change over the bandwidth. This effect introduces a frequency shift across the
bandwidth, influencing the communication channel’s behavior. It can result in changes
that either weaken or strengthen signals, leading to a dispersion that widens baseband
width usage.

The variation in amplitude of the electromagnetic signal between the transmitting and
receiving antennas results in fading, with the severity determined by the factors mentioned
earlier, and this phenomenon can occur in the space, time, and frequency domains, par-
ticularly affecting mobile communications; consequently, fading has a significant impact
on the reliability and stability of mobile communication systems, and while traditional
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models adequately describe fading for currently used frequencies, there is no consensus on
an effective model for the mmW frequency bands [7].

2.1. Propagation in the mmW Spectrum

Signals within the millimeter wave (mmW) spectrum exhibit distinct characteristics,
often behaving like optical signals due to their minimal or nonexistent scattering levels;
this typically requires a line-of-sight (LOS) link architecture for effective transmission. A
limited range, reduced penetration through solid objects, and substantial propagation
attenuation characterize these signals. Additionally, they are vulnerable to absorption
by vapor molecules, atmospheric gasses, and rain [8]. Even minor angle or path length
alterations can lead to spatial fading, disrupting the signal.

Signals traveling through the atmosphere can be absorbed due to the different res-
onances of oxygen and other gasses. This adds to the natural signal loss that occurs in
free space; as a result, certain mmW frequency bands are well suited for very-short-range
communications and “whisper radio” applications, where the signal weakens rapidly over
distances of only a few meters or even fractions of a meter. Rain and hail can also worsen
signal loss, especially at frequencies above 10 GHz. For example, 73 GHz signals can
experience up to 10 dB/km of loss during heavy rainfall at a rate of 50 mm/h. Additional
antenna or transmission gain can be used to mitigate this signal loss. The signal loss from
air-to-ground transmission can also depend on the size and orientation of raindrops and
clouds. As a result, connections between satellites or drones may experience a more local-
ized and potentially less severe signal loss due to rain compared to terrestrial connections
at mmW frequencies [9,10].

Building penetration presents a major challenge, setting it apart from current
UHF/microwave systems. The effect of different materials on signal strength is significant.
Tests conducted at 38 GHz showed a signal loss of almost 25 dB for a stained glass window
and 37 dB for a glass door. Similarly, tests at 28 GHz revealed signal losses of 40.1 dB for
external colored glass and 28.3 dB for brick pillars. In contrast, internal clear glass and
drywall showed losses of only 3.6 dB and 6.8 dB, respectively [9,11].

Transmission in the mmW spectrum must quickly explore and adapt to the spatial
dynamics of the wireless channel. Diffuse scattering on rough surfaces can introduce
significant signal variations over very short distances. This necessitates anticipating these
rapid variations to properly design channel state feedback, link adaptation, and beamform-
ing/tracking algorithms. Furthermore, near-coincident multipath due to wavelength can
create severe small-scale variations in the channel frequency response [9,12].

2.2. Fading Models

In the current UHF/microwave frequency spectrum, models built based on the prin-
ciples of frequentist or classical statistics efficiently elucidate the fading phenomenon.
However, these models, each with their particularities, are not general and have certain
restrictions or limitations in their practical application. These limitations arise from the
mathematical formulation, which may not be suitable for a given link architecture or may
not meet the physical properties of the signal propagation behavior, notably influenced by
the carrier frequency. These factors impose significant constraints on the effectiveness of
the models. Therefore, reaching a consensus on an effective model for the mmW frequency
range [8] remains a challenge.

This work proposes and analyzes a fading model based on Bayesian fundamentals and
will briefly show the fading models’ bases that are in current use—Rician, Rayleigh, and
Nakagami-m. The analysis can be further extended to encompass other models and distri-
butions (α − η − k − µ), which provide a unified representation of the Nakagami-m, Rician,
and Rayleigh models. These models and variants are based on frequentist (parametric)
statistics and are typically associated with nonlinearity and communication in non-line-of-
sight (NLOS) scenarios [13,14]. In contrast, within the millimeter wave (mmW) spectrum,
the link architecture operates predominantly under line-of-sight (LOS) conditions.
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2.2.1. Rician Model

Rice’s model is expressed by the probability density function (PDF) given by:

PDF(p) =
p

σ2 e−(
p2+A2

2σ2 ).I0

(
A.p
σ2

)
(1)

where A is the maximum voltage or power envelope, σ is the standard deviation, and I0 is
the modified Bessel function of the first kind and order zero.

The Rician K factor estimates the ratio between the direct signal (LOS) and the contri-
bution of the multipath components that reach the receiver.

K =
LOS

MULTIPATH
[POWER]
[POWER]

=
A2

2σ2 (2)

Rice’s PDF can be written as follows:

PDF(p) =
p

σ2 e−
p2

2σ2 .e−K I0

( p
σ

√
2k
)

(3)

By analyzing the PDF expression, it is observed that critical situations occur when:

• K = 0

In this condition, there is an NLOS signal only, and the term e−K = 1 e I0(0) = 1.

• K → ∞

If there is a reasonable clearance (LOS) between the transmitter and the contribution
of multipath’s components is irrelevant, in that case, a fact that increases with the increase
in frequency, then K tends to infinity (K→∞) and Rice’s PDF tends to the Dirac delta
shaped [15].

When analyzing the Rice model’s probability density function (PDF) expression, it
becomes evident that this model is unsuitable for links operating at high frequencies, such as
those in the mmW spectrum. The significant loss due to free space attenuation necessitates
a high density of antennas, which almost always require a line-of-sight (LOS) architecture.
Additionally, the signal spreading effect is either weak or nonexistent, resulting in a minimal
contribution from multipath components.

2.2.2. Rayleigh Model

In densely populated urban and suburban areas, it is uncommon for a line-of-sight
(LOS) signal to reach the receiver; instead, the received signal is primarily the result
of scattering and multipathing. The received signal is a combination of the sum of these
scattered and multipath signals, which vary in amplitude and phase, leading to constructive
or destructive interference. As a result, the signal tends to fluctuate rapidly and significantly,
causing fading.

This is the case where in Rice’s PDF expression, K tends to zero (K→0) and the term
e−K = 1 e I0(0) = 1, resulting in the following:

PDF(p) =
p

σ2 e−
p2

2σ2 (4)

This expression represents the Rayleigh model’s probability density function (PDF).
Consequently, the Rayleigh model can be considered a particular case derived from the
Rician model when there is no line-of-sight (NLOS) between the transmitter and receiver.

2.2.3. Nakagami-m Model

The Nakagami model’s probability density function (PDF) represents a continuous
probability distribution designed to address the limitations of the Rice K factor. This
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model is based on the Gamma distribution and belongs to the family of long-tail distri-
butions, making it particularly effective in modeling fading environments compared to
those described by the Rayleigh and Rician models. The Nakagami model can accommo-
date a wider range of fading scenarios by offering greater flexibility in fitting empirical
data, providing a more accurate representation of signal behavior in diverse propagation
environments [15,16].

PDF(p) =
2mm

Γ(m)Ωm y2m−1e−
m
Ω y2

(5)

where Ω is the scale control parameter (Ω > 0); m is the shape parameter (m > 0.5), which
determines the depth of fading and the distribution’s tail extension; and y is the random
variable that represents the signal’s amplitude.

The Nakagami distribution exhibits specific characteristics depending on its mmm
parameter. As m tends to infinity, the channel behaves like a static channel, indicating
the absence of fading. When m approaches 1, the Nakagami distribution converges to
the Rayleigh model. For values of m greater than 1 (m > 1), the Nakagami distribution
increasingly resembles the Rice model.

3. Bayesian Fundamentals

The Bayesian approach is a powerful tool for statistical inference and advanced ma-
chine learning models. It helps calculate the probability of specific situations by using
available information and conditional probabilities based on their correlation with known
scenarios. This method provides a more flexible and intuitive approach to statistical mod-
eling than traditional methods. By incorporating prior knowledge and updating it with
new data, Bayesian inference can handle complex data structures and offer more accurate
predictions [17]. Additionally, Bayesian models allow the integration of expert knowledge,
reducing uncertainty and enhancing model performance.

By logically updating hypotheses, it is possible to explain the probability of an event
based on previous data, resulting in a clearer and more accurate understanding of the
event’s likelihood. This approach allows for more confident decision-making, offering a
more intuitive and understandable interpretation of statistical results [18].

Bayes’ Theorem

Bayes’ theorem requires a joint probability distribution for estimating an unknown
parameter A from known data B. This joint probability density function can be obtained
by multiplying the distribution of A with the data distribution P(B|A). The resulting joint
distribution can then be used to estimate the posterior probability distribution of A given B.

The Bayes’ theorem expression is given by:

p(A|B) = P(B|A) ∗ P(A)

P(B)
(6)

where P(B) = ∑A P(B|A). P(A) is the sum over all possible values of A, or in the case of a
continuous value of A, P(B) =

∫
p(B|A).p(A)dA. The probability of A before considering

B is the prior probability (P(A)), while the probability of A given B (P(A|B)) is called
the posterior probability. P(B|A) is the likelihood function that despite having the same
meaning as probability, brings a subtle difference to the statistical analysis, describing
the probability of observing data already found; it refers to past events with known
outcomes [19].

4. Proposed Model

A practical approach to determining the a priori distribution involves simulating
a sample of known data, when possible, and examining the resulting random variable
distribution. Several graphs can be created based on the chosen distribution, including
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a Probability Distribution Function (PDF), Cumulative Distribution Function (CDF), his-
togram, and QQplot.

Choosing Model Distributions

Simulating a signal transmitted with a 38.0 GHz carrier, BPSK modulation (to simplify
analysis), and considering the effects of free space attenuation (500 m), white noise (AWGN),
atmospheric noise, vapor absorption, and the Doppler effect for the receiver with a relative
speed of 60 km/h, the resulting distribution of noise is shown in the histogram and QQ
plot presented in Figure 1.
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The simulation graphs (Figure 1) show that the noise distribution in the receiver
adheres to the normal distribution. Therefore, this will be chosen as the a priori distribution.

The Gamma distribution, which includes shape (α) and scale control parameters
(θ) in its formulation, offers flexibility to find the best fit. These parameters allow the
model to adapt to a wide range of data patterns, making it a robust choice for modeling
diverse scenarios. Furthermore, the Gamma distribution is the basis of the well-established
Nakagami-m model, widely used to describe channel fading. Given its versatility and math-
ematical properties, this study will use the Gamma distribution as a posterior distribution.

Substituting into the expression of Bayes’ theorem (6) and simplifying, we obtain the
following:

p(X|Y) = Yα−1.e−
Y
θ .e−

(X−µ)2

2σ2∫
Yα−1.e−

Y
θ .e−

(X−µ)2

2σ2 dX
(7)

The denominator is a normalization integral representing the sum of all mutually
exclusive hypotheses. ∫

Yα−1.e−
Y
θ .e−

(X−µ)2

2σ2 dX (8)

Solving for X: ∫
e−

(X−µ)2

2σ2 dX =

u = X−µ
σ du = dX

σ dX = σdu
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Substituting: ∫
e−

(X−µ)2

2σ2 dX =
∫

e−
u
2

2
σdu

This is the integral of the standard Gaussian function; its domain extends over the real
domain (−∞, ∞). Using the general form:

I =
∫ ∞
−∞ e−ax2

dx

I2 =
(∫ ∞

−∞ e−ax2
dx

)
.
(∫ ∞

−∞ e−ay2
dy

)
I2 =

∫ ∞
−∞

∫ ∞
−∞ e−a(x2+y2)dxdy

x2 + y2 is the equation of a circle of radius r2. Transforming to polar coordinates:

x2 + y2 = r2

dxdy = rdrdθ

With r varying from 0 to ∞ and θ from 0 to 2π:

I2 =
∫ 2π

0
dθ

∫ ∞

0
e−ar2

.rdr

Solving for r:
u = ar2 ⇒ du = 2ardr∫ ∞

0 e−ar2
.rdr = 1

2a
∫ ∞

0 e−udu = 1
2a

Integrating with respect to θ:

I2 = 1
2a

∫ 2π
0 dθ = π

a

I2 = π
a =⇒ I =

√
π
a

(9)

In this case, a = 1
2 .

Returning the original variable X and replacing, we obtain the following:

∫
e−

(X−µ)2

2σ2 dX = σ
√

2π (10)

Integrating with respect to Y: ∫
Yα−1.e−

Y
θ .dY

This integral can be solved using rules applicable to the Gamma function.

u = Y
θ Y = θu e dY = θdu∫

Yα−1.e−
Y
θ dY =

∫
(θu)α−1.e−u.θdu

simplifying: ∫
Yα−1.e−

Y
θ dY = θα

∫
uα−1.e−udu

The integrand is the definition of the Gamma function.

θα
∫

uα−1.e−udu = θα. Γ(α) (11)

Finally, the solution for (8) is then:

∫
Yα−1.e−

Y
θ .e−

(X−µ)2

2σ2 dX = σ
√

2π. θα. Γ(α) (12)



Electronics 2024, 13, 4406 8 of 16

Substituting in (8):

p(X|Y) = Yα−1.e−
Y
θ .e−

(X−µ)2

2σ2

σ
√

2π. θα. Γ(α)
(13)

L(Y, α, θ) =

√
2π

2πσθαΓ(α)
.Yα−1e−( Y

θ +
(X−µ)2

2σ2 ) (14)

With Y > 0 and the other parameters following the definitions of the original Gamma
and normal distributions.

The curves in Figure 2 depict how the probability density function of the L distribution
changes with variations in Y.
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The variable being considered in the posterior distribution is Y. To calculate the
probability density function (PDF), each term in the prior distribution, which is a nor-
mal distribution, is multiplied by the corresponding term in the posterior distribution.
Changing the Y value helps evaluate how the posterior distribution affects the previous
distribution and how one is affected by the other.

In the posterior distribution, the variable Y can represent any parameter, whether
a function, vector, or distribution. This variable can encompass a physical quantity or a
parameter that influences propagation, such as the power of a received signal. Y’s flexibility
allows for a comprehensive analysis of various factors that impact signal behavior.

5. Simulations and Results

The objective of the simulation is to show, in a comparative manner, the behavior
of the fading channel for the proposed L and Nakagami models. The Rice and Rayleigh
models will not be included in the comparisons because they do not adequately represent
the propagation model in the mmW spectrum due to the links (LOS) architecture or the
low or nonexistent spreading of the signal in this spectrum band.

The simulation parameters follow those previously established, namely “a signal trans-
mitted with a 38.0 GHz carrier, BPSK modulation (to simplify analysis), and considering
the effects of free space attenuation (500 m), white noise (AWGN), atmospheric noise, vapor
absorption, and Doppler effect for the receiver with a relative speed of 60 km/h”.

Also, using an FIR filter (Finite Impulse Response) with a bandwidth of 100 MHz [20]
to simulate the channel, the signal will be reconstructed for each model to compare the
efficiency of mitigating the effects of channel fading.

The choice of the FIR filter is due to its fundamental characteristics [17].
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• Guaranteed stability—its coefficients depend only on the input samples.
• Linear phase—they can be implemented to have a linear phase response; they do not

distort the signal waveform.
• Easy implementation on digital hardware as it does not require feedback.
• Flexibility in design—can be easily adjusted to meet specific filter requirements, such

as low pass, high pass, and bandwidth.

A typical phase sample of a transmitted signal with the effect of noise, based on (5)
and (14), is shown in Figure 3.
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Figure 3. Pure sinusoidal and received signal with noise. (a) L model; (b) Nakagami.

Figure 3 shows the noise generation in the channel for the models. The proposed L
model captures a more significant number and amplitude of the noise generated in the
transmission. In other words, it is more sensitive to rapid and profound signal variations
typical of those in dense urban and suburban environments.

The scatterplot in Figure 4 shows the noise amplitude distribution for both models
over the sampled period.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. Compared dispersion of amplitude distribution. 

From the probability distribution of the ℒ model (14), the Nakagami model (5), and 
the response of the FIR filter, it is possible to determine the impulse response of the com-
munication channel from the perspective of the fading effect for each model. 

Impulse response describes how the channel affects a transmitted signal, especially 
in terms of signal distortion and dispersion over time; it shows how the channel changes 
an impulse (a very short signal, ideally of infinitesimal width). 

For visualization purposes, in Figure 5, only 100 samples are shown.  

 
Figure 5. Channel unitary impulse response simulated for a sample in the period. 

Taking the impulse response, using the fast Fourier transform (FFT) and the inverse 
Fourier transform (IFFT), and using signal processing techniques, the signal can be recon-
structed. 

The signal reconstruction adopts the following procedure, using the fast Fourier 
transform (FFT) to compute the Fourier transforms and the inverse fast Fourier transform 
(IFFT) to return to the time domain. Given ℎ(𝑡), one can calculate 𝐻(𝑓) using the FFT: 𝐻(𝑓) = 𝐹𝐹𝑇൫ℎ(𝑡)൯ (15)

Figure 4. Compared dispersion of amplitude distribution.

From the probability distribution of the L model (14), the Nakagami model (5), and
the response of the FIR filter, it is possible to determine the impulse response of the
communication channel from the perspective of the fading effect for each model.
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Impulse response describes how the channel affects a transmitted signal, especially in
terms of signal distortion and dispersion over time; it shows how the channel changes an
impulse (a very short signal, ideally of infinitesimal width).

For visualization purposes, in Figure 5, only 100 samples are shown.
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Taking the impulse response, using the fast Fourier transform (FFT) and the inverse
Fourier transform (IFFT), and using signal processing techniques, the signal can be
reconstructed.

The signal reconstruction adopts the following procedure, using the fast Fourier
transform (FFT) to compute the Fourier transforms and the inverse fast Fourier transform
(IFFT) to return to the time domain. Given h(t), one can calculate H( f ) using the FFT:

H( f ) = FFT(h(t)) (15)

To determine the FFT of the input signal x(t), one can calculate X( f ) using the FFT
algorithm.

X( f ) = FFT(x(t)) (16)

To obtain Y( f ), multiply X( f ) by H( f ), [Y( f ) = X( f ).H( f )], and apply IFFT to Y( f )
to obtain y(t):

y(t) = IFFT(Y( f )) (17)

Using this procedure (FFT and IFFT), the convolution process is simplified by trans-
forming it to the frequency domain, where the convolution becomes a simple multiplication;
this is computationally efficient and practical to implement.

Figure 6 shows a comparative reconstruction of the signal shown in Figure 4. For the
proposed L model, 3000 iterations were performed (in Figure 6) to refine the reconstruction
process, and this is one of the advantages of the proposed model, which, being built on
Bayesian fundamentals, allows for this refinement through iterative processes.
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It can be seen that the L model is, by construction, less conservative than the Nakagami
model (Figures 4 and 5); that is, it has greater flexibility by allowing the signal to oscillate at
larger amplitudes, capturing possible variations that can cause the fading effect. However,
it has a greater response uniformity when reconstructed than the compared model.

The analysis of the “Comparative PDFs of reconstructed signal noise” (Figure 7) shows
that the Nakagami distribution presents a smaller dispersion of noise values (narrower
base); also, the higher probability density in the center (height of the curve) implies that
most of the noise values for the reconstructed signal are concentrated near the mean value.
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The broader base of the L distribution shows a greater noise dispersion, indicating
a wider variation of values around the mean. The lower height of the probability density
curve in the center implies that the values are less concentrated and more distributed.

The Nakagami model, due to its lower noise dispersion, tends to result in a more stable
and predictable signal, which makes it advantageous in environments where robustness
against signal variations is critical. As a disadvantage, it has less capacity to adapt to rapid
and profound channel variations, making it less efficient in communication environments
with many fluctuations.

The proposed L model, in turn, has a greater capacity to represent channel variations
and fluctuations, such as those expected in propagation in the mmW spectrum, and can
better adapt to rapid and significant changes in the communication environment. As a
disadvantage, the greater dispersion of noise values can result in a less stable signal that is
more susceptible to interference.

In summary, with its greater dispersion, the L model can represent a wider variety of
noise scenarios, which is advantageous in highly variable communication environments.
The ability to handle severe fluctuations makes the model adaptable to different channel
conditions, which provides robustness in unpredictable environments. The model is,
therefore, advantageous in scenarios where adaptation to significant variations in noise
and interference levels is necessary.

Fade channel power (Figure 8) measures the variation in signal strength due to the fad-
ing effect in a wireless communication channel. It is calculated by averaging the quadratic
values of the received signal. The resulting value represents the signal strength over time,
reflecting the variations caused by fading. It is a crucial variable for designing and analyz-
ing wireless communication systems, as it allows for predicting the system performance
under different propagation conditions. It helps to implement fading mitigation techniques
such as receiver diversity, equalization, and adaptive modulation.
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6. Using Advanced Techniques

A significant advancement in signal reconstruction techniques can be achieved using
particle filters, also known as bootstrap filters or sequential Monte Carlo methods, which
are a set of algorithms used to estimate the internal states of a system based on partial and
noisy observations. In this filter, Bayesian inference allows for estimating a combined state
for a measurement with a prior probability.

Particle filters do not apply directly to the Nakagami model or any other derived
from the foundations of classical or frequentist statistics, as these are static models that
assume a specific distribution for the magnitude of the fading signal and, by nature, do
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not incorporate a dynamic mechanism to update states or incorporate new information as
Bayesian methods do.

As it is an algorithm that allows for the continuous updating of the dynamic state
of the system, the particle filter can track variables that change over time, such as the
communication channel.

Implementation

In the implementation of the particle filter, a set of particles (samples) is used to
represent the posterior distribution of the state of the system. Each particle has a weight
that indicates its probability.

χ =
{

ffix[j], ω[j]ffl
}

j=1, ...., J
(18)

This expression (18) represents the set of particles (samples) that the filter uses to
estimate the state of a dynamic system, where x[j] is the jth particle, i.e., a possible sample
of the current state or a hypothetical representation of the system’s state, and ω[j] is the
weight associated with the jth particle. It represents the relative probability that particle x[j]

accurately represents the system’s true state. Higher weights indicate that the particle is
more in line with current observations.

p(x) =
J

∑
j=1

ω[j]δx[j](x) (19)

The more particles that fall into a region, the higher the probability in that region. They
are initialized around the received signal with random noise. Each represents a hypothesis
about the true state of the signal.

With each iteration, the particles are updated with the addition of noise. The weights
are adjusted according to the current observation probability, which measures the similarity
between the received signal and the sample.

Resampling is carried out to avoid sample degeneration, where few particles assume
significant weight. Resampling according to weight ensures that particles with higher
weight (closer to the true signal) are selected more often. The final signal estimate is
obtained as the weighted average of the particles.

The particle filter can be especially useful for dealing with uncertainties and rapid
signal variations, providing a more accurate estimate of the received signal’s state.

Comparatively, the reconstruction of the simulated signal for the L model using
traditional techniques and particle filters is shown in Figure 9:

Bayesian filtering, a natural extension of the proposed L model, facilitates methodolog-
ical and conceptual integration, allowing for a cohesive and robust approach to understand-
ing channel fading and signal reconstruction when considering the temporal evolution of
the channel state.

Figure 10, which compares the noise powers, shows that the particle filter presents
smaller noise variations over time, indicating greater noise suppression efficiency than the
traditional method. The particle filter therefore has a greater capacity to attenuate abrupt
variations in the resulting noise, resulting in a more stable and accurate signal reconstruc-
tion, reducing errors and improving system performance. In practical applications, particle
filters can result in a higher quality reconstructed signal, reducing errors and improving the
communication system’s performan As can be seen in Figure 11 (power Spectral Density).
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7. Conclusions and Future Work

Analysis of the results suggests that the proposed L model can be a tool for modeling
fading in communication channels in the mmW spectrum. Compared to the traditional
models (Rice, Rayleigh, and Nakagami), it demonstrates greater flexibility in capturing fast
and deep signal variations typical of dense urban and suburban environments and those
that occur in millimeter wave propagation. It can represent and describe various fading
scenarios, which is particularly important in mmW channels, where the signal is highly
influenced by obstacles and attenuations and the architecture of the links, which are almost
always a line of sight (LOS).

When using a joint probability distribution, the Bayesian approach allows the model
to adapt to channel conditions dynamically, providing greater simulation accuracy and
quality in signal reconstruction.

Regarding the signal reconstruction process, the L model demonstrated an advantage
in providing greater uniformity than the Nakagami-m model. This is attributed to its ability
to incorporate information about the statistical distribution of fading and specific channel
characteristics, resulting in a more accurate reconstruction that is less prone to noise and
interference. In addition, the model’s iterative structure allows for successive refinements,
improving channel estimation accuracy in complex scenarios and directly impacting the
reconstructed signal’s quality.

In conjunction with the particle filter, the L model has efficiently captured a wide
range of noise behaviors, including fast and deep variations. It quickly adapts to dynamic
variations and effectively adjusts the particles and weights in the filter. Noise suppression
is more efficient, resulting in reconstructed signals with smaller noise variations and a
higher signal-to-noise ratio (SNR).

Overall, the L model proved a versatile tool for simulating fading in mmW channels
and signal reconstruction. These characteristics suggest that the model could be a promising
tool for developing more efficient and accurate communication networks with its challeng-
ing propagation characteristics in the millimeter wave spectrum. Future developments
regarding the model should include validation with real measurements and integration
with advanced signal processing techniques, AI algorithms, and machine learning.
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